Properties

Label 147.4.e.a
Level $147$
Weight $4$
Character orbit 147.e
Analytic conductor $8.673$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [147,4,Mod(67,147)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("147.67"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(147, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,-3,-8,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.67328077084\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \zeta_{6} q^{2} + (3 \zeta_{6} - 3) q^{3} + (8 \zeta_{6} - 8) q^{4} - 18 \zeta_{6} q^{5} + 12 q^{6} - 9 \zeta_{6} q^{9} + (72 \zeta_{6} - 72) q^{10} + ( - 50 \zeta_{6} + 50) q^{11} - 24 \zeta_{6} q^{12} + \cdots - 450 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 3 q^{3} - 8 q^{4} - 18 q^{5} + 24 q^{6} - 9 q^{9} - 72 q^{10} + 50 q^{11} - 24 q^{12} - 72 q^{13} + 108 q^{15} + 64 q^{16} - 126 q^{17} - 36 q^{18} + 72 q^{19} + 288 q^{20} - 400 q^{22}+ \cdots - 900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−2.00000 3.46410i −1.50000 + 2.59808i −4.00000 + 6.92820i −9.00000 15.5885i 12.0000 0 0 −4.50000 7.79423i −36.0000 + 62.3538i
79.1 −2.00000 + 3.46410i −1.50000 2.59808i −4.00000 6.92820i −9.00000 + 15.5885i 12.0000 0 0 −4.50000 + 7.79423i −36.0000 62.3538i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.4.e.a 2
3.b odd 2 1 441.4.e.o 2
7.b odd 2 1 147.4.e.d 2
7.c even 3 1 147.4.a.h yes 1
7.c even 3 1 inner 147.4.e.a 2
7.d odd 6 1 147.4.a.f 1
7.d odd 6 1 147.4.e.d 2
21.c even 2 1 441.4.e.l 2
21.g even 6 1 441.4.a.c 1
21.g even 6 1 441.4.e.l 2
21.h odd 6 1 441.4.a.a 1
21.h odd 6 1 441.4.e.o 2
28.f even 6 1 2352.4.a.t 1
28.g odd 6 1 2352.4.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
147.4.a.f 1 7.d odd 6 1
147.4.a.h yes 1 7.c even 3 1
147.4.e.a 2 1.a even 1 1 trivial
147.4.e.a 2 7.c even 3 1 inner
147.4.e.d 2 7.b odd 2 1
147.4.e.d 2 7.d odd 6 1
441.4.a.a 1 21.h odd 6 1
441.4.a.c 1 21.g even 6 1
441.4.e.l 2 21.c even 2 1
441.4.e.l 2 21.g even 6 1
441.4.e.o 2 3.b odd 2 1
441.4.e.o 2 21.h odd 6 1
2352.4.a.s 1 28.g odd 6 1
2352.4.a.t 1 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(147, [\chi])\):

\( T_{2}^{2} + 4T_{2} + 16 \) Copy content Toggle raw display
\( T_{5}^{2} + 18T_{5} + 324 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$3$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$5$ \( T^{2} + 18T + 324 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 50T + 2500 \) Copy content Toggle raw display
$13$ \( (T + 36)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 126T + 15876 \) Copy content Toggle raw display
$19$ \( T^{2} - 72T + 5184 \) Copy content Toggle raw display
$23$ \( T^{2} + 14T + 196 \) Copy content Toggle raw display
$29$ \( (T - 158)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 36T + 1296 \) Copy content Toggle raw display
$37$ \( T^{2} - 162T + 26244 \) Copy content Toggle raw display
$41$ \( (T + 270)^{2} \) Copy content Toggle raw display
$43$ \( (T + 324)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 72T + 5184 \) Copy content Toggle raw display
$53$ \( T^{2} - 22T + 484 \) Copy content Toggle raw display
$59$ \( T^{2} + 468T + 219024 \) Copy content Toggle raw display
$61$ \( T^{2} + 792T + 627264 \) Copy content Toggle raw display
$67$ \( T^{2} + 232T + 53824 \) Copy content Toggle raw display
$71$ \( (T + 734)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 180T + 32400 \) Copy content Toggle raw display
$79$ \( T^{2} + 236T + 55696 \) Copy content Toggle raw display
$83$ \( (T - 36)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 234T + 54756 \) Copy content Toggle raw display
$97$ \( (T - 468)^{2} \) Copy content Toggle raw display
show more
show less