Properties

Label 147.2.g.a
Level $147$
Weight $2$
Character orbit 147.g
Analytic conductor $1.174$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,2,Mod(68,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.68");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 147.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.17380090971\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} + 1) q^{3} + (2 \zeta_{6} - 2) q^{4} + 3 \zeta_{6} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} + 1) q^{3} + (2 \zeta_{6} - 2) q^{4} + 3 \zeta_{6} q^{9} + (2 \zeta_{6} - 4) q^{12} + ( - 2 \zeta_{6} + 1) q^{13} - 4 \zeta_{6} q^{16} + ( - 3 \zeta_{6} + 6) q^{19} + ( - 5 \zeta_{6} + 5) q^{25} + (6 \zeta_{6} - 3) q^{27} + ( - 5 \zeta_{6} - 5) q^{31} - 6 q^{36} - \zeta_{6} q^{37} + ( - 3 \zeta_{6} + 3) q^{39} - 5 q^{43} + ( - 8 \zeta_{6} + 4) q^{48} + (2 \zeta_{6} + 2) q^{52} + 9 q^{57} + (4 \zeta_{6} - 8) q^{61} + 8 q^{64} + (11 \zeta_{6} - 11) q^{67} + (9 \zeta_{6} + 9) q^{73} + ( - 5 \zeta_{6} + 10) q^{75} + (12 \zeta_{6} - 6) q^{76} + 13 \zeta_{6} q^{79} + (9 \zeta_{6} - 9) q^{81} - 15 \zeta_{6} q^{93} + ( - 16 \zeta_{6} + 8) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - 2 q^{4} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{3} - 2 q^{4} + 3 q^{9} - 6 q^{12} - 4 q^{16} + 9 q^{19} + 5 q^{25} - 15 q^{31} - 12 q^{36} - q^{37} + 3 q^{39} - 10 q^{43} + 6 q^{52} + 18 q^{57} - 12 q^{61} + 16 q^{64} - 11 q^{67} + 27 q^{73} + 15 q^{75} + 13 q^{79} - 9 q^{81} - 15 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(-1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
68.1
0.500000 0.866025i
0.500000 + 0.866025i
0 1.50000 0.866025i −1.00000 1.73205i 0 0 0 0 1.50000 2.59808i 0
80.1 0 1.50000 + 0.866025i −1.00000 + 1.73205i 0 0 0 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.2.g.a 2
3.b odd 2 1 CM 147.2.g.a 2
7.b odd 2 1 21.2.g.a 2
7.c even 3 1 21.2.g.a 2
7.c even 3 1 147.2.c.a 2
7.d odd 6 1 147.2.c.a 2
7.d odd 6 1 inner 147.2.g.a 2
21.c even 2 1 21.2.g.a 2
21.g even 6 1 147.2.c.a 2
21.g even 6 1 inner 147.2.g.a 2
21.h odd 6 1 21.2.g.a 2
21.h odd 6 1 147.2.c.a 2
28.d even 2 1 336.2.bc.c 2
28.f even 6 1 2352.2.k.c 2
28.g odd 6 1 336.2.bc.c 2
28.g odd 6 1 2352.2.k.c 2
35.c odd 2 1 525.2.t.c 2
35.f even 4 2 525.2.q.d 4
35.j even 6 1 525.2.t.c 2
35.l odd 12 2 525.2.q.d 4
63.g even 3 1 567.2.i.b 2
63.h even 3 1 567.2.s.a 2
63.j odd 6 1 567.2.s.a 2
63.l odd 6 1 567.2.i.b 2
63.l odd 6 1 567.2.s.a 2
63.n odd 6 1 567.2.i.b 2
63.o even 6 1 567.2.i.b 2
63.o even 6 1 567.2.s.a 2
84.h odd 2 1 336.2.bc.c 2
84.j odd 6 1 2352.2.k.c 2
84.n even 6 1 336.2.bc.c 2
84.n even 6 1 2352.2.k.c 2
105.g even 2 1 525.2.t.c 2
105.k odd 4 2 525.2.q.d 4
105.o odd 6 1 525.2.t.c 2
105.x even 12 2 525.2.q.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.2.g.a 2 7.b odd 2 1
21.2.g.a 2 7.c even 3 1
21.2.g.a 2 21.c even 2 1
21.2.g.a 2 21.h odd 6 1
147.2.c.a 2 7.c even 3 1
147.2.c.a 2 7.d odd 6 1
147.2.c.a 2 21.g even 6 1
147.2.c.a 2 21.h odd 6 1
147.2.g.a 2 1.a even 1 1 trivial
147.2.g.a 2 3.b odd 2 1 CM
147.2.g.a 2 7.d odd 6 1 inner
147.2.g.a 2 21.g even 6 1 inner
336.2.bc.c 2 28.d even 2 1
336.2.bc.c 2 28.g odd 6 1
336.2.bc.c 2 84.h odd 2 1
336.2.bc.c 2 84.n even 6 1
525.2.q.d 4 35.f even 4 2
525.2.q.d 4 35.l odd 12 2
525.2.q.d 4 105.k odd 4 2
525.2.q.d 4 105.x even 12 2
525.2.t.c 2 35.c odd 2 1
525.2.t.c 2 35.j even 6 1
525.2.t.c 2 105.g even 2 1
525.2.t.c 2 105.o odd 6 1
567.2.i.b 2 63.g even 3 1
567.2.i.b 2 63.l odd 6 1
567.2.i.b 2 63.n odd 6 1
567.2.i.b 2 63.o even 6 1
567.2.s.a 2 63.h even 3 1
567.2.s.a 2 63.j odd 6 1
567.2.s.a 2 63.l odd 6 1
567.2.s.a 2 63.o even 6 1
2352.2.k.c 2 28.f even 6 1
2352.2.k.c 2 28.g odd 6 1
2352.2.k.c 2 84.j odd 6 1
2352.2.k.c 2 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(147, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 3 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 9T + 27 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 15T + 75 \) Copy content Toggle raw display
$37$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 5)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 12T + 48 \) Copy content Toggle raw display
$67$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 27T + 243 \) Copy content Toggle raw display
$79$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 192 \) Copy content Toggle raw display
show more
show less