Properties

Label 147.2.e.e.79.1
Level $147$
Weight $2$
Character 147.79
Analytic conductor $1.174$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,2,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.17380090971\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 147.79
Dual form 147.2.e.e.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.207107 + 0.358719i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.914214 + 1.58346i) q^{4} +(1.70711 - 2.95680i) q^{5} -0.414214 q^{6} -1.58579 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.207107 + 0.358719i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.914214 + 1.58346i) q^{4} +(1.70711 - 2.95680i) q^{5} -0.414214 q^{6} -1.58579 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.707107 + 1.22474i) q^{10} +(1.00000 + 1.73205i) q^{11} +(-0.914214 + 1.58346i) q^{12} -2.58579 q^{13} +3.41421 q^{15} +(-1.50000 + 2.59808i) q^{16} +(-1.12132 - 1.94218i) q^{17} +(-0.207107 - 0.358719i) q^{18} +(-1.41421 + 2.44949i) q^{19} +6.24264 q^{20} -0.828427 q^{22} +(3.82843 - 6.63103i) q^{23} +(-0.792893 - 1.37333i) q^{24} +(-3.32843 - 5.76500i) q^{25} +(0.535534 - 0.927572i) q^{26} -1.00000 q^{27} -6.82843 q^{29} +(-0.707107 + 1.22474i) q^{30} +(-0.585786 - 1.01461i) q^{31} +(-2.20711 - 3.82282i) q^{32} +(-1.00000 + 1.73205i) q^{33} +0.928932 q^{34} -1.82843 q^{36} +(2.00000 - 3.46410i) q^{37} +(-0.585786 - 1.01461i) q^{38} +(-1.29289 - 2.23936i) q^{39} +(-2.70711 + 4.68885i) q^{40} -6.24264 q^{41} +5.65685 q^{43} +(-1.82843 + 3.16693i) q^{44} +(1.70711 + 2.95680i) q^{45} +(1.58579 + 2.74666i) q^{46} +(-1.41421 + 2.44949i) q^{47} -3.00000 q^{48} +2.75736 q^{50} +(1.12132 - 1.94218i) q^{51} +(-2.36396 - 4.09450i) q^{52} +(1.00000 + 1.73205i) q^{53} +(0.207107 - 0.358719i) q^{54} +6.82843 q^{55} -2.82843 q^{57} +(1.41421 - 2.44949i) q^{58} +(-0.585786 - 1.01461i) q^{59} +(3.12132 + 5.40629i) q^{60} +(6.12132 - 10.6024i) q^{61} +0.485281 q^{62} -4.17157 q^{64} +(-4.41421 + 7.64564i) q^{65} +(-0.414214 - 0.717439i) q^{66} +(2.82843 + 4.89898i) q^{67} +(2.05025 - 3.55114i) q^{68} +7.65685 q^{69} +9.31371 q^{71} +(0.792893 - 1.37333i) q^{72} +(6.94975 + 12.0373i) q^{73} +(0.828427 + 1.43488i) q^{74} +(3.32843 - 5.76500i) q^{75} -5.17157 q^{76} +1.07107 q^{78} +(-6.82843 + 11.8272i) q^{79} +(5.12132 + 8.87039i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(1.29289 - 2.23936i) q^{82} -7.31371 q^{83} -7.65685 q^{85} +(-1.17157 + 2.02922i) q^{86} +(-3.41421 - 5.91359i) q^{87} +(-1.58579 - 2.74666i) q^{88} +(-7.12132 + 12.3345i) q^{89} -1.41421 q^{90} +14.0000 q^{92} +(0.585786 - 1.01461i) q^{93} +(-0.585786 - 1.01461i) q^{94} +(4.82843 + 8.36308i) q^{95} +(2.20711 - 3.82282i) q^{96} -2.58579 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{5} + 4 q^{6} - 12 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{5} + 4 q^{6} - 12 q^{8} - 2 q^{9} + 4 q^{11} + 2 q^{12} - 16 q^{13} + 8 q^{15} - 6 q^{16} + 4 q^{17} + 2 q^{18} + 8 q^{20} + 8 q^{22} + 4 q^{23} - 6 q^{24} - 2 q^{25} - 12 q^{26} - 4 q^{27} - 16 q^{29} - 8 q^{31} - 6 q^{32} - 4 q^{33} + 32 q^{34} + 4 q^{36} + 8 q^{37} - 8 q^{38} - 8 q^{39} - 8 q^{40} - 8 q^{41} + 4 q^{44} + 4 q^{45} + 12 q^{46} - 12 q^{48} + 28 q^{50} - 4 q^{51} + 16 q^{52} + 4 q^{53} - 2 q^{54} + 16 q^{55} - 8 q^{59} + 4 q^{60} + 16 q^{61} - 32 q^{62} - 28 q^{64} - 12 q^{65} + 4 q^{66} + 28 q^{68} + 8 q^{69} - 8 q^{71} + 6 q^{72} + 8 q^{73} - 8 q^{74} + 2 q^{75} - 32 q^{76} - 24 q^{78} - 16 q^{79} + 12 q^{80} - 2 q^{81} + 8 q^{82} + 16 q^{83} - 8 q^{85} - 16 q^{86} - 8 q^{87} - 12 q^{88} - 20 q^{89} + 56 q^{92} + 8 q^{93} - 8 q^{94} + 8 q^{95} + 6 q^{96} - 16 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.207107 + 0.358719i −0.146447 + 0.253653i −0.929912 0.367783i \(-0.880117\pi\)
0.783465 + 0.621436i \(0.213450\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0.914214 + 1.58346i 0.457107 + 0.791732i
\(5\) 1.70711 2.95680i 0.763441 1.32232i −0.177625 0.984098i \(-0.556842\pi\)
0.941067 0.338221i \(-0.109825\pi\)
\(6\) −0.414214 −0.169102
\(7\) 0 0
\(8\) −1.58579 −0.560660
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.707107 + 1.22474i 0.223607 + 0.387298i
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) −0.914214 + 1.58346i −0.263911 + 0.457107i
\(13\) −2.58579 −0.717168 −0.358584 0.933497i \(-0.616740\pi\)
−0.358584 + 0.933497i \(0.616740\pi\)
\(14\) 0 0
\(15\) 3.41421 0.881546
\(16\) −1.50000 + 2.59808i −0.375000 + 0.649519i
\(17\) −1.12132 1.94218i −0.271960 0.471049i 0.697404 0.716679i \(-0.254339\pi\)
−0.969364 + 0.245630i \(0.921005\pi\)
\(18\) −0.207107 0.358719i −0.0488155 0.0845510i
\(19\) −1.41421 + 2.44949i −0.324443 + 0.561951i −0.981399 0.191977i \(-0.938510\pi\)
0.656957 + 0.753928i \(0.271843\pi\)
\(20\) 6.24264 1.39590
\(21\) 0 0
\(22\) −0.828427 −0.176621
\(23\) 3.82843 6.63103i 0.798282 1.38267i −0.122452 0.992474i \(-0.539076\pi\)
0.920734 0.390191i \(-0.127591\pi\)
\(24\) −0.792893 1.37333i −0.161849 0.280330i
\(25\) −3.32843 5.76500i −0.665685 1.15300i
\(26\) 0.535534 0.927572i 0.105027 0.181912i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −6.82843 −1.26801 −0.634004 0.773330i \(-0.718590\pi\)
−0.634004 + 0.773330i \(0.718590\pi\)
\(30\) −0.707107 + 1.22474i −0.129099 + 0.223607i
\(31\) −0.585786 1.01461i −0.105210 0.182230i 0.808614 0.588340i \(-0.200218\pi\)
−0.913824 + 0.406110i \(0.866885\pi\)
\(32\) −2.20711 3.82282i −0.390165 0.675786i
\(33\) −1.00000 + 1.73205i −0.174078 + 0.301511i
\(34\) 0.928932 0.159311
\(35\) 0 0
\(36\) −1.82843 −0.304738
\(37\) 2.00000 3.46410i 0.328798 0.569495i −0.653476 0.756948i \(-0.726690\pi\)
0.982274 + 0.187453i \(0.0600231\pi\)
\(38\) −0.585786 1.01461i −0.0950271 0.164592i
\(39\) −1.29289 2.23936i −0.207029 0.358584i
\(40\) −2.70711 + 4.68885i −0.428031 + 0.741372i
\(41\) −6.24264 −0.974937 −0.487468 0.873141i \(-0.662080\pi\)
−0.487468 + 0.873141i \(0.662080\pi\)
\(42\) 0 0
\(43\) 5.65685 0.862662 0.431331 0.902194i \(-0.358044\pi\)
0.431331 + 0.902194i \(0.358044\pi\)
\(44\) −1.82843 + 3.16693i −0.275646 + 0.477432i
\(45\) 1.70711 + 2.95680i 0.254480 + 0.440773i
\(46\) 1.58579 + 2.74666i 0.233811 + 0.404973i
\(47\) −1.41421 + 2.44949i −0.206284 + 0.357295i −0.950541 0.310599i \(-0.899470\pi\)
0.744257 + 0.667893i \(0.232804\pi\)
\(48\) −3.00000 −0.433013
\(49\) 0 0
\(50\) 2.75736 0.389949
\(51\) 1.12132 1.94218i 0.157016 0.271960i
\(52\) −2.36396 4.09450i −0.327822 0.567805i
\(53\) 1.00000 + 1.73205i 0.137361 + 0.237915i 0.926497 0.376303i \(-0.122805\pi\)
−0.789136 + 0.614218i \(0.789471\pi\)
\(54\) 0.207107 0.358719i 0.0281837 0.0488155i
\(55\) 6.82843 0.920745
\(56\) 0 0
\(57\) −2.82843 −0.374634
\(58\) 1.41421 2.44949i 0.185695 0.321634i
\(59\) −0.585786 1.01461i −0.0762629 0.132091i 0.825372 0.564589i \(-0.190965\pi\)
−0.901635 + 0.432498i \(0.857632\pi\)
\(60\) 3.12132 + 5.40629i 0.402961 + 0.697948i
\(61\) 6.12132 10.6024i 0.783755 1.35750i −0.145985 0.989287i \(-0.546635\pi\)
0.929740 0.368216i \(-0.120031\pi\)
\(62\) 0.485281 0.0616308
\(63\) 0 0
\(64\) −4.17157 −0.521447
\(65\) −4.41421 + 7.64564i −0.547516 + 0.948325i
\(66\) −0.414214 0.717439i −0.0509862 0.0883106i
\(67\) 2.82843 + 4.89898i 0.345547 + 0.598506i 0.985453 0.169948i \(-0.0543599\pi\)
−0.639906 + 0.768453i \(0.721027\pi\)
\(68\) 2.05025 3.55114i 0.248630 0.430639i
\(69\) 7.65685 0.921777
\(70\) 0 0
\(71\) 9.31371 1.10533 0.552667 0.833402i \(-0.313610\pi\)
0.552667 + 0.833402i \(0.313610\pi\)
\(72\) 0.792893 1.37333i 0.0934434 0.161849i
\(73\) 6.94975 + 12.0373i 0.813406 + 1.40886i 0.910467 + 0.413583i \(0.135723\pi\)
−0.0970601 + 0.995279i \(0.530944\pi\)
\(74\) 0.828427 + 1.43488i 0.0963027 + 0.166801i
\(75\) 3.32843 5.76500i 0.384334 0.665685i
\(76\) −5.17157 −0.593220
\(77\) 0 0
\(78\) 1.07107 0.121275
\(79\) −6.82843 + 11.8272i −0.768258 + 1.33066i 0.170249 + 0.985401i \(0.445543\pi\)
−0.938507 + 0.345261i \(0.887790\pi\)
\(80\) 5.12132 + 8.87039i 0.572581 + 0.991739i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 1.29289 2.23936i 0.142776 0.247296i
\(83\) −7.31371 −0.802784 −0.401392 0.915906i \(-0.631473\pi\)
−0.401392 + 0.915906i \(0.631473\pi\)
\(84\) 0 0
\(85\) −7.65685 −0.830502
\(86\) −1.17157 + 2.02922i −0.126334 + 0.218817i
\(87\) −3.41421 5.91359i −0.366042 0.634004i
\(88\) −1.58579 2.74666i −0.169045 0.292795i
\(89\) −7.12132 + 12.3345i −0.754858 + 1.30745i 0.190586 + 0.981670i \(0.438961\pi\)
−0.945445 + 0.325783i \(0.894372\pi\)
\(90\) −1.41421 −0.149071
\(91\) 0 0
\(92\) 14.0000 1.45960
\(93\) 0.585786 1.01461i 0.0607432 0.105210i
\(94\) −0.585786 1.01461i −0.0604193 0.104649i
\(95\) 4.82843 + 8.36308i 0.495386 + 0.858034i
\(96\) 2.20711 3.82282i 0.225262 0.390165i
\(97\) −2.58579 −0.262547 −0.131273 0.991346i \(-0.541907\pi\)
−0.131273 + 0.991346i \(0.541907\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 6.08579 10.5409i 0.608579 1.05409i
\(101\) 1.46447 + 2.53653i 0.145720 + 0.252394i 0.929641 0.368466i \(-0.120117\pi\)
−0.783921 + 0.620860i \(0.786784\pi\)
\(102\) 0.464466 + 0.804479i 0.0459890 + 0.0796553i
\(103\) 2.24264 3.88437i 0.220974 0.382738i −0.734130 0.679009i \(-0.762410\pi\)
0.955104 + 0.296271i \(0.0957431\pi\)
\(104\) 4.10051 0.402088
\(105\) 0 0
\(106\) −0.828427 −0.0804640
\(107\) 0.171573 0.297173i 0.0165866 0.0287288i −0.857613 0.514296i \(-0.828053\pi\)
0.874200 + 0.485567i \(0.161387\pi\)
\(108\) −0.914214 1.58346i −0.0879702 0.152369i
\(109\) 2.82843 + 4.89898i 0.270914 + 0.469237i 0.969096 0.246683i \(-0.0793407\pi\)
−0.698182 + 0.715920i \(0.746007\pi\)
\(110\) −1.41421 + 2.44949i −0.134840 + 0.233550i
\(111\) 4.00000 0.379663
\(112\) 0 0
\(113\) −5.31371 −0.499872 −0.249936 0.968262i \(-0.580410\pi\)
−0.249936 + 0.968262i \(0.580410\pi\)
\(114\) 0.585786 1.01461i 0.0548639 0.0950271i
\(115\) −13.0711 22.6398i −1.21888 2.11117i
\(116\) −6.24264 10.8126i −0.579615 1.00392i
\(117\) 1.29289 2.23936i 0.119528 0.207029i
\(118\) 0.485281 0.0446738
\(119\) 0 0
\(120\) −5.41421 −0.494248
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 2.53553 + 4.39167i 0.229556 + 0.397603i
\(123\) −3.12132 5.40629i −0.281440 0.487468i
\(124\) 1.07107 1.85514i 0.0961847 0.166597i
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) −1.65685 −0.147022 −0.0735110 0.997294i \(-0.523420\pi\)
−0.0735110 + 0.997294i \(0.523420\pi\)
\(128\) 5.27817 9.14207i 0.466529 0.808052i
\(129\) 2.82843 + 4.89898i 0.249029 + 0.431331i
\(130\) −1.82843 3.16693i −0.160364 0.277758i
\(131\) −7.65685 + 13.2621i −0.668982 + 1.15871i 0.309207 + 0.950995i \(0.399937\pi\)
−0.978189 + 0.207717i \(0.933397\pi\)
\(132\) −3.65685 −0.318288
\(133\) 0 0
\(134\) −2.34315 −0.202417
\(135\) −1.70711 + 2.95680i −0.146924 + 0.254480i
\(136\) 1.77817 + 3.07989i 0.152477 + 0.264098i
\(137\) −7.07107 12.2474i −0.604122 1.04637i −0.992190 0.124739i \(-0.960191\pi\)
0.388067 0.921631i \(-0.373143\pi\)
\(138\) −1.58579 + 2.74666i −0.134991 + 0.233811i
\(139\) 17.6569 1.49763 0.748817 0.662776i \(-0.230622\pi\)
0.748817 + 0.662776i \(0.230622\pi\)
\(140\) 0 0
\(141\) −2.82843 −0.238197
\(142\) −1.92893 + 3.34101i −0.161872 + 0.280371i
\(143\) −2.58579 4.47871i −0.216234 0.374529i
\(144\) −1.50000 2.59808i −0.125000 0.216506i
\(145\) −11.6569 + 20.1903i −0.968049 + 1.67671i
\(146\) −5.75736 −0.476482
\(147\) 0 0
\(148\) 7.31371 0.601183
\(149\) −8.65685 + 14.9941i −0.709197 + 1.22837i 0.255958 + 0.966688i \(0.417609\pi\)
−0.965155 + 0.261678i \(0.915724\pi\)
\(150\) 1.37868 + 2.38794i 0.112569 + 0.194975i
\(151\) −6.00000 10.3923i −0.488273 0.845714i 0.511636 0.859202i \(-0.329040\pi\)
−0.999909 + 0.0134886i \(0.995706\pi\)
\(152\) 2.24264 3.88437i 0.181902 0.315064i
\(153\) 2.24264 0.181307
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 2.36396 4.09450i 0.189268 0.327822i
\(157\) 5.87868 + 10.1822i 0.469170 + 0.812626i 0.999379 0.0352411i \(-0.0112199\pi\)
−0.530209 + 0.847867i \(0.677887\pi\)
\(158\) −2.82843 4.89898i −0.225018 0.389742i
\(159\) −1.00000 + 1.73205i −0.0793052 + 0.137361i
\(160\) −15.0711 −1.19147
\(161\) 0 0
\(162\) 0.414214 0.0325437
\(163\) 5.65685 9.79796i 0.443079 0.767435i −0.554837 0.831959i \(-0.687219\pi\)
0.997916 + 0.0645236i \(0.0205528\pi\)
\(164\) −5.70711 9.88500i −0.445650 0.771889i
\(165\) 3.41421 + 5.91359i 0.265796 + 0.460372i
\(166\) 1.51472 2.62357i 0.117565 0.203628i
\(167\) 19.7990 1.53209 0.766046 0.642786i \(-0.222221\pi\)
0.766046 + 0.642786i \(0.222221\pi\)
\(168\) 0 0
\(169\) −6.31371 −0.485670
\(170\) 1.58579 2.74666i 0.121624 0.210659i
\(171\) −1.41421 2.44949i −0.108148 0.187317i
\(172\) 5.17157 + 8.95743i 0.394329 + 0.682997i
\(173\) 10.5355 18.2481i 0.801002 1.38738i −0.117956 0.993019i \(-0.537634\pi\)
0.918957 0.394357i \(-0.129033\pi\)
\(174\) 2.82843 0.214423
\(175\) 0 0
\(176\) −6.00000 −0.452267
\(177\) 0.585786 1.01461i 0.0440304 0.0762629i
\(178\) −2.94975 5.10911i −0.221093 0.382944i
\(179\) 9.82843 + 17.0233i 0.734611 + 1.27238i 0.954894 + 0.296948i \(0.0959687\pi\)
−0.220283 + 0.975436i \(0.570698\pi\)
\(180\) −3.12132 + 5.40629i −0.232649 + 0.402961i
\(181\) 2.58579 0.192200 0.0961000 0.995372i \(-0.469363\pi\)
0.0961000 + 0.995372i \(0.469363\pi\)
\(182\) 0 0
\(183\) 12.2426 0.905002
\(184\) −6.07107 + 10.5154i −0.447565 + 0.775205i
\(185\) −6.82843 11.8272i −0.502036 0.869552i
\(186\) 0.242641 + 0.420266i 0.0177913 + 0.0308154i
\(187\) 2.24264 3.88437i 0.163998 0.284053i
\(188\) −5.17157 −0.377176
\(189\) 0 0
\(190\) −4.00000 −0.290191
\(191\) 9.00000 15.5885i 0.651217 1.12794i −0.331611 0.943416i \(-0.607592\pi\)
0.982828 0.184525i \(-0.0590746\pi\)
\(192\) −2.08579 3.61269i −0.150529 0.260723i
\(193\) −2.65685 4.60181i −0.191245 0.331245i 0.754418 0.656394i \(-0.227919\pi\)
−0.945663 + 0.325149i \(0.894586\pi\)
\(194\) 0.535534 0.927572i 0.0384491 0.0665958i
\(195\) −8.82843 −0.632217
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0.414214 0.717439i 0.0294369 0.0509862i
\(199\) 10.8284 + 18.7554i 0.767607 + 1.32953i 0.938857 + 0.344307i \(0.111886\pi\)
−0.171250 + 0.985228i \(0.554781\pi\)
\(200\) 5.27817 + 9.14207i 0.373223 + 0.646442i
\(201\) −2.82843 + 4.89898i −0.199502 + 0.345547i
\(202\) −1.21320 −0.0853607
\(203\) 0 0
\(204\) 4.10051 0.287093
\(205\) −10.6569 + 18.4582i −0.744307 + 1.28918i
\(206\) 0.928932 + 1.60896i 0.0647218 + 0.112101i
\(207\) 3.82843 + 6.63103i 0.266094 + 0.460888i
\(208\) 3.87868 6.71807i 0.268938 0.465814i
\(209\) −5.65685 −0.391293
\(210\) 0 0
\(211\) 12.9706 0.892930 0.446465 0.894801i \(-0.352683\pi\)
0.446465 + 0.894801i \(0.352683\pi\)
\(212\) −1.82843 + 3.16693i −0.125577 + 0.217506i
\(213\) 4.65685 + 8.06591i 0.319082 + 0.552667i
\(214\) 0.0710678 + 0.123093i 0.00485810 + 0.00841447i
\(215\) 9.65685 16.7262i 0.658592 1.14071i
\(216\) 1.58579 0.107899
\(217\) 0 0
\(218\) −2.34315 −0.158698
\(219\) −6.94975 + 12.0373i −0.469620 + 0.813406i
\(220\) 6.24264 + 10.8126i 0.420879 + 0.728983i
\(221\) 2.89949 + 5.02207i 0.195041 + 0.337821i
\(222\) −0.828427 + 1.43488i −0.0556004 + 0.0963027i
\(223\) −24.9706 −1.67215 −0.836076 0.548613i \(-0.815156\pi\)
−0.836076 + 0.548613i \(0.815156\pi\)
\(224\) 0 0
\(225\) 6.65685 0.443790
\(226\) 1.10051 1.90613i 0.0732045 0.126794i
\(227\) 11.8995 + 20.6105i 0.789797 + 1.36797i 0.926091 + 0.377300i \(0.123148\pi\)
−0.136294 + 0.990668i \(0.543519\pi\)
\(228\) −2.58579 4.47871i −0.171248 0.296610i
\(229\) −0.121320 + 0.210133i −0.00801707 + 0.0138860i −0.870006 0.493041i \(-0.835885\pi\)
0.861989 + 0.506927i \(0.169219\pi\)
\(230\) 10.8284 0.714005
\(231\) 0 0
\(232\) 10.8284 0.710921
\(233\) 3.07107 5.31925i 0.201192 0.348475i −0.747721 0.664014i \(-0.768852\pi\)
0.948913 + 0.315538i \(0.102185\pi\)
\(234\) 0.535534 + 0.927572i 0.0350089 + 0.0606373i
\(235\) 4.82843 + 8.36308i 0.314972 + 0.545547i
\(236\) 1.07107 1.85514i 0.0697206 0.120760i
\(237\) −13.6569 −0.887108
\(238\) 0 0
\(239\) −15.6569 −1.01276 −0.506379 0.862311i \(-0.669016\pi\)
−0.506379 + 0.862311i \(0.669016\pi\)
\(240\) −5.12132 + 8.87039i −0.330580 + 0.572581i
\(241\) −8.12132 14.0665i −0.523140 0.906105i −0.999637 0.0269294i \(-0.991427\pi\)
0.476497 0.879176i \(-0.341906\pi\)
\(242\) 1.44975 + 2.51104i 0.0931933 + 0.161416i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 22.3848 1.43304
\(245\) 0 0
\(246\) 2.58579 0.164864
\(247\) 3.65685 6.33386i 0.232680 0.403014i
\(248\) 0.928932 + 1.60896i 0.0589873 + 0.102169i
\(249\) −3.65685 6.33386i −0.231744 0.401392i
\(250\) 1.17157 2.02922i 0.0740968 0.128339i
\(251\) 12.4853 0.788064 0.394032 0.919097i \(-0.371080\pi\)
0.394032 + 0.919097i \(0.371080\pi\)
\(252\) 0 0
\(253\) 15.3137 0.962765
\(254\) 0.343146 0.594346i 0.0215309 0.0372926i
\(255\) −3.82843 6.63103i −0.239745 0.415251i
\(256\) −1.98528 3.43861i −0.124080 0.214913i
\(257\) 11.6066 20.1032i 0.724000 1.25400i −0.235384 0.971902i \(-0.575635\pi\)
0.959384 0.282102i \(-0.0910318\pi\)
\(258\) −2.34315 −0.145878
\(259\) 0 0
\(260\) −16.1421 −1.00109
\(261\) 3.41421 5.91359i 0.211335 0.366042i
\(262\) −3.17157 5.49333i −0.195940 0.339379i
\(263\) −2.65685 4.60181i −0.163829 0.283760i 0.772410 0.635124i \(-0.219051\pi\)
−0.936239 + 0.351365i \(0.885718\pi\)
\(264\) 1.58579 2.74666i 0.0975984 0.169045i
\(265\) 6.82843 0.419467
\(266\) 0 0
\(267\) −14.2426 −0.871635
\(268\) −5.17157 + 8.95743i −0.315904 + 0.547162i
\(269\) −7.36396 12.7548i −0.448989 0.777671i 0.549332 0.835604i \(-0.314882\pi\)
−0.998320 + 0.0579332i \(0.981549\pi\)
\(270\) −0.707107 1.22474i −0.0430331 0.0745356i
\(271\) −5.07107 + 8.78335i −0.308045 + 0.533550i −0.977935 0.208911i \(-0.933008\pi\)
0.669889 + 0.742461i \(0.266342\pi\)
\(272\) 6.72792 0.407940
\(273\) 0 0
\(274\) 5.85786 0.353887
\(275\) 6.65685 11.5300i 0.401423 0.695286i
\(276\) 7.00000 + 12.1244i 0.421350 + 0.729800i
\(277\) 4.65685 + 8.06591i 0.279803 + 0.484633i 0.971336 0.237712i \(-0.0763974\pi\)
−0.691532 + 0.722345i \(0.743064\pi\)
\(278\) −3.65685 + 6.33386i −0.219324 + 0.379880i
\(279\) 1.17157 0.0701402
\(280\) 0 0
\(281\) 0.485281 0.0289495 0.0144747 0.999895i \(-0.495392\pi\)
0.0144747 + 0.999895i \(0.495392\pi\)
\(282\) 0.585786 1.01461i 0.0348831 0.0604193i
\(283\) −4.24264 7.34847i −0.252199 0.436821i 0.711932 0.702248i \(-0.247820\pi\)
−0.964131 + 0.265427i \(0.914487\pi\)
\(284\) 8.51472 + 14.7479i 0.505256 + 0.875128i
\(285\) −4.82843 + 8.36308i −0.286011 + 0.495386i
\(286\) 2.14214 0.126667
\(287\) 0 0
\(288\) 4.41421 0.260110
\(289\) 5.98528 10.3668i 0.352075 0.609812i
\(290\) −4.82843 8.36308i −0.283535 0.491097i
\(291\) −1.29289 2.23936i −0.0757907 0.131273i
\(292\) −12.7071 + 22.0094i −0.743627 + 1.28800i
\(293\) −16.5858 −0.968952 −0.484476 0.874805i \(-0.660990\pi\)
−0.484476 + 0.874805i \(0.660990\pi\)
\(294\) 0 0
\(295\) −4.00000 −0.232889
\(296\) −3.17157 + 5.49333i −0.184344 + 0.319293i
\(297\) −1.00000 1.73205i −0.0580259 0.100504i
\(298\) −3.58579 6.21076i −0.207719 0.359780i
\(299\) −9.89949 + 17.1464i −0.572503 + 0.991604i
\(300\) 12.1716 0.702726
\(301\) 0 0
\(302\) 4.97056 0.286024
\(303\) −1.46447 + 2.53653i −0.0841314 + 0.145720i
\(304\) −4.24264 7.34847i −0.243332 0.421464i
\(305\) −20.8995 36.1990i −1.19670 2.07275i
\(306\) −0.464466 + 0.804479i −0.0265518 + 0.0459890i
\(307\) −30.1421 −1.72030 −0.860151 0.510039i \(-0.829631\pi\)
−0.860151 + 0.510039i \(0.829631\pi\)
\(308\) 0 0
\(309\) 4.48528 0.255159
\(310\) 0.828427 1.43488i 0.0470515 0.0814956i
\(311\) 3.07107 + 5.31925i 0.174144 + 0.301627i 0.939865 0.341547i \(-0.110951\pi\)
−0.765721 + 0.643173i \(0.777617\pi\)
\(312\) 2.05025 + 3.55114i 0.116073 + 0.201044i
\(313\) 0.949747 1.64501i 0.0536829 0.0929815i −0.837935 0.545770i \(-0.816237\pi\)
0.891618 + 0.452788i \(0.149571\pi\)
\(314\) −4.87006 −0.274833
\(315\) 0 0
\(316\) −24.9706 −1.40470
\(317\) −5.00000 + 8.66025i −0.280828 + 0.486408i −0.971589 0.236675i \(-0.923942\pi\)
0.690761 + 0.723083i \(0.257276\pi\)
\(318\) −0.414214 0.717439i −0.0232279 0.0402320i
\(319\) −6.82843 11.8272i −0.382319 0.662195i
\(320\) −7.12132 + 12.3345i −0.398094 + 0.689519i
\(321\) 0.343146 0.0191525
\(322\) 0 0
\(323\) 6.34315 0.352942
\(324\) 0.914214 1.58346i 0.0507896 0.0879702i
\(325\) 8.60660 + 14.9071i 0.477408 + 0.826896i
\(326\) 2.34315 + 4.05845i 0.129775 + 0.224777i
\(327\) −2.82843 + 4.89898i −0.156412 + 0.270914i
\(328\) 9.89949 0.546608
\(329\) 0 0
\(330\) −2.82843 −0.155700
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) −6.68629 11.5810i −0.366958 0.635590i
\(333\) 2.00000 + 3.46410i 0.109599 + 0.189832i
\(334\) −4.10051 + 7.10228i −0.224370 + 0.388620i
\(335\) 19.3137 1.05522
\(336\) 0 0
\(337\) −29.6569 −1.61551 −0.807756 0.589517i \(-0.799318\pi\)
−0.807756 + 0.589517i \(0.799318\pi\)
\(338\) 1.30761 2.26485i 0.0711247 0.123192i
\(339\) −2.65685 4.60181i −0.144301 0.249936i
\(340\) −7.00000 12.1244i −0.379628 0.657536i
\(341\) 1.17157 2.02922i 0.0634442 0.109889i
\(342\) 1.17157 0.0633514
\(343\) 0 0
\(344\) −8.97056 −0.483660
\(345\) 13.0711 22.6398i 0.703723 1.21888i
\(346\) 4.36396 + 7.55860i 0.234608 + 0.406353i
\(347\) −16.6569 28.8505i −0.894187 1.54878i −0.834808 0.550541i \(-0.814421\pi\)
−0.0593789 0.998236i \(-0.518912\pi\)
\(348\) 6.24264 10.8126i 0.334641 0.579615i
\(349\) 9.89949 0.529908 0.264954 0.964261i \(-0.414643\pi\)
0.264954 + 0.964261i \(0.414643\pi\)
\(350\) 0 0
\(351\) 2.58579 0.138019
\(352\) 4.41421 7.64564i 0.235278 0.407514i
\(353\) −7.36396 12.7548i −0.391944 0.678867i 0.600762 0.799428i \(-0.294864\pi\)
−0.992706 + 0.120561i \(0.961531\pi\)
\(354\) 0.242641 + 0.420266i 0.0128962 + 0.0223369i
\(355\) 15.8995 27.5387i 0.843858 1.46160i
\(356\) −26.0416 −1.38020
\(357\) 0 0
\(358\) −8.14214 −0.430325
\(359\) 0.171573 0.297173i 0.00905527 0.0156842i −0.861462 0.507822i \(-0.830451\pi\)
0.870518 + 0.492137i \(0.163784\pi\)
\(360\) −2.70711 4.68885i −0.142677 0.247124i
\(361\) 5.50000 + 9.52628i 0.289474 + 0.501383i
\(362\) −0.535534 + 0.927572i −0.0281470 + 0.0487521i
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) 47.4558 2.48395
\(366\) −2.53553 + 4.39167i −0.132534 + 0.229556i
\(367\) −1.65685 2.86976i −0.0864871 0.149800i 0.819537 0.573027i \(-0.194231\pi\)
−0.906024 + 0.423226i \(0.860897\pi\)
\(368\) 11.4853 + 19.8931i 0.598712 + 1.03700i
\(369\) 3.12132 5.40629i 0.162489 0.281440i
\(370\) 5.65685 0.294086
\(371\) 0 0
\(372\) 2.14214 0.111065
\(373\) 5.34315 9.25460i 0.276658 0.479185i −0.693894 0.720077i \(-0.744107\pi\)
0.970552 + 0.240892i \(0.0774399\pi\)
\(374\) 0.928932 + 1.60896i 0.0480339 + 0.0831972i
\(375\) −2.82843 4.89898i −0.146059 0.252982i
\(376\) 2.24264 3.88437i 0.115655 0.200321i
\(377\) 17.6569 0.909374
\(378\) 0 0
\(379\) 8.68629 0.446185 0.223092 0.974797i \(-0.428385\pi\)
0.223092 + 0.974797i \(0.428385\pi\)
\(380\) −8.82843 + 15.2913i −0.452889 + 0.784426i
\(381\) −0.828427 1.43488i −0.0424416 0.0735110i
\(382\) 3.72792 + 6.45695i 0.190737 + 0.330366i
\(383\) −9.17157 + 15.8856i −0.468645 + 0.811718i −0.999358 0.0358343i \(-0.988591\pi\)
0.530712 + 0.847552i \(0.321924\pi\)
\(384\) 10.5563 0.538701
\(385\) 0 0
\(386\) 2.20101 0.112028
\(387\) −2.82843 + 4.89898i −0.143777 + 0.249029i
\(388\) −2.36396 4.09450i −0.120012 0.207867i
\(389\) 9.07107 + 15.7116i 0.459921 + 0.796607i 0.998956 0.0456762i \(-0.0145442\pi\)
−0.539035 + 0.842283i \(0.681211\pi\)
\(390\) 1.82843 3.16693i 0.0925860 0.160364i
\(391\) −17.1716 −0.868404
\(392\) 0 0
\(393\) −15.3137 −0.772474
\(394\) −0.414214 + 0.717439i −0.0208678 + 0.0361441i
\(395\) 23.3137 + 40.3805i 1.17304 + 2.03176i
\(396\) −1.82843 3.16693i −0.0918819 0.159144i
\(397\) −1.19239 + 2.06528i −0.0598442 + 0.103653i −0.894395 0.447277i \(-0.852394\pi\)
0.834551 + 0.550931i \(0.185727\pi\)
\(398\) −8.97056 −0.449654
\(399\) 0 0
\(400\) 19.9706 0.998528
\(401\) 3.07107 5.31925i 0.153362 0.265630i −0.779100 0.626900i \(-0.784323\pi\)
0.932461 + 0.361270i \(0.117657\pi\)
\(402\) −1.17157 2.02922i −0.0584327 0.101208i
\(403\) 1.51472 + 2.62357i 0.0754535 + 0.130689i
\(404\) −2.67767 + 4.63786i −0.133219 + 0.230742i
\(405\) −3.41421 −0.169654
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) −1.77817 + 3.07989i −0.0880328 + 0.152477i
\(409\) −10.7071 18.5453i −0.529432 0.917004i −0.999411 0.0343258i \(-0.989072\pi\)
0.469978 0.882678i \(-0.344262\pi\)
\(410\) −4.41421 7.64564i −0.218002 0.377591i
\(411\) 7.07107 12.2474i 0.348790 0.604122i
\(412\) 8.20101 0.404035
\(413\) 0 0
\(414\) −3.17157 −0.155874
\(415\) −12.4853 + 21.6251i −0.612878 + 1.06154i
\(416\) 5.70711 + 9.88500i 0.279814 + 0.484652i
\(417\) 8.82843 + 15.2913i 0.432330 + 0.748817i
\(418\) 1.17157 2.02922i 0.0573035 0.0992526i
\(419\) −33.1716 −1.62054 −0.810269 0.586059i \(-0.800679\pi\)
−0.810269 + 0.586059i \(0.800679\pi\)
\(420\) 0 0
\(421\) 16.6274 0.810371 0.405185 0.914235i \(-0.367207\pi\)
0.405185 + 0.914235i \(0.367207\pi\)
\(422\) −2.68629 + 4.65279i −0.130767 + 0.226494i
\(423\) −1.41421 2.44949i −0.0687614 0.119098i
\(424\) −1.58579 2.74666i −0.0770126 0.133390i
\(425\) −7.46447 + 12.9288i −0.362080 + 0.627141i
\(426\) −3.85786 −0.186914
\(427\) 0 0
\(428\) 0.627417 0.0303273
\(429\) 2.58579 4.47871i 0.124843 0.216234i
\(430\) 4.00000 + 6.92820i 0.192897 + 0.334108i
\(431\) 13.4853 + 23.3572i 0.649563 + 1.12508i 0.983227 + 0.182384i \(0.0583815\pi\)
−0.333664 + 0.942692i \(0.608285\pi\)
\(432\) 1.50000 2.59808i 0.0721688 0.125000i
\(433\) 20.2426 0.972799 0.486400 0.873736i \(-0.338310\pi\)
0.486400 + 0.873736i \(0.338310\pi\)
\(434\) 0 0
\(435\) −23.3137 −1.11781
\(436\) −5.17157 + 8.95743i −0.247673 + 0.428983i
\(437\) 10.8284 + 18.7554i 0.517994 + 0.897192i
\(438\) −2.87868 4.98602i −0.137549 0.238241i
\(439\) 6.34315 10.9867i 0.302742 0.524364i −0.674014 0.738718i \(-0.735431\pi\)
0.976756 + 0.214354i \(0.0687647\pi\)
\(440\) −10.8284 −0.516225
\(441\) 0 0
\(442\) −2.40202 −0.114252
\(443\) −17.4853 + 30.2854i −0.830751 + 1.43890i 0.0666929 + 0.997774i \(0.478755\pi\)
−0.897444 + 0.441129i \(0.854578\pi\)
\(444\) 3.65685 + 6.33386i 0.173547 + 0.300592i
\(445\) 24.3137 + 42.1126i 1.15258 + 1.99633i
\(446\) 5.17157 8.95743i 0.244881 0.424146i
\(447\) −17.3137 −0.818910
\(448\) 0 0
\(449\) −5.31371 −0.250769 −0.125385 0.992108i \(-0.540017\pi\)
−0.125385 + 0.992108i \(0.540017\pi\)
\(450\) −1.37868 + 2.38794i −0.0649916 + 0.112569i
\(451\) −6.24264 10.8126i −0.293954 0.509144i
\(452\) −4.85786 8.41407i −0.228495 0.395764i
\(453\) 6.00000 10.3923i 0.281905 0.488273i
\(454\) −9.85786 −0.462652
\(455\) 0 0
\(456\) 4.48528 0.210043
\(457\) 9.00000 15.5885i 0.421002 0.729197i −0.575036 0.818128i \(-0.695012\pi\)
0.996038 + 0.0889312i \(0.0283451\pi\)
\(458\) −0.0502525 0.0870399i −0.00234815 0.00406711i
\(459\) 1.12132 + 1.94218i 0.0523388 + 0.0906534i
\(460\) 23.8995 41.3951i 1.11432 1.93006i
\(461\) 16.5858 0.772477 0.386239 0.922399i \(-0.373774\pi\)
0.386239 + 0.922399i \(0.373774\pi\)
\(462\) 0 0
\(463\) −26.6274 −1.23748 −0.618741 0.785595i \(-0.712357\pi\)
−0.618741 + 0.785595i \(0.712357\pi\)
\(464\) 10.2426 17.7408i 0.475503 0.823595i
\(465\) −2.00000 3.46410i −0.0927478 0.160644i
\(466\) 1.27208 + 2.20330i 0.0589279 + 0.102066i
\(467\) 0.100505 0.174080i 0.00465082 0.00805546i −0.863691 0.504022i \(-0.831853\pi\)
0.868341 + 0.495967i \(0.165186\pi\)
\(468\) 4.72792 0.218548
\(469\) 0 0
\(470\) −4.00000 −0.184506
\(471\) −5.87868 + 10.1822i −0.270875 + 0.469170i
\(472\) 0.928932 + 1.60896i 0.0427576 + 0.0740583i
\(473\) 5.65685 + 9.79796i 0.260102 + 0.450511i
\(474\) 2.82843 4.89898i 0.129914 0.225018i
\(475\) 18.8284 0.863907
\(476\) 0 0
\(477\) −2.00000 −0.0915737
\(478\) 3.24264 5.61642i 0.148315 0.256889i
\(479\) 0.928932 + 1.60896i 0.0424440 + 0.0735152i 0.886467 0.462792i \(-0.153152\pi\)
−0.844023 + 0.536307i \(0.819819\pi\)
\(480\) −7.53553 13.0519i −0.343948 0.595736i
\(481\) −5.17157 + 8.95743i −0.235803 + 0.408424i
\(482\) 6.72792 0.306448
\(483\) 0 0
\(484\) 12.7990 0.581772
\(485\) −4.41421 + 7.64564i −0.200439 + 0.347171i
\(486\) 0.207107 + 0.358719i 0.00939455 + 0.0162718i
\(487\) −13.3137 23.0600i −0.603302 1.04495i −0.992317 0.123718i \(-0.960518\pi\)
0.389016 0.921231i \(-0.372815\pi\)
\(488\) −9.70711 + 16.8132i −0.439420 + 0.761098i
\(489\) 11.3137 0.511624
\(490\) 0 0
\(491\) 5.02944 0.226975 0.113488 0.993539i \(-0.463798\pi\)
0.113488 + 0.993539i \(0.463798\pi\)
\(492\) 5.70711 9.88500i 0.257296 0.445650i
\(493\) 7.65685 + 13.2621i 0.344847 + 0.597293i
\(494\) 1.51472 + 2.62357i 0.0681504 + 0.118040i
\(495\) −3.41421 + 5.91359i −0.153457 + 0.265796i
\(496\) 3.51472 0.157816
\(497\) 0 0
\(498\) 3.02944 0.135752
\(499\) −1.65685 + 2.86976i −0.0741710 + 0.128468i −0.900725 0.434389i \(-0.856964\pi\)
0.826554 + 0.562857i \(0.190298\pi\)
\(500\) −5.17157 8.95743i −0.231280 0.400588i
\(501\) 9.89949 + 17.1464i 0.442277 + 0.766046i
\(502\) −2.58579 + 4.47871i −0.115409 + 0.199895i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) −3.17157 + 5.49333i −0.140994 + 0.244208i
\(507\) −3.15685 5.46783i −0.140201 0.242835i
\(508\) −1.51472 2.62357i −0.0672048 0.116402i
\(509\) 2.77817 4.81194i 0.123140 0.213285i −0.797864 0.602837i \(-0.794037\pi\)
0.921005 + 0.389552i \(0.127370\pi\)
\(510\) 3.17157 0.140440
\(511\) 0 0
\(512\) 22.7574 1.00574
\(513\) 1.41421 2.44949i 0.0624391 0.108148i
\(514\) 4.80761 + 8.32703i 0.212055 + 0.367289i
\(515\) −7.65685 13.2621i −0.337401 0.584396i
\(516\) −5.17157 + 8.95743i −0.227666 + 0.394329i
\(517\) −5.65685 −0.248788
\(518\) 0 0
\(519\) 21.0711 0.924917
\(520\) 7.00000 12.1244i 0.306970 0.531688i
\(521\) −17.7071 30.6696i −0.775762 1.34366i −0.934365 0.356317i \(-0.884032\pi\)
0.158603 0.987343i \(-0.449301\pi\)
\(522\) 1.41421 + 2.44949i 0.0618984 + 0.107211i
\(523\) −12.8284 + 22.2195i −0.560948 + 0.971590i 0.436466 + 0.899721i \(0.356230\pi\)
−0.997414 + 0.0718696i \(0.977103\pi\)
\(524\) −28.0000 −1.22319
\(525\) 0 0
\(526\) 2.20101 0.0959686
\(527\) −1.31371 + 2.27541i −0.0572260 + 0.0991184i
\(528\) −3.00000 5.19615i −0.130558 0.226134i
\(529\) −17.8137 30.8542i −0.774509 1.34149i
\(530\) −1.41421 + 2.44949i −0.0614295 + 0.106399i
\(531\) 1.17157 0.0508419
\(532\) 0 0
\(533\) 16.1421 0.699194
\(534\) 2.94975 5.10911i 0.127648 0.221093i
\(535\) −0.585786 1.01461i −0.0253258 0.0438655i
\(536\) −4.48528 7.76874i −0.193735 0.335558i
\(537\) −9.82843 + 17.0233i −0.424128 + 0.734611i
\(538\) 6.10051 0.263011
\(539\) 0 0
\(540\) −6.24264 −0.268640
\(541\) −8.65685 + 14.9941i −0.372187 + 0.644647i −0.989902 0.141755i \(-0.954725\pi\)
0.617715 + 0.786402i \(0.288059\pi\)
\(542\) −2.10051 3.63818i −0.0902244 0.156273i
\(543\) 1.29289 + 2.23936i 0.0554834 + 0.0961000i
\(544\) −4.94975 + 8.57321i −0.212219 + 0.367574i
\(545\) 19.3137 0.827308
\(546\) 0 0
\(547\) −36.9706 −1.58075 −0.790374 0.612625i \(-0.790114\pi\)
−0.790374 + 0.612625i \(0.790114\pi\)
\(548\) 12.9289 22.3936i 0.552297 0.956606i
\(549\) 6.12132 + 10.6024i 0.261252 + 0.452501i
\(550\) 2.75736 + 4.77589i 0.117574 + 0.203644i
\(551\) 9.65685 16.7262i 0.411396 0.712558i
\(552\) −12.1421 −0.516804
\(553\) 0 0
\(554\) −3.85786 −0.163905
\(555\) 6.82843 11.8272i 0.289851 0.502036i
\(556\) 16.1421 + 27.9590i 0.684579 + 1.18573i
\(557\) −13.0000 22.5167i −0.550828 0.954062i −0.998215 0.0597213i \(-0.980979\pi\)
0.447387 0.894340i \(-0.352355\pi\)
\(558\) −0.242641 + 0.420266i −0.0102718 + 0.0177913i
\(559\) −14.6274 −0.618674
\(560\) 0 0
\(561\) 4.48528 0.189369
\(562\) −0.100505 + 0.174080i −0.00423955 + 0.00734312i
\(563\) −0.585786 1.01461i −0.0246880 0.0427608i 0.853417 0.521228i \(-0.174526\pi\)
−0.878105 + 0.478467i \(0.841193\pi\)
\(564\) −2.58579 4.47871i −0.108881 0.188588i
\(565\) −9.07107 + 15.7116i −0.381623 + 0.660990i
\(566\) 3.51472 0.147735
\(567\) 0 0
\(568\) −14.7696 −0.619717
\(569\) 8.24264 14.2767i 0.345549 0.598509i −0.639904 0.768455i \(-0.721026\pi\)
0.985453 + 0.169946i \(0.0543592\pi\)
\(570\) −2.00000 3.46410i −0.0837708 0.145095i
\(571\) −11.1716 19.3497i −0.467516 0.809761i 0.531795 0.846873i \(-0.321518\pi\)
−0.999311 + 0.0371118i \(0.988184\pi\)
\(572\) 4.72792 8.18900i 0.197684 0.342399i
\(573\) 18.0000 0.751961
\(574\) 0 0
\(575\) −50.9706 −2.12562
\(576\) 2.08579 3.61269i 0.0869078 0.150529i
\(577\) −16.9497 29.3578i −0.705627 1.22218i −0.966465 0.256799i \(-0.917332\pi\)
0.260837 0.965383i \(-0.416001\pi\)
\(578\) 2.47918 + 4.29407i 0.103120 + 0.178610i
\(579\) 2.65685 4.60181i 0.110415 0.191245i
\(580\) −42.6274 −1.77001
\(581\) 0 0
\(582\) 1.07107 0.0443972
\(583\) −2.00000 + 3.46410i −0.0828315 + 0.143468i
\(584\) −11.0208 19.0886i −0.456045 0.789892i
\(585\) −4.41421 7.64564i −0.182505 0.316108i
\(586\) 3.43503 5.94964i 0.141900 0.245778i
\(587\) 22.8284 0.942230 0.471115 0.882072i \(-0.343852\pi\)
0.471115 + 0.882072i \(0.343852\pi\)
\(588\) 0 0
\(589\) 3.31371 0.136539
\(590\) 0.828427 1.43488i 0.0341058 0.0590730i
\(591\) 1.00000 + 1.73205i 0.0411345 + 0.0712470i
\(592\) 6.00000 + 10.3923i 0.246598 + 0.427121i
\(593\) −3.46447 + 6.00063i −0.142269 + 0.246416i −0.928351 0.371706i \(-0.878773\pi\)
0.786082 + 0.618122i \(0.212106\pi\)
\(594\) 0.828427 0.0339908
\(595\) 0 0
\(596\) −31.6569 −1.29672
\(597\) −10.8284 + 18.7554i −0.443178 + 0.767607i
\(598\) −4.10051 7.10228i −0.167682 0.290434i
\(599\) 1.00000 + 1.73205i 0.0408589 + 0.0707697i 0.885732 0.464198i \(-0.153657\pi\)
−0.844873 + 0.534967i \(0.820324\pi\)
\(600\) −5.27817 + 9.14207i −0.215481 + 0.373223i
\(601\) 15.0711 0.614762 0.307381 0.951587i \(-0.400547\pi\)
0.307381 + 0.951587i \(0.400547\pi\)
\(602\) 0 0
\(603\) −5.65685 −0.230365
\(604\) 10.9706 19.0016i 0.446386 0.773163i
\(605\) −11.9497 20.6976i −0.485826 0.841476i
\(606\) −0.606602 1.05066i −0.0246415 0.0426803i
\(607\) −9.17157 + 15.8856i −0.372263 + 0.644778i −0.989913 0.141675i \(-0.954751\pi\)
0.617651 + 0.786453i \(0.288085\pi\)
\(608\) 12.4853 0.506345
\(609\) 0 0
\(610\) 17.3137 0.701012
\(611\) 3.65685 6.33386i 0.147940 0.256240i
\(612\) 2.05025 + 3.55114i 0.0828765 + 0.143546i
\(613\) −2.34315 4.05845i −0.0946388 0.163919i 0.814819 0.579715i \(-0.196836\pi\)
−0.909458 + 0.415796i \(0.863503\pi\)
\(614\) 6.24264 10.8126i 0.251932 0.436360i
\(615\) −21.3137 −0.859452
\(616\) 0 0
\(617\) −24.4853 −0.985740 −0.492870 0.870103i \(-0.664052\pi\)
−0.492870 + 0.870103i \(0.664052\pi\)
\(618\) −0.928932 + 1.60896i −0.0373671 + 0.0647218i
\(619\) 14.4853 + 25.0892i 0.582213 + 1.00842i 0.995217 + 0.0976926i \(0.0311462\pi\)
−0.413004 + 0.910729i \(0.635520\pi\)
\(620\) −3.65685 6.33386i −0.146863 0.254374i
\(621\) −3.82843 + 6.63103i −0.153629 + 0.266094i
\(622\) −2.54416 −0.102011
\(623\) 0 0
\(624\) 7.75736 0.310543
\(625\) 6.98528 12.0989i 0.279411 0.483954i
\(626\) 0.393398 + 0.681386i 0.0157234 + 0.0272337i
\(627\) −2.82843 4.89898i −0.112956 0.195646i
\(628\) −10.7487 + 18.6174i −0.428921 + 0.742914i
\(629\) −8.97056 −0.357680
\(630\) 0 0
\(631\) 23.3137 0.928104 0.464052 0.885808i \(-0.346395\pi\)
0.464052 + 0.885808i \(0.346395\pi\)
\(632\) 10.8284 18.7554i 0.430732 0.746049i
\(633\) 6.48528 + 11.2328i 0.257767 + 0.446465i
\(634\) −2.07107 3.58719i −0.0822526 0.142466i
\(635\) −2.82843 + 4.89898i −0.112243 + 0.194410i
\(636\) −3.65685 −0.145004
\(637\) 0 0
\(638\) 5.65685 0.223957
\(639\) −4.65685 + 8.06591i −0.184222 + 0.319082i
\(640\) −18.0208 31.2130i −0.712335 1.23380i
\(641\) 5.41421 + 9.37769i 0.213849 + 0.370397i 0.952916 0.303235i \(-0.0980668\pi\)
−0.739067 + 0.673632i \(0.764733\pi\)
\(642\) −0.0710678 + 0.123093i −0.00280482 + 0.00485810i
\(643\) 34.4264 1.35764 0.678822 0.734302i \(-0.262491\pi\)
0.678822 + 0.734302i \(0.262491\pi\)
\(644\) 0 0
\(645\) 19.3137 0.760477
\(646\) −1.31371 + 2.27541i −0.0516872 + 0.0895248i
\(647\) 13.4142 + 23.2341i 0.527367 + 0.913427i 0.999491 + 0.0318946i \(0.0101541\pi\)
−0.472124 + 0.881532i \(0.656513\pi\)
\(648\) 0.792893 + 1.37333i 0.0311478 + 0.0539496i
\(649\) 1.17157 2.02922i 0.0459883 0.0796540i
\(650\) −7.12994 −0.279659
\(651\) 0 0
\(652\) 20.6863 0.810138
\(653\) −18.2426 + 31.5972i −0.713890 + 1.23649i 0.249497 + 0.968376i \(0.419735\pi\)
−0.963386 + 0.268118i \(0.913598\pi\)
\(654\) −1.17157 2.02922i −0.0458121 0.0793489i
\(655\) 26.1421 + 45.2795i 1.02146 + 1.76922i
\(656\) 9.36396 16.2189i 0.365601 0.633240i
\(657\) −13.8995 −0.542271
\(658\) 0 0
\(659\) 9.31371 0.362811 0.181405 0.983408i \(-0.441935\pi\)
0.181405 + 0.983408i \(0.441935\pi\)
\(660\) −6.24264 + 10.8126i −0.242994 + 0.420879i
\(661\) −11.7782 20.4004i −0.458118 0.793483i 0.540744 0.841187i \(-0.318143\pi\)
−0.998862 + 0.0477040i \(0.984810\pi\)
\(662\) 0.828427 + 1.43488i 0.0321977 + 0.0557681i
\(663\) −2.89949 + 5.02207i −0.112607 + 0.195041i
\(664\) 11.5980 0.450089
\(665\) 0 0
\(666\) −1.65685 −0.0642018
\(667\) −26.1421 + 45.2795i −1.01223 + 1.75323i
\(668\) 18.1005 + 31.3510i 0.700330 + 1.21301i
\(669\) −12.4853 21.6251i −0.482709 0.836076i
\(670\) −4.00000 + 6.92820i −0.154533 + 0.267660i
\(671\) 24.4853 0.945244
\(672\) 0 0
\(673\) 23.3137 0.898677 0.449339 0.893361i \(-0.351660\pi\)
0.449339 + 0.893361i \(0.351660\pi\)
\(674\) 6.14214 10.6385i 0.236586 0.409779i
\(675\) 3.32843 + 5.76500i 0.128111 + 0.221895i
\(676\) −5.77208 9.99753i −0.222003 0.384520i
\(677\) 15.7071 27.2055i 0.603673 1.04559i −0.388587 0.921412i \(-0.627037\pi\)
0.992260 0.124180i \(-0.0396301\pi\)
\(678\) 2.20101 0.0845293
\(679\) 0 0
\(680\) 12.1421 0.465630
\(681\) −11.8995 + 20.6105i −0.455990 + 0.789797i
\(682\) 0.485281 + 0.840532i 0.0185824 + 0.0321856i
\(683\) 9.82843 + 17.0233i 0.376074 + 0.651380i 0.990487 0.137605i \(-0.0439404\pi\)
−0.614413 + 0.788985i \(0.710607\pi\)
\(684\) 2.58579 4.47871i 0.0988700 0.171248i
\(685\) −48.2843 −1.84485
\(686\) 0 0
\(687\) −0.242641 −0.00925732
\(688\) −8.48528 + 14.6969i −0.323498 + 0.560316i
\(689\) −2.58579 4.47871i −0.0985106 0.170625i
\(690\) 5.41421 + 9.37769i 0.206116 + 0.357003i
\(691\) −0.343146 + 0.594346i −0.0130539 + 0.0226100i −0.872479 0.488652i \(-0.837489\pi\)
0.859425 + 0.511262i \(0.170822\pi\)
\(692\) 38.5269 1.46457
\(693\) 0 0
\(694\) 13.7990 0.523802
\(695\) 30.1421 52.2077i 1.14336 1.98035i
\(696\) 5.41421 + 9.37769i 0.205225 + 0.355461i
\(697\) 7.00000 + 12.1244i 0.265144 + 0.459243i
\(698\) −2.05025 + 3.55114i −0.0776032 + 0.134413i
\(699\) 6.14214 0.232317
\(700\) 0 0
\(701\) −17.1716 −0.648561 −0.324281 0.945961i \(-0.605122\pi\)
−0.324281 + 0.945961i \(0.605122\pi\)
\(702\) −0.535534 + 0.927572i −0.0202124 + 0.0350089i
\(703\) 5.65685 + 9.79796i 0.213352 + 0.369537i
\(704\) −4.17157 7.22538i −0.157222 0.272317i
\(705\) −4.82843 + 8.36308i −0.181849 + 0.314972i
\(706\) 6.10051 0.229596
\(707\) 0 0
\(708\) 2.14214 0.0805064
\(709\) 18.1421 31.4231i 0.681342 1.18012i −0.293229 0.956042i \(-0.594730\pi\)
0.974571 0.224077i \(-0.0719368\pi\)
\(710\) 6.58579 + 11.4069i 0.247160 + 0.428094i
\(711\) −6.82843 11.8272i −0.256086 0.443554i
\(712\) 11.2929 19.5599i 0.423219 0.733037i
\(713\) −8.97056 −0.335950
\(714\) 0 0
\(715\) −17.6569 −0.660329
\(716\) −17.9706 + 31.1259i −0.671591 + 1.16323i
\(717\) −7.82843 13.5592i −0.292358 0.506379i
\(718\) 0.0710678 + 0.123093i 0.00265223 + 0.00459379i
\(719\) 20.9706 36.3221i 0.782070 1.35459i −0.148664 0.988888i \(-0.547497\pi\)
0.930734 0.365697i \(-0.119169\pi\)
\(720\) −10.2426 −0.381721
\(721\) 0 0
\(722\) −4.55635 −0.169570
\(723\) 8.12132 14.0665i 0.302035 0.523140i
\(724\) 2.36396 + 4.09450i 0.0878559 + 0.152171i
\(725\) 22.7279 + 39.3659i 0.844094 + 1.46201i
\(726\) −1.44975 + 2.51104i −0.0538052 + 0.0931933i
\(727\) −12.4853 −0.463053 −0.231527 0.972829i \(-0.574372\pi\)
−0.231527 + 0.972829i \(0.574372\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −9.82843 + 17.0233i −0.363766 + 0.630062i
\(731\) −6.34315 10.9867i −0.234610 0.406356i
\(732\) 11.1924 + 19.3858i 0.413683 + 0.716519i
\(733\) 24.8492 43.0402i 0.917828 1.58972i 0.115120 0.993352i \(-0.463275\pi\)
0.802708 0.596373i \(-0.203392\pi\)
\(734\) 1.37258 0.0506630
\(735\) 0 0
\(736\) −33.7990 −1.24585
\(737\) −5.65685 + 9.79796i −0.208373 + 0.360912i
\(738\) 1.29289 + 2.23936i 0.0475921 + 0.0824319i
\(739\) −2.34315 4.05845i −0.0861940 0.149292i 0.819705 0.572785i \(-0.194137\pi\)
−0.905899 + 0.423493i \(0.860804\pi\)
\(740\) 12.4853 21.6251i 0.458968 0.794956i
\(741\) 7.31371 0.268676
\(742\) 0 0
\(743\) −50.9706 −1.86993 −0.934964 0.354742i \(-0.884569\pi\)
−0.934964 + 0.354742i \(0.884569\pi\)
\(744\) −0.928932 + 1.60896i −0.0340563 + 0.0589873i
\(745\) 29.5563 + 51.1931i 1.08286 + 1.87557i
\(746\) 2.21320 + 3.83338i 0.0810311 + 0.140350i
\(747\) 3.65685 6.33386i 0.133797 0.231744i
\(748\) 8.20101 0.299859
\(749\) 0 0
\(750\) 2.34315 0.0855596
\(751\) −6.82843 + 11.8272i −0.249173 + 0.431580i −0.963297 0.268440i \(-0.913492\pi\)
0.714124 + 0.700020i \(0.246825\pi\)
\(752\) −4.24264 7.34847i −0.154713 0.267971i
\(753\) 6.24264 + 10.8126i 0.227494 + 0.394032i
\(754\) −3.65685 + 6.33386i −0.133175 + 0.230665i
\(755\) −40.9706 −1.49107
\(756\) 0 0
\(757\) 26.3431 0.957458 0.478729 0.877963i \(-0.341098\pi\)
0.478729 + 0.877963i \(0.341098\pi\)
\(758\) −1.79899 + 3.11594i −0.0653423 + 0.113176i
\(759\) 7.65685 + 13.2621i 0.277926 + 0.481382i
\(760\) −7.65685 13.2621i −0.277743 0.481065i
\(761\) −9.26346 + 16.0448i −0.335800 + 0.581623i −0.983638 0.180155i \(-0.942340\pi\)
0.647838 + 0.761778i \(0.275673\pi\)
\(762\) 0.686292 0.0248617
\(763\) 0 0
\(764\) 32.9117 1.19070
\(765\) 3.82843 6.63103i 0.138417 0.239745i
\(766\) −3.79899 6.58004i −0.137263 0.237747i
\(767\) 1.51472 + 2.62357i 0.0546933 + 0.0947316i
\(768\) 1.98528 3.43861i 0.0716377 0.124080i
\(769\) −29.6985 −1.07095 −0.535477 0.844550i \(-0.679868\pi\)
−0.535477 + 0.844550i \(0.679868\pi\)
\(770\) 0 0
\(771\) 23.2132 0.836003
\(772\) 4.85786 8.41407i 0.174838 0.302829i
\(773\) −4.77817 8.27604i −0.171859 0.297669i 0.767211 0.641395i \(-0.221644\pi\)
−0.939070 + 0.343727i \(0.888311\pi\)
\(774\) −1.17157 2.02922i −0.0421113 0.0729389i
\(775\) −3.89949 + 6.75412i −0.140074 + 0.242615i
\(776\) 4.10051