Properties

Label 147.2.e.e
Level $147$
Weight $2$
Character orbit 147.e
Analytic conductor $1.174$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,2,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.17380090971\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1 + 1) q^{2} - \beta_{2} q^{3} + (2 \beta_{3} + \beta_{2} + 2 \beta_1) q^{4} + (2 \beta_{2} - \beta_1 + 2) q^{5} + ( - \beta_{3} + 1) q^{6} + (\beta_{3} - 3) q^{8} + ( - \beta_{2} - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{2} + \beta_1 + 1) q^{2} - \beta_{2} q^{3} + (2 \beta_{3} + \beta_{2} + 2 \beta_1) q^{4} + (2 \beta_{2} - \beta_1 + 2) q^{5} + ( - \beta_{3} + 1) q^{6} + (\beta_{3} - 3) q^{8} + ( - \beta_{2} - 1) q^{9} + (\beta_{3} + \beta_1) q^{10} - 2 \beta_{2} q^{11} + (\beta_{2} + 2 \beta_1 + 1) q^{12} + (\beta_{3} - 4) q^{13} + (\beta_{3} + 2) q^{15} + ( - 3 \beta_{2} - 3) q^{16} + ( - 3 \beta_{3} - 2 \beta_{2} - 3 \beta_1) q^{17} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{18} + 2 \beta_1 q^{19} + (3 \beta_{3} + 2) q^{20} + ( - 2 \beta_{3} + 2) q^{22} + (2 \beta_{2} - 4 \beta_1 + 2) q^{23} + (\beta_{3} + 3 \beta_{2} + \beta_1) q^{24} + ( - 4 \beta_{3} + \beta_{2} - 4 \beta_1) q^{25} + ( - 6 \beta_{2} - 5 \beta_1 - 6) q^{26} - q^{27} + ( - 2 \beta_{3} - 4) q^{29} + \beta_1 q^{30} + (2 \beta_{3} + 4 \beta_{2} + 2 \beta_1) q^{31} + ( - \beta_{3} + 3 \beta_{2} - \beta_1) q^{32} + ( - 2 \beta_{2} - 2) q^{33} + ( - 5 \beta_{3} + 8) q^{34} + ( - 2 \beta_{3} + 1) q^{36} + (4 \beta_{2} + 4) q^{37} + (2 \beta_{3} + 4 \beta_{2} + 2 \beta_1) q^{38} + (\beta_{3} + 4 \beta_{2} + \beta_1) q^{39} + ( - 4 \beta_{2} + \beta_1 - 4) q^{40} + ( - 3 \beta_{3} - 2) q^{41} + 4 \beta_{3} q^{43} + (2 \beta_{2} + 4 \beta_1 + 2) q^{44} + (\beta_{3} - 2 \beta_{2} + \beta_1) q^{45} + ( - 2 \beta_{3} - 6 \beta_{2} - 2 \beta_1) q^{46} + 2 \beta_1 q^{47} - 3 q^{48} + ( - 3 \beta_{3} + 7) q^{50} + ( - 2 \beta_{2} - 3 \beta_1 - 2) q^{51} + ( - 9 \beta_{3} - 8 \beta_{2} - 9 \beta_1) q^{52} - 2 \beta_{2} q^{53} + ( - \beta_{2} - \beta_1 - 1) q^{54} + (2 \beta_{3} + 4) q^{55} - 2 \beta_{3} q^{57} - 2 \beta_1 q^{58} + (2 \beta_{3} + 4 \beta_{2} + 2 \beta_1) q^{59} + (3 \beta_{3} - 2 \beta_{2} + 3 \beta_1) q^{60} + (8 \beta_{2} - 3 \beta_1 + 8) q^{61} + (6 \beta_{3} - 8) q^{62} + (2 \beta_{3} - 7) q^{64} + ( - 6 \beta_{2} + 2 \beta_1 - 6) q^{65} + ( - 2 \beta_{3} - 2 \beta_{2} - 2 \beta_1) q^{66} + (4 \beta_{3} + 4 \beta_1) q^{67} + (14 \beta_{2} + 7 \beta_1 + 14) q^{68} + (4 \beta_{3} + 2) q^{69} + (8 \beta_{3} - 2) q^{71} + (3 \beta_{2} + \beta_1 + 3) q^{72} + (7 \beta_{3} - 4 \beta_{2} + 7 \beta_1) q^{73} + (4 \beta_{3} + 4 \beta_{2} + 4 \beta_1) q^{74} + (\beta_{2} - 4 \beta_1 + 1) q^{75} + (2 \beta_{3} - 8) q^{76} + (5 \beta_{3} - 6) q^{78} + ( - 8 \beta_{2} + 4 \beta_1 - 8) q^{79} + (3 \beta_{3} - 6 \beta_{2} + 3 \beta_1) q^{80} + \beta_{2} q^{81} + (4 \beta_{2} + \beta_1 + 4) q^{82} + ( - 8 \beta_{3} + 4) q^{83} + ( - 4 \beta_{3} - 2) q^{85} + ( - 8 \beta_{2} - 4 \beta_1 - 8) q^{86} + ( - 2 \beta_{3} + 4 \beta_{2} - 2 \beta_1) q^{87} + (2 \beta_{3} + 6 \beta_{2} + 2 \beta_1) q^{88} + ( - 10 \beta_{2} + 3 \beta_1 - 10) q^{89} - \beta_{3} q^{90} + 14 q^{92} + (4 \beta_{2} + 2 \beta_1 + 4) q^{93} + (2 \beta_{3} + 4 \beta_{2} + 2 \beta_1) q^{94} + (4 \beta_{3} - 4 \beta_{2} + 4 \beta_1) q^{95} + (3 \beta_{2} - \beta_1 + 3) q^{96} + (\beta_{3} - 4) q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{5} + 4 q^{6} - 12 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{5} + 4 q^{6} - 12 q^{8} - 2 q^{9} + 4 q^{11} + 2 q^{12} - 16 q^{13} + 8 q^{15} - 6 q^{16} + 4 q^{17} + 2 q^{18} + 8 q^{20} + 8 q^{22} + 4 q^{23} - 6 q^{24} - 2 q^{25} - 12 q^{26} - 4 q^{27} - 16 q^{29} - 8 q^{31} - 6 q^{32} - 4 q^{33} + 32 q^{34} + 4 q^{36} + 8 q^{37} - 8 q^{38} - 8 q^{39} - 8 q^{40} - 8 q^{41} + 4 q^{44} + 4 q^{45} + 12 q^{46} - 12 q^{48} + 28 q^{50} - 4 q^{51} + 16 q^{52} + 4 q^{53} - 2 q^{54} + 16 q^{55} - 8 q^{59} + 4 q^{60} + 16 q^{61} - 32 q^{62} - 28 q^{64} - 12 q^{65} + 4 q^{66} + 28 q^{68} + 8 q^{69} - 8 q^{71} + 6 q^{72} + 8 q^{73} - 8 q^{74} + 2 q^{75} - 32 q^{76} - 24 q^{78} - 16 q^{79} + 12 q^{80} - 2 q^{81} + 8 q^{82} + 16 q^{83} - 8 q^{85} - 16 q^{86} - 8 q^{87} - 12 q^{88} - 20 q^{89} + 56 q^{92} + 8 q^{93} - 8 q^{94} + 8 q^{95} + 6 q^{96} - 16 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(-1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
−0.207107 0.358719i 0.500000 0.866025i 0.914214 1.58346i 1.70711 + 2.95680i −0.414214 0 −1.58579 −0.500000 0.866025i 0.707107 1.22474i
67.2 1.20711 + 2.09077i 0.500000 0.866025i −1.91421 + 3.31552i 0.292893 + 0.507306i 2.41421 0 −4.41421 −0.500000 0.866025i −0.707107 + 1.22474i
79.1 −0.207107 + 0.358719i 0.500000 + 0.866025i 0.914214 + 1.58346i 1.70711 2.95680i −0.414214 0 −1.58579 −0.500000 + 0.866025i 0.707107 + 1.22474i
79.2 1.20711 2.09077i 0.500000 + 0.866025i −1.91421 3.31552i 0.292893 0.507306i 2.41421 0 −4.41421 −0.500000 + 0.866025i −0.707107 1.22474i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.2.e.e 4
3.b odd 2 1 441.2.e.f 4
4.b odd 2 1 2352.2.q.bb 4
7.b odd 2 1 147.2.e.d 4
7.c even 3 1 147.2.a.d 2
7.c even 3 1 inner 147.2.e.e 4
7.d odd 6 1 147.2.a.e yes 2
7.d odd 6 1 147.2.e.d 4
21.c even 2 1 441.2.e.g 4
21.g even 6 1 441.2.a.i 2
21.g even 6 1 441.2.e.g 4
21.h odd 6 1 441.2.a.j 2
21.h odd 6 1 441.2.e.f 4
28.d even 2 1 2352.2.q.bd 4
28.f even 6 1 2352.2.a.bc 2
28.f even 6 1 2352.2.q.bd 4
28.g odd 6 1 2352.2.a.be 2
28.g odd 6 1 2352.2.q.bb 4
35.i odd 6 1 3675.2.a.bd 2
35.j even 6 1 3675.2.a.bf 2
56.j odd 6 1 9408.2.a.di 2
56.k odd 6 1 9408.2.a.dq 2
56.m even 6 1 9408.2.a.dt 2
56.p even 6 1 9408.2.a.ef 2
84.j odd 6 1 7056.2.a.cf 2
84.n even 6 1 7056.2.a.cv 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
147.2.a.d 2 7.c even 3 1
147.2.a.e yes 2 7.d odd 6 1
147.2.e.d 4 7.b odd 2 1
147.2.e.d 4 7.d odd 6 1
147.2.e.e 4 1.a even 1 1 trivial
147.2.e.e 4 7.c even 3 1 inner
441.2.a.i 2 21.g even 6 1
441.2.a.j 2 21.h odd 6 1
441.2.e.f 4 3.b odd 2 1
441.2.e.f 4 21.h odd 6 1
441.2.e.g 4 21.c even 2 1
441.2.e.g 4 21.g even 6 1
2352.2.a.bc 2 28.f even 6 1
2352.2.a.be 2 28.g odd 6 1
2352.2.q.bb 4 4.b odd 2 1
2352.2.q.bb 4 28.g odd 6 1
2352.2.q.bd 4 28.d even 2 1
2352.2.q.bd 4 28.f even 6 1
3675.2.a.bd 2 35.i odd 6 1
3675.2.a.bf 2 35.j even 6 1
7056.2.a.cf 2 84.j odd 6 1
7056.2.a.cv 2 84.n even 6 1
9408.2.a.di 2 56.j odd 6 1
9408.2.a.dq 2 56.k odd 6 1
9408.2.a.dt 2 56.m even 6 1
9408.2.a.ef 2 56.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(147, [\chi])\):

\( T_{2}^{4} - 2T_{2}^{3} + 5T_{2}^{2} + 2T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{4} - 4T_{5}^{3} + 14T_{5}^{2} - 8T_{5} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 8 T + 14)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 4 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$19$ \( T^{4} + 8T^{2} + 64 \) Copy content Toggle raw display
$23$ \( T^{4} - 4 T^{3} + \cdots + 784 \) Copy content Toggle raw display
$29$ \( (T^{2} + 8 T + 8)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 4 T - 14)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 8T^{2} + 64 \) Copy content Toggle raw display
$53$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$61$ \( T^{4} - 16 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$67$ \( T^{4} + 32T^{2} + 1024 \) Copy content Toggle raw display
$71$ \( (T^{2} + 4 T - 124)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 8 T^{3} + \cdots + 6724 \) Copy content Toggle raw display
$79$ \( T^{4} + 16 T^{3} + \cdots + 1024 \) Copy content Toggle raw display
$83$ \( (T^{2} - 8 T - 112)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 20 T^{3} + \cdots + 6724 \) Copy content Toggle raw display
$97$ \( (T^{2} + 8 T + 14)^{2} \) Copy content Toggle raw display
show more
show less