Properties

Label 147.2.c
Level $147$
Weight $2$
Character orbit 147.c
Rep. character $\chi_{147}(146,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $2$
Sturm bound $37$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 147.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(37\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(147, [\chi])\).

Total New Old
Modular forms 26 18 8
Cusp forms 10 10 0
Eisenstein series 16 8 8

Trace form

\( 10 q - 4 q^{4} + 2 q^{9} - 8 q^{15} - 16 q^{16} + 16 q^{18} - 16 q^{22} - 18 q^{25} + 24 q^{30} - 4 q^{36} + 18 q^{37} + 2 q^{39} + 6 q^{43} + 32 q^{46} - 24 q^{51} - 14 q^{57} - 24 q^{60} + 24 q^{64} - 26 q^{67}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(147, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
147.2.c.a 147.c 21.c $2$ $1.174$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 21.2.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta q^{3}+2 q^{4}-3 q^{9}-2\beta q^{12}+\cdots\)
147.2.c.b 147.c 21.c $8$ $1.174$ 8.0.3288334336.2 None 147.2.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}+(\beta _{1}-\beta _{5})q^{3}+(-1+\beta _{4}+\cdots)q^{4}+\cdots\)