Defining parameters
Level: | \( N \) | \(=\) | \( 147 = 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 147.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(37\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(147))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 26 | 7 | 19 |
Cusp forms | 11 | 7 | 4 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(3\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(147))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 7 | |||||||
147.2.a.a | $1$ | $1.174$ | \(\Q\) | None | \(-1\) | \(-1\) | \(2\) | \(0\) | $+$ | $-$ | \(q-q^{2}-q^{3}-q^{4}+2q^{5}+q^{6}+3q^{8}+\cdots\) | |
147.2.a.b | $1$ | $1.174$ | \(\Q\) | None | \(2\) | \(-1\) | \(2\) | \(0\) | $+$ | $-$ | \(q+2q^{2}-q^{3}+2q^{4}+2q^{5}-2q^{6}+\cdots\) | |
147.2.a.c | $1$ | $1.174$ | \(\Q\) | None | \(2\) | \(1\) | \(-2\) | \(0\) | $-$ | $+$ | \(q+2q^{2}+q^{3}+2q^{4}-2q^{5}+2q^{6}+\cdots\) | |
147.2.a.d | $2$ | $1.174$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-2\) | \(-4\) | \(0\) | $+$ | $+$ | \(q+(-1+\beta )q^{2}-q^{3}+(1-2\beta )q^{4}+(-2+\cdots)q^{5}+\cdots\) | |
147.2.a.e | $2$ | $1.174$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(2\) | \(4\) | \(0\) | $-$ | $+$ | \(q+(-1+\beta )q^{2}+q^{3}+(1-2\beta )q^{4}+(2+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(147))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(147)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)