Properties

Label 147.14.a.a.1.1
Level $147$
Weight $14$
Character 147.1
Self dual yes
Analytic conductor $157.629$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,14,Mod(1,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 147.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(157.629465559\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 147.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.0000 q^{2} +729.000 q^{3} -8048.00 q^{4} +30210.0 q^{5} -8748.00 q^{6} +194880. q^{8} +531441. q^{9} -362520. q^{10} -1.11829e7 q^{11} -5.86699e6 q^{12} -8.04961e6 q^{13} +2.20231e7 q^{15} +6.35907e7 q^{16} +1.17495e8 q^{17} -6.37729e6 q^{18} +2.14061e8 q^{19} -2.43130e8 q^{20} +1.34195e8 q^{22} +8.30556e8 q^{23} +1.42068e8 q^{24} -3.08059e8 q^{25} +9.65954e7 q^{26} +3.87420e8 q^{27} -1.25240e9 q^{29} -2.64277e8 q^{30} -6.15935e9 q^{31} -2.35954e9 q^{32} -8.15234e9 q^{33} -1.40994e9 q^{34} -4.27704e9 q^{36} -5.49819e9 q^{37} -2.56874e9 q^{38} -5.86817e9 q^{39} +5.88732e9 q^{40} +4.67869e9 q^{41} +7.11501e9 q^{43} +9.00000e10 q^{44} +1.60548e10 q^{45} -9.96667e9 q^{46} +2.95288e10 q^{47} +4.63576e10 q^{48} +3.69671e9 q^{50} +8.56536e10 q^{51} +6.47833e10 q^{52} -2.04125e11 q^{53} -4.64905e9 q^{54} -3.37836e11 q^{55} +1.56051e11 q^{57} +1.50288e10 q^{58} +2.99098e10 q^{59} -1.77242e11 q^{60} +1.34392e11 q^{61} +7.39122e10 q^{62} -4.92620e11 q^{64} -2.43179e11 q^{65} +9.78281e10 q^{66} +3.48519e11 q^{67} -9.45597e11 q^{68} +6.05475e11 q^{69} +1.31434e12 q^{71} +1.03567e11 q^{72} +1.17888e12 q^{73} +6.59783e10 q^{74} -2.24575e11 q^{75} -1.72277e12 q^{76} +7.04180e10 q^{78} -1.07242e12 q^{79} +1.92107e12 q^{80} +2.82430e11 q^{81} -5.61443e10 q^{82} -1.12403e12 q^{83} +3.54951e12 q^{85} -8.53802e10 q^{86} -9.13000e11 q^{87} -2.17933e12 q^{88} -2.23561e12 q^{89} -1.92658e11 q^{90} -6.68431e12 q^{92} -4.49017e12 q^{93} -3.54345e11 q^{94} +6.46679e12 q^{95} -1.72011e12 q^{96} +1.42153e13 q^{97} -5.94306e12 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −12.0000 −0.132583 −0.0662913 0.997800i \(-0.521117\pi\)
−0.0662913 + 0.997800i \(0.521117\pi\)
\(3\) 729.000 0.577350
\(4\) −8048.00 −0.982422
\(5\) 30210.0 0.864661 0.432330 0.901715i \(-0.357691\pi\)
0.432330 + 0.901715i \(0.357691\pi\)
\(6\) −8748.00 −0.0765466
\(7\) 0 0
\(8\) 194880. 0.262834
\(9\) 531441. 0.333333
\(10\) −362520. −0.114639
\(11\) −1.11829e7 −1.90328 −0.951639 0.307218i \(-0.900602\pi\)
−0.951639 + 0.307218i \(0.900602\pi\)
\(12\) −5.86699e6 −0.567202
\(13\) −8.04961e6 −0.462534 −0.231267 0.972890i \(-0.574287\pi\)
−0.231267 + 0.972890i \(0.574287\pi\)
\(14\) 0 0
\(15\) 2.20231e7 0.499212
\(16\) 6.35907e7 0.947575
\(17\) 1.17495e8 1.18059 0.590296 0.807187i \(-0.299011\pi\)
0.590296 + 0.807187i \(0.299011\pi\)
\(18\) −6.37729e6 −0.0441942
\(19\) 2.14061e8 1.04385 0.521927 0.852990i \(-0.325213\pi\)
0.521927 + 0.852990i \(0.325213\pi\)
\(20\) −2.43130e8 −0.849462
\(21\) 0 0
\(22\) 1.34195e8 0.252341
\(23\) 8.30556e8 1.16987 0.584935 0.811080i \(-0.301120\pi\)
0.584935 + 0.811080i \(0.301120\pi\)
\(24\) 1.42068e8 0.151748
\(25\) −3.08059e8 −0.252362
\(26\) 9.65954e7 0.0613239
\(27\) 3.87420e8 0.192450
\(28\) 0 0
\(29\) −1.25240e9 −0.390981 −0.195491 0.980706i \(-0.562630\pi\)
−0.195491 + 0.980706i \(0.562630\pi\)
\(30\) −2.64277e8 −0.0661868
\(31\) −6.15935e9 −1.24648 −0.623238 0.782032i \(-0.714183\pi\)
−0.623238 + 0.782032i \(0.714183\pi\)
\(32\) −2.35954e9 −0.388466
\(33\) −8.15234e9 −1.09886
\(34\) −1.40994e9 −0.156526
\(35\) 0 0
\(36\) −4.27704e9 −0.327474
\(37\) −5.49819e9 −0.352297 −0.176148 0.984364i \(-0.556364\pi\)
−0.176148 + 0.984364i \(0.556364\pi\)
\(38\) −2.56874e9 −0.138397
\(39\) −5.86817e9 −0.267044
\(40\) 5.88732e9 0.227263
\(41\) 4.67869e9 0.153826 0.0769129 0.997038i \(-0.475494\pi\)
0.0769129 + 0.997038i \(0.475494\pi\)
\(42\) 0 0
\(43\) 7.11501e9 0.171645 0.0858224 0.996310i \(-0.472648\pi\)
0.0858224 + 0.996310i \(0.472648\pi\)
\(44\) 9.00000e10 1.86982
\(45\) 1.60548e10 0.288220
\(46\) −9.96667e9 −0.155104
\(47\) 2.95288e10 0.399585 0.199793 0.979838i \(-0.435973\pi\)
0.199793 + 0.979838i \(0.435973\pi\)
\(48\) 4.63576e10 0.547082
\(49\) 0 0
\(50\) 3.69671e9 0.0334588
\(51\) 8.56536e10 0.681615
\(52\) 6.47833e10 0.454403
\(53\) −2.04125e11 −1.26504 −0.632518 0.774545i \(-0.717979\pi\)
−0.632518 + 0.774545i \(0.717979\pi\)
\(54\) −4.64905e9 −0.0255155
\(55\) −3.37836e11 −1.64569
\(56\) 0 0
\(57\) 1.56051e11 0.602670
\(58\) 1.50288e10 0.0518373
\(59\) 2.99098e10 0.0923157 0.0461579 0.998934i \(-0.485302\pi\)
0.0461579 + 0.998934i \(0.485302\pi\)
\(60\) −1.77242e11 −0.490437
\(61\) 1.34392e11 0.333987 0.166993 0.985958i \(-0.446594\pi\)
0.166993 + 0.985958i \(0.446594\pi\)
\(62\) 7.39122e10 0.165261
\(63\) 0 0
\(64\) −4.92620e11 −0.896071
\(65\) −2.43179e11 −0.399935
\(66\) 9.78281e10 0.145689
\(67\) 3.48519e11 0.470695 0.235348 0.971911i \(-0.424377\pi\)
0.235348 + 0.971911i \(0.424377\pi\)
\(68\) −9.45597e11 −1.15984
\(69\) 6.05475e11 0.675425
\(70\) 0 0
\(71\) 1.31434e12 1.21766 0.608831 0.793300i \(-0.291639\pi\)
0.608831 + 0.793300i \(0.291639\pi\)
\(72\) 1.03567e11 0.0876115
\(73\) 1.17888e12 0.911737 0.455868 0.890047i \(-0.349329\pi\)
0.455868 + 0.890047i \(0.349329\pi\)
\(74\) 6.59783e10 0.0467084
\(75\) −2.24575e11 −0.145701
\(76\) −1.72277e12 −1.02551
\(77\) 0 0
\(78\) 7.04180e10 0.0354054
\(79\) −1.07242e12 −0.496351 −0.248176 0.968715i \(-0.579831\pi\)
−0.248176 + 0.968715i \(0.579831\pi\)
\(80\) 1.92107e12 0.819330
\(81\) 2.82430e11 0.111111
\(82\) −5.61443e10 −0.0203946
\(83\) −1.12403e12 −0.377371 −0.188685 0.982038i \(-0.560423\pi\)
−0.188685 + 0.982038i \(0.560423\pi\)
\(84\) 0 0
\(85\) 3.54951e12 1.02081
\(86\) −8.53802e10 −0.0227571
\(87\) −9.13000e11 −0.225733
\(88\) −2.17933e12 −0.500247
\(89\) −2.23561e12 −0.476827 −0.238414 0.971164i \(-0.576627\pi\)
−0.238414 + 0.971164i \(0.576627\pi\)
\(90\) −1.92658e11 −0.0382130
\(91\) 0 0
\(92\) −6.68431e12 −1.14931
\(93\) −4.49017e12 −0.719653
\(94\) −3.54345e11 −0.0529780
\(95\) 6.46679e12 0.902580
\(96\) −1.72011e12 −0.224281
\(97\) 1.42153e13 1.73276 0.866380 0.499385i \(-0.166441\pi\)
0.866380 + 0.499385i \(0.166441\pi\)
\(98\) 0 0
\(99\) −5.94306e12 −0.634426
\(100\) 2.47926e12 0.247926
\(101\) −1.70194e13 −1.59535 −0.797675 0.603088i \(-0.793937\pi\)
−0.797675 + 0.603088i \(0.793937\pi\)
\(102\) −1.02784e12 −0.0903703
\(103\) −1.09904e13 −0.906928 −0.453464 0.891275i \(-0.649812\pi\)
−0.453464 + 0.891275i \(0.649812\pi\)
\(104\) −1.56871e12 −0.121570
\(105\) 0 0
\(106\) 2.44950e12 0.167722
\(107\) −1.96403e13 −1.26519 −0.632593 0.774485i \(-0.718009\pi\)
−0.632593 + 0.774485i \(0.718009\pi\)
\(108\) −3.11796e12 −0.189067
\(109\) −9.82099e12 −0.560897 −0.280448 0.959869i \(-0.590483\pi\)
−0.280448 + 0.959869i \(0.590483\pi\)
\(110\) 4.05403e12 0.218190
\(111\) −4.00818e12 −0.203399
\(112\) 0 0
\(113\) −1.70267e13 −0.769344 −0.384672 0.923053i \(-0.625685\pi\)
−0.384672 + 0.923053i \(0.625685\pi\)
\(114\) −1.87261e12 −0.0799035
\(115\) 2.50911e13 1.01154
\(116\) 1.00793e13 0.384109
\(117\) −4.27789e12 −0.154178
\(118\) −3.58918e11 −0.0122395
\(119\) 0 0
\(120\) 4.29186e12 0.131210
\(121\) 9.05347e13 2.62247
\(122\) −1.61270e12 −0.0442808
\(123\) 3.41076e12 0.0888113
\(124\) 4.95705e13 1.22457
\(125\) −4.61839e13 −1.08287
\(126\) 0 0
\(127\) −4.49347e13 −0.950292 −0.475146 0.879907i \(-0.657605\pi\)
−0.475146 + 0.879907i \(0.657605\pi\)
\(128\) 2.52408e13 0.507270
\(129\) 5.18685e12 0.0990992
\(130\) 2.91815e12 0.0530243
\(131\) 1.20182e12 0.0207768 0.0103884 0.999946i \(-0.496693\pi\)
0.0103884 + 0.999946i \(0.496693\pi\)
\(132\) 6.56100e13 1.07954
\(133\) 0 0
\(134\) −4.18223e12 −0.0624060
\(135\) 1.17040e13 0.166404
\(136\) 2.28974e13 0.310300
\(137\) 1.71562e13 0.221685 0.110842 0.993838i \(-0.464645\pi\)
0.110842 + 0.993838i \(0.464645\pi\)
\(138\) −7.26570e12 −0.0895495
\(139\) −1.05644e14 −1.24236 −0.621182 0.783666i \(-0.713347\pi\)
−0.621182 + 0.783666i \(0.713347\pi\)
\(140\) 0 0
\(141\) 2.15265e13 0.230701
\(142\) −1.57720e13 −0.161441
\(143\) 9.00181e13 0.880330
\(144\) 3.37947e13 0.315858
\(145\) −3.78350e13 −0.338066
\(146\) −1.41465e13 −0.120880
\(147\) 0 0
\(148\) 4.42494e13 0.346104
\(149\) −8.53533e13 −0.639012 −0.319506 0.947584i \(-0.603517\pi\)
−0.319506 + 0.947584i \(0.603517\pi\)
\(150\) 2.69490e12 0.0193174
\(151\) −6.16414e13 −0.423177 −0.211589 0.977359i \(-0.567864\pi\)
−0.211589 + 0.977359i \(0.567864\pi\)
\(152\) 4.17163e13 0.274361
\(153\) 6.24415e13 0.393531
\(154\) 0 0
\(155\) −1.86074e14 −1.07778
\(156\) 4.72270e13 0.262350
\(157\) 1.18021e14 0.628942 0.314471 0.949267i \(-0.398173\pi\)
0.314471 + 0.949267i \(0.398173\pi\)
\(158\) 1.28690e13 0.0658075
\(159\) −1.48807e14 −0.730369
\(160\) −7.12818e13 −0.335892
\(161\) 0 0
\(162\) −3.38915e12 −0.0147314
\(163\) 1.54710e14 0.646099 0.323050 0.946382i \(-0.395292\pi\)
0.323050 + 0.946382i \(0.395292\pi\)
\(164\) −3.76541e13 −0.151122
\(165\) −2.46282e14 −0.950139
\(166\) 1.34883e13 0.0500328
\(167\) −3.76012e14 −1.34136 −0.670679 0.741748i \(-0.733997\pi\)
−0.670679 + 0.741748i \(0.733997\pi\)
\(168\) 0 0
\(169\) −2.38079e14 −0.786063
\(170\) −4.25942e13 −0.135342
\(171\) 1.13761e14 0.347951
\(172\) −5.72616e13 −0.168628
\(173\) −3.73562e14 −1.05941 −0.529704 0.848182i \(-0.677697\pi\)
−0.529704 + 0.848182i \(0.677697\pi\)
\(174\) 1.09560e13 0.0299283
\(175\) 0 0
\(176\) −7.11128e14 −1.80350
\(177\) 2.18043e13 0.0532985
\(178\) 2.68273e13 0.0632190
\(179\) 4.23349e13 0.0961952 0.0480976 0.998843i \(-0.484684\pi\)
0.0480976 + 0.998843i \(0.484684\pi\)
\(180\) −1.29209e14 −0.283154
\(181\) 3.10447e14 0.656261 0.328130 0.944632i \(-0.393581\pi\)
0.328130 + 0.944632i \(0.393581\pi\)
\(182\) 0 0
\(183\) 9.79718e13 0.192827
\(184\) 1.61859e14 0.307482
\(185\) −1.66100e14 −0.304617
\(186\) 5.38820e13 0.0954134
\(187\) −1.31393e15 −2.24700
\(188\) −2.37648e14 −0.392561
\(189\) 0 0
\(190\) −7.76015e13 −0.119666
\(191\) −8.62273e14 −1.28507 −0.642537 0.766255i \(-0.722118\pi\)
−0.642537 + 0.766255i \(0.722118\pi\)
\(192\) −3.59120e14 −0.517347
\(193\) −9.37837e14 −1.30618 −0.653092 0.757278i \(-0.726529\pi\)
−0.653092 + 0.757278i \(0.726529\pi\)
\(194\) −1.70583e14 −0.229734
\(195\) −1.77277e14 −0.230902
\(196\) 0 0
\(197\) −6.71715e14 −0.818756 −0.409378 0.912365i \(-0.634254\pi\)
−0.409378 + 0.912365i \(0.634254\pi\)
\(198\) 7.13167e13 0.0841138
\(199\) 4.36451e13 0.0498185 0.0249093 0.999690i \(-0.492070\pi\)
0.0249093 + 0.999690i \(0.492070\pi\)
\(200\) −6.00345e13 −0.0663294
\(201\) 2.54070e14 0.271756
\(202\) 2.04233e14 0.211515
\(203\) 0 0
\(204\) −6.89340e14 −0.669634
\(205\) 1.41343e14 0.133007
\(206\) 1.31885e14 0.120243
\(207\) 4.41391e14 0.389957
\(208\) −5.11880e14 −0.438285
\(209\) −2.39383e15 −1.98675
\(210\) 0 0
\(211\) −1.62162e15 −1.26507 −0.632534 0.774533i \(-0.717985\pi\)
−0.632534 + 0.774533i \(0.717985\pi\)
\(212\) 1.64280e15 1.24280
\(213\) 9.58151e14 0.703018
\(214\) 2.35684e14 0.167742
\(215\) 2.14945e14 0.148415
\(216\) 7.55005e13 0.0505825
\(217\) 0 0
\(218\) 1.17852e14 0.0743651
\(219\) 8.59401e14 0.526392
\(220\) 2.71890e15 1.61676
\(221\) −9.45786e14 −0.546064
\(222\) 4.80982e13 0.0269671
\(223\) −1.47333e15 −0.802266 −0.401133 0.916020i \(-0.631383\pi\)
−0.401133 + 0.916020i \(0.631383\pi\)
\(224\) 0 0
\(225\) −1.63715e14 −0.0841207
\(226\) 2.04320e14 0.102002
\(227\) 3.74889e15 1.81859 0.909294 0.416153i \(-0.136622\pi\)
0.909294 + 0.416153i \(0.136622\pi\)
\(228\) −1.25590e15 −0.592076
\(229\) 1.47993e13 0.00678126 0.00339063 0.999994i \(-0.498921\pi\)
0.00339063 + 0.999994i \(0.498921\pi\)
\(230\) −3.01093e14 −0.134113
\(231\) 0 0
\(232\) −2.44068e14 −0.102763
\(233\) 3.63053e15 1.48647 0.743236 0.669030i \(-0.233290\pi\)
0.743236 + 0.669030i \(0.233290\pi\)
\(234\) 5.13347e13 0.0204413
\(235\) 8.92064e14 0.345506
\(236\) −2.40714e14 −0.0906930
\(237\) −7.81795e14 −0.286569
\(238\) 0 0
\(239\) −4.33900e15 −1.50592 −0.752962 0.658063i \(-0.771376\pi\)
−0.752962 + 0.658063i \(0.771376\pi\)
\(240\) 1.40046e15 0.473041
\(241\) −3.02372e15 −0.994103 −0.497051 0.867721i \(-0.665584\pi\)
−0.497051 + 0.867721i \(0.665584\pi\)
\(242\) −1.08642e15 −0.347693
\(243\) 2.05891e14 0.0641500
\(244\) −1.08159e15 −0.328116
\(245\) 0 0
\(246\) −4.09292e13 −0.0117748
\(247\) −1.72311e15 −0.482818
\(248\) −1.20033e15 −0.327617
\(249\) −8.19414e14 −0.217875
\(250\) 5.54207e14 0.143569
\(251\) 1.75146e15 0.442099 0.221050 0.975263i \(-0.429052\pi\)
0.221050 + 0.975263i \(0.429052\pi\)
\(252\) 0 0
\(253\) −9.28803e15 −2.22659
\(254\) 5.39216e14 0.125992
\(255\) 2.58759e15 0.589366
\(256\) 3.73265e15 0.828816
\(257\) −4.87604e15 −1.05561 −0.527803 0.849367i \(-0.676984\pi\)
−0.527803 + 0.849367i \(0.676984\pi\)
\(258\) −6.22421e13 −0.0131388
\(259\) 0 0
\(260\) 1.95710e15 0.392904
\(261\) −6.65577e14 −0.130327
\(262\) −1.44219e13 −0.00275463
\(263\) 4.67882e15 0.871815 0.435907 0.899992i \(-0.356428\pi\)
0.435907 + 0.899992i \(0.356428\pi\)
\(264\) −1.58873e15 −0.288818
\(265\) −6.16662e15 −1.09383
\(266\) 0 0
\(267\) −1.62976e15 −0.275296
\(268\) −2.80488e15 −0.462422
\(269\) 1.80262e15 0.290078 0.145039 0.989426i \(-0.453669\pi\)
0.145039 + 0.989426i \(0.453669\pi\)
\(270\) −1.40448e14 −0.0220623
\(271\) −6.10016e15 −0.935494 −0.467747 0.883862i \(-0.654934\pi\)
−0.467747 + 0.883862i \(0.654934\pi\)
\(272\) 7.47156e15 1.11870
\(273\) 0 0
\(274\) −2.05874e14 −0.0293915
\(275\) 3.44500e15 0.480315
\(276\) −4.87286e15 −0.663552
\(277\) −1.07023e16 −1.42351 −0.711754 0.702428i \(-0.752099\pi\)
−0.711754 + 0.702428i \(0.752099\pi\)
\(278\) 1.26773e15 0.164716
\(279\) −3.27333e15 −0.415492
\(280\) 0 0
\(281\) −2.45460e15 −0.297433 −0.148717 0.988880i \(-0.547514\pi\)
−0.148717 + 0.988880i \(0.547514\pi\)
\(282\) −2.58318e14 −0.0305869
\(283\) −4.01155e15 −0.464195 −0.232098 0.972692i \(-0.574559\pi\)
−0.232098 + 0.972692i \(0.574559\pi\)
\(284\) −1.05778e16 −1.19626
\(285\) 4.71429e15 0.521105
\(286\) −1.08022e15 −0.116716
\(287\) 0 0
\(288\) −1.25396e15 −0.129489
\(289\) 3.90041e15 0.393799
\(290\) 4.54020e14 0.0448217
\(291\) 1.03629e16 1.00041
\(292\) −9.48759e15 −0.895710
\(293\) −2.08187e15 −0.192227 −0.0961133 0.995370i \(-0.530641\pi\)
−0.0961133 + 0.995370i \(0.530641\pi\)
\(294\) 0 0
\(295\) 9.03576e14 0.0798218
\(296\) −1.07149e15 −0.0925957
\(297\) −4.33249e15 −0.366286
\(298\) 1.02424e15 0.0847219
\(299\) −6.68565e15 −0.541104
\(300\) 1.80738e15 0.143140
\(301\) 0 0
\(302\) 7.39697e14 0.0561059
\(303\) −1.24072e16 −0.921075
\(304\) 1.36123e16 0.989130
\(305\) 4.05998e15 0.288785
\(306\) −7.49298e14 −0.0521753
\(307\) 1.32352e16 0.902260 0.451130 0.892458i \(-0.351021\pi\)
0.451130 + 0.892458i \(0.351021\pi\)
\(308\) 0 0
\(309\) −8.01202e15 −0.523615
\(310\) 2.23289e15 0.142895
\(311\) 8.09301e15 0.507187 0.253593 0.967311i \(-0.418388\pi\)
0.253593 + 0.967311i \(0.418388\pi\)
\(312\) −1.14359e15 −0.0701883
\(313\) 1.48181e16 0.890748 0.445374 0.895345i \(-0.353071\pi\)
0.445374 + 0.895345i \(0.353071\pi\)
\(314\) −1.41625e15 −0.0833868
\(315\) 0 0
\(316\) 8.63084e15 0.487626
\(317\) −2.43171e16 −1.34594 −0.672970 0.739670i \(-0.734982\pi\)
−0.672970 + 0.739670i \(0.734982\pi\)
\(318\) 1.78569e15 0.0968342
\(319\) 1.40055e16 0.744147
\(320\) −1.48821e16 −0.774797
\(321\) −1.43178e16 −0.730455
\(322\) 0 0
\(323\) 2.51511e16 1.23237
\(324\) −2.27299e15 −0.109158
\(325\) 2.47976e15 0.116726
\(326\) −1.85652e15 −0.0856615
\(327\) −7.15950e15 −0.323834
\(328\) 9.11783e14 0.0404307
\(329\) 0 0
\(330\) 2.95539e15 0.125972
\(331\) 1.16232e16 0.485783 0.242892 0.970053i \(-0.421904\pi\)
0.242892 + 0.970053i \(0.421904\pi\)
\(332\) 9.04615e15 0.370737
\(333\) −2.92196e15 −0.117432
\(334\) 4.51214e15 0.177841
\(335\) 1.05288e16 0.406992
\(336\) 0 0
\(337\) 4.62652e16 1.72052 0.860262 0.509853i \(-0.170300\pi\)
0.860262 + 0.509853i \(0.170300\pi\)
\(338\) 2.85695e15 0.104218
\(339\) −1.24125e16 −0.444181
\(340\) −2.85665e16 −1.00287
\(341\) 6.88795e16 2.37239
\(342\) −1.36513e15 −0.0461323
\(343\) 0 0
\(344\) 1.38657e15 0.0451142
\(345\) 1.82914e16 0.584013
\(346\) 4.48275e15 0.140459
\(347\) 4.79404e15 0.147421 0.0737106 0.997280i \(-0.476516\pi\)
0.0737106 + 0.997280i \(0.476516\pi\)
\(348\) 7.34782e15 0.221765
\(349\) −3.76900e16 −1.11651 −0.558253 0.829671i \(-0.688528\pi\)
−0.558253 + 0.829671i \(0.688528\pi\)
\(350\) 0 0
\(351\) −3.11859e15 −0.0890146
\(352\) 2.63866e16 0.739360
\(353\) −4.80179e16 −1.32089 −0.660446 0.750873i \(-0.729633\pi\)
−0.660446 + 0.750873i \(0.729633\pi\)
\(354\) −2.61651e14 −0.00706645
\(355\) 3.97061e16 1.05286
\(356\) 1.79922e16 0.468446
\(357\) 0 0
\(358\) −5.08018e14 −0.0127538
\(359\) 4.06616e16 1.00247 0.501234 0.865312i \(-0.332880\pi\)
0.501234 + 0.865312i \(0.332880\pi\)
\(360\) 3.12877e15 0.0757542
\(361\) 3.76929e15 0.0896320
\(362\) −3.72536e15 −0.0870087
\(363\) 6.59998e16 1.51408
\(364\) 0 0
\(365\) 3.56138e16 0.788343
\(366\) −1.17566e15 −0.0255656
\(367\) −2.96733e16 −0.633923 −0.316961 0.948438i \(-0.602663\pi\)
−0.316961 + 0.948438i \(0.602663\pi\)
\(368\) 5.28156e16 1.10854
\(369\) 2.48645e15 0.0512752
\(370\) 1.99320e15 0.0403869
\(371\) 0 0
\(372\) 3.61369e16 0.707003
\(373\) −9.01346e16 −1.73294 −0.866471 0.499227i \(-0.833617\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(374\) 1.57672e16 0.297912
\(375\) −3.36681e16 −0.625194
\(376\) 5.75457e15 0.105025
\(377\) 1.00813e16 0.180842
\(378\) 0 0
\(379\) −1.54841e16 −0.268369 −0.134184 0.990956i \(-0.542841\pi\)
−0.134184 + 0.990956i \(0.542841\pi\)
\(380\) −5.20448e16 −0.886714
\(381\) −3.27574e16 −0.548652
\(382\) 1.03473e16 0.170378
\(383\) −9.37088e15 −0.151701 −0.0758505 0.997119i \(-0.524167\pi\)
−0.0758505 + 0.997119i \(0.524167\pi\)
\(384\) 1.84006e16 0.292872
\(385\) 0 0
\(386\) 1.12540e16 0.173177
\(387\) 3.78121e15 0.0572150
\(388\) −1.14404e17 −1.70230
\(389\) 2.95806e16 0.432847 0.216423 0.976300i \(-0.430561\pi\)
0.216423 + 0.976300i \(0.430561\pi\)
\(390\) 2.12733e15 0.0306136
\(391\) 9.75858e16 1.38114
\(392\) 0 0
\(393\) 8.76130e14 0.0119955
\(394\) 8.06058e15 0.108553
\(395\) −3.23978e16 −0.429175
\(396\) 4.78297e16 0.623274
\(397\) −1.80617e16 −0.231538 −0.115769 0.993276i \(-0.536933\pi\)
−0.115769 + 0.993276i \(0.536933\pi\)
\(398\) −5.23742e14 −0.00660507
\(399\) 0 0
\(400\) −1.95897e16 −0.239132
\(401\) −1.20412e17 −1.44621 −0.723107 0.690736i \(-0.757287\pi\)
−0.723107 + 0.690736i \(0.757287\pi\)
\(402\) −3.04884e15 −0.0360301
\(403\) 4.95804e16 0.576537
\(404\) 1.36972e17 1.56731
\(405\) 8.53220e15 0.0960734
\(406\) 0 0
\(407\) 6.14858e16 0.670519
\(408\) 1.66922e16 0.179152
\(409\) 1.77522e16 0.187521 0.0937606 0.995595i \(-0.470111\pi\)
0.0937606 + 0.995595i \(0.470111\pi\)
\(410\) −1.69612e15 −0.0176344
\(411\) 1.25068e16 0.127990
\(412\) 8.84510e16 0.890986
\(413\) 0 0
\(414\) −5.29670e15 −0.0517015
\(415\) −3.39568e16 −0.326298
\(416\) 1.89934e16 0.179679
\(417\) −7.70145e16 −0.717279
\(418\) 2.87259e16 0.263408
\(419\) −1.75670e17 −1.58602 −0.793008 0.609212i \(-0.791486\pi\)
−0.793008 + 0.609212i \(0.791486\pi\)
\(420\) 0 0
\(421\) 1.84473e17 1.61473 0.807365 0.590052i \(-0.200893\pi\)
0.807365 + 0.590052i \(0.200893\pi\)
\(422\) 1.94595e16 0.167726
\(423\) 1.56928e16 0.133195
\(424\) −3.97799e16 −0.332495
\(425\) −3.61953e16 −0.297937
\(426\) −1.14978e16 −0.0932079
\(427\) 0 0
\(428\) 1.58065e17 1.24295
\(429\) 6.56232e16 0.508259
\(430\) −2.57933e15 −0.0196772
\(431\) 8.05532e16 0.605314 0.302657 0.953100i \(-0.402126\pi\)
0.302657 + 0.953100i \(0.402126\pi\)
\(432\) 2.46363e16 0.182361
\(433\) 1.97092e17 1.43714 0.718568 0.695457i \(-0.244798\pi\)
0.718568 + 0.695457i \(0.244798\pi\)
\(434\) 0 0
\(435\) −2.75817e16 −0.195183
\(436\) 7.90393e16 0.551037
\(437\) 1.77790e17 1.22117
\(438\) −1.03128e16 −0.0697903
\(439\) −9.89007e16 −0.659447 −0.329724 0.944078i \(-0.606956\pi\)
−0.329724 + 0.944078i \(0.606956\pi\)
\(440\) −6.58374e16 −0.432544
\(441\) 0 0
\(442\) 1.13494e16 0.0723985
\(443\) −1.25104e17 −0.786404 −0.393202 0.919452i \(-0.628633\pi\)
−0.393202 + 0.919452i \(0.628633\pi\)
\(444\) 3.22578e16 0.199823
\(445\) −6.75378e16 −0.412294
\(446\) 1.76800e16 0.106366
\(447\) −6.22225e16 −0.368934
\(448\) 0 0
\(449\) −1.80095e17 −1.03729 −0.518645 0.854990i \(-0.673563\pi\)
−0.518645 + 0.854990i \(0.673563\pi\)
\(450\) 1.96458e15 0.0111529
\(451\) −5.23213e16 −0.292773
\(452\) 1.37031e17 0.755820
\(453\) −4.49366e16 −0.244322
\(454\) −4.49867e16 −0.241113
\(455\) 0 0
\(456\) 3.04112e16 0.158402
\(457\) −9.43597e16 −0.484542 −0.242271 0.970209i \(-0.577892\pi\)
−0.242271 + 0.970209i \(0.577892\pi\)
\(458\) −1.77592e14 −0.000899076 0
\(459\) 4.55198e16 0.227205
\(460\) −2.01933e17 −0.993760
\(461\) −8.00500e16 −0.388423 −0.194212 0.980960i \(-0.562215\pi\)
−0.194212 + 0.980960i \(0.562215\pi\)
\(462\) 0 0
\(463\) 2.14174e17 1.01039 0.505196 0.863004i \(-0.331420\pi\)
0.505196 + 0.863004i \(0.331420\pi\)
\(464\) −7.96410e16 −0.370484
\(465\) −1.35648e17 −0.622256
\(466\) −4.35663e16 −0.197080
\(467\) 1.80681e17 0.806031 0.403015 0.915193i \(-0.367962\pi\)
0.403015 + 0.915193i \(0.367962\pi\)
\(468\) 3.44285e16 0.151468
\(469\) 0 0
\(470\) −1.07048e16 −0.0458080
\(471\) 8.60372e16 0.363120
\(472\) 5.82883e15 0.0242638
\(473\) −7.95665e16 −0.326688
\(474\) 9.38154e15 0.0379940
\(475\) −6.59435e16 −0.263429
\(476\) 0 0
\(477\) −1.08480e17 −0.421679
\(478\) 5.20680e16 0.199659
\(479\) 2.66712e17 1.00893 0.504466 0.863431i \(-0.331689\pi\)
0.504466 + 0.863431i \(0.331689\pi\)
\(480\) −5.19645e16 −0.193927
\(481\) 4.42583e16 0.162949
\(482\) 3.62847e16 0.131801
\(483\) 0 0
\(484\) −7.28623e17 −2.57637
\(485\) 4.29443e17 1.49825
\(486\) −2.47069e15 −0.00850517
\(487\) −2.63552e17 −0.895216 −0.447608 0.894230i \(-0.647724\pi\)
−0.447608 + 0.894230i \(0.647724\pi\)
\(488\) 2.61903e16 0.0877833
\(489\) 1.12784e17 0.373026
\(490\) 0 0
\(491\) 4.11733e17 1.32613 0.663065 0.748562i \(-0.269255\pi\)
0.663065 + 0.748562i \(0.269255\pi\)
\(492\) −2.74498e16 −0.0872502
\(493\) −1.47150e17 −0.461590
\(494\) 2.06773e16 0.0640132
\(495\) −1.79540e17 −0.548563
\(496\) −3.91677e17 −1.18113
\(497\) 0 0
\(498\) 9.83297e15 0.0288864
\(499\) 3.99658e17 1.15887 0.579435 0.815018i \(-0.303273\pi\)
0.579435 + 0.815018i \(0.303273\pi\)
\(500\) 3.71688e17 1.06383
\(501\) −2.74113e17 −0.774433
\(502\) −2.10175e16 −0.0586146
\(503\) 2.83581e17 0.780702 0.390351 0.920666i \(-0.372354\pi\)
0.390351 + 0.920666i \(0.372354\pi\)
\(504\) 0 0
\(505\) −5.14157e17 −1.37944
\(506\) 1.11456e17 0.295207
\(507\) −1.73559e17 −0.453834
\(508\) 3.61634e17 0.933588
\(509\) −6.40327e17 −1.63206 −0.816030 0.578009i \(-0.803830\pi\)
−0.816030 + 0.578009i \(0.803830\pi\)
\(510\) −3.10511e16 −0.0781396
\(511\) 0 0
\(512\) −2.51565e17 −0.617156
\(513\) 8.29318e16 0.200890
\(514\) 5.85124e16 0.139955
\(515\) −3.32021e17 −0.784185
\(516\) −4.17437e16 −0.0973572
\(517\) −3.30218e17 −0.760522
\(518\) 0 0
\(519\) −2.72327e17 −0.611650
\(520\) −4.73907e16 −0.105117
\(521\) 4.01348e17 0.879175 0.439588 0.898200i \(-0.355125\pi\)
0.439588 + 0.898200i \(0.355125\pi\)
\(522\) 7.98692e15 0.0172791
\(523\) 5.05985e17 1.08113 0.540564 0.841303i \(-0.318211\pi\)
0.540564 + 0.841303i \(0.318211\pi\)
\(524\) −9.67228e15 −0.0204115
\(525\) 0 0
\(526\) −5.61459e16 −0.115587
\(527\) −7.23691e17 −1.47158
\(528\) −5.18413e17 −1.04125
\(529\) 1.85786e17 0.368597
\(530\) 7.39994e16 0.145022
\(531\) 1.58953e16 0.0307719
\(532\) 0 0
\(533\) −3.76616e16 −0.0711496
\(534\) 1.95571e16 0.0364995
\(535\) −5.93334e17 −1.09396
\(536\) 6.79193e16 0.123715
\(537\) 3.08621e16 0.0555383
\(538\) −2.16314e16 −0.0384592
\(539\) 0 0
\(540\) −9.41936e16 −0.163479
\(541\) −1.69124e17 −0.290017 −0.145009 0.989430i \(-0.546321\pi\)
−0.145009 + 0.989430i \(0.546321\pi\)
\(542\) 7.32020e16 0.124030
\(543\) 2.26316e17 0.378892
\(544\) −2.77234e17 −0.458620
\(545\) −2.96692e17 −0.484986
\(546\) 0 0
\(547\) −4.32104e17 −0.689717 −0.344858 0.938655i \(-0.612073\pi\)
−0.344858 + 0.938655i \(0.612073\pi\)
\(548\) −1.38073e17 −0.217788
\(549\) 7.14214e16 0.111329
\(550\) −4.13399e16 −0.0636814
\(551\) −2.68091e17 −0.408128
\(552\) 1.17995e17 0.177525
\(553\) 0 0
\(554\) 1.28428e17 0.188732
\(555\) −1.21087e17 −0.175871
\(556\) 8.50224e17 1.22053
\(557\) 1.36804e18 1.94107 0.970534 0.240966i \(-0.0774642\pi\)
0.970534 + 0.240966i \(0.0774642\pi\)
\(558\) 3.92800e16 0.0550870
\(559\) −5.72731e16 −0.0793915
\(560\) 0 0
\(561\) −9.57856e17 −1.29730
\(562\) 2.94552e16 0.0394345
\(563\) 9.52405e17 1.26043 0.630213 0.776422i \(-0.282968\pi\)
0.630213 + 0.776422i \(0.282968\pi\)
\(564\) −1.73245e17 −0.226645
\(565\) −5.14377e17 −0.665221
\(566\) 4.81386e16 0.0615442
\(567\) 0 0
\(568\) 2.56138e17 0.320044
\(569\) 1.53632e17 0.189780 0.0948902 0.995488i \(-0.469750\pi\)
0.0948902 + 0.995488i \(0.469750\pi\)
\(570\) −5.65715e16 −0.0690894
\(571\) −1.27956e18 −1.54500 −0.772498 0.635017i \(-0.780993\pi\)
−0.772498 + 0.635017i \(0.780993\pi\)
\(572\) −7.24466e17 −0.864856
\(573\) −6.28597e17 −0.741938
\(574\) 0 0
\(575\) −2.55860e17 −0.295231
\(576\) −2.61799e17 −0.298690
\(577\) −3.56770e17 −0.402481 −0.201241 0.979542i \(-0.564497\pi\)
−0.201241 + 0.979542i \(0.564497\pi\)
\(578\) −4.68049e16 −0.0522108
\(579\) −6.83683e17 −0.754126
\(580\) 3.04496e17 0.332124
\(581\) 0 0
\(582\) −1.24355e17 −0.132637
\(583\) 2.28271e18 2.40772
\(584\) 2.29739e17 0.239636
\(585\) −1.29235e17 −0.133312
\(586\) 2.49824e16 0.0254859
\(587\) −1.28968e18 −1.30118 −0.650588 0.759431i \(-0.725477\pi\)
−0.650588 + 0.759431i \(0.725477\pi\)
\(588\) 0 0
\(589\) −1.31848e18 −1.30114
\(590\) −1.08429e16 −0.0105830
\(591\) −4.89680e17 −0.472709
\(592\) −3.49634e17 −0.333827
\(593\) 1.88640e18 1.78147 0.890735 0.454523i \(-0.150190\pi\)
0.890735 + 0.454523i \(0.150190\pi\)
\(594\) 5.19899e16 0.0485631
\(595\) 0 0
\(596\) 6.86923e17 0.627780
\(597\) 3.18173e16 0.0287627
\(598\) 8.02278e16 0.0717410
\(599\) −1.44668e18 −1.27967 −0.639834 0.768513i \(-0.720997\pi\)
−0.639834 + 0.768513i \(0.720997\pi\)
\(600\) −4.37652e16 −0.0382953
\(601\) 4.44358e16 0.0384635 0.0192317 0.999815i \(-0.493878\pi\)
0.0192317 + 0.999815i \(0.493878\pi\)
\(602\) 0 0
\(603\) 1.85217e17 0.156898
\(604\) 4.96090e17 0.415739
\(605\) 2.73505e18 2.26755
\(606\) 1.48886e17 0.122118
\(607\) −2.98050e16 −0.0241860 −0.0120930 0.999927i \(-0.503849\pi\)
−0.0120930 + 0.999927i \(0.503849\pi\)
\(608\) −5.05087e17 −0.405502
\(609\) 0 0
\(610\) −4.87198e16 −0.0382879
\(611\) −2.37695e17 −0.184822
\(612\) −5.02529e17 −0.386613
\(613\) −8.84082e17 −0.672976 −0.336488 0.941688i \(-0.609239\pi\)
−0.336488 + 0.941688i \(0.609239\pi\)
\(614\) −1.58823e17 −0.119624
\(615\) 1.03039e17 0.0767917
\(616\) 0 0
\(617\) 1.43684e18 1.04846 0.524232 0.851575i \(-0.324352\pi\)
0.524232 + 0.851575i \(0.324352\pi\)
\(618\) 9.61443e16 0.0694222
\(619\) −1.68862e18 −1.20654 −0.603272 0.797535i \(-0.706137\pi\)
−0.603272 + 0.797535i \(0.706137\pi\)
\(620\) 1.49752e18 1.05883
\(621\) 3.21774e17 0.225142
\(622\) −9.71162e16 −0.0672441
\(623\) 0 0
\(624\) −3.73161e17 −0.253044
\(625\) −1.01917e18 −0.683951
\(626\) −1.77817e17 −0.118098
\(627\) −1.74510e18 −1.14705
\(628\) −9.49831e17 −0.617887
\(629\) −6.46008e17 −0.415919
\(630\) 0 0
\(631\) −3.53490e17 −0.222939 −0.111470 0.993768i \(-0.535556\pi\)
−0.111470 + 0.993768i \(0.535556\pi\)
\(632\) −2.08993e17 −0.130458
\(633\) −1.18216e18 −0.730387
\(634\) 2.91805e17 0.178448
\(635\) −1.35748e18 −0.821680
\(636\) 1.19760e18 0.717531
\(637\) 0 0
\(638\) −1.68066e17 −0.0986608
\(639\) 6.98492e17 0.405888
\(640\) 7.62526e17 0.438616
\(641\) 1.61802e18 0.921313 0.460656 0.887579i \(-0.347614\pi\)
0.460656 + 0.887579i \(0.347614\pi\)
\(642\) 1.71814e17 0.0968456
\(643\) 1.96065e18 1.09403 0.547015 0.837123i \(-0.315764\pi\)
0.547015 + 0.837123i \(0.315764\pi\)
\(644\) 0 0
\(645\) 1.56695e17 0.0856872
\(646\) −3.01813e17 −0.163390
\(647\) 5.96114e17 0.319486 0.159743 0.987159i \(-0.448933\pi\)
0.159743 + 0.987159i \(0.448933\pi\)
\(648\) 5.50399e16 0.0292038
\(649\) −3.34479e17 −0.175703
\(650\) −2.97571e16 −0.0154758
\(651\) 0 0
\(652\) −1.24511e18 −0.634742
\(653\) −2.58318e18 −1.30382 −0.651912 0.758295i \(-0.726033\pi\)
−0.651912 + 0.758295i \(0.726033\pi\)
\(654\) 8.59140e16 0.0429347
\(655\) 3.63071e16 0.0179648
\(656\) 2.97521e17 0.145761
\(657\) 6.26503e17 0.303912
\(658\) 0 0
\(659\) 2.64137e18 1.25624 0.628121 0.778116i \(-0.283824\pi\)
0.628121 + 0.778116i \(0.283824\pi\)
\(660\) 1.98208e18 0.933438
\(661\) −4.12451e18 −1.92337 −0.961685 0.274156i \(-0.911602\pi\)
−0.961685 + 0.274156i \(0.911602\pi\)
\(662\) −1.39478e17 −0.0644064
\(663\) −6.89478e17 −0.315270
\(664\) −2.19050e17 −0.0991861
\(665\) 0 0
\(666\) 3.50636e16 0.0155695
\(667\) −1.04019e18 −0.457398
\(668\) 3.02614e18 1.31778
\(669\) −1.07406e18 −0.463189
\(670\) −1.26345e17 −0.0539600
\(671\) −1.50289e18 −0.635670
\(672\) 0 0
\(673\) 2.79726e18 1.16047 0.580236 0.814449i \(-0.302961\pi\)
0.580236 + 0.814449i \(0.302961\pi\)
\(674\) −5.55183e17 −0.228111
\(675\) −1.19348e17 −0.0485671
\(676\) 1.91606e18 0.772245
\(677\) 4.25553e18 1.69874 0.849372 0.527795i \(-0.176981\pi\)
0.849372 + 0.527795i \(0.176981\pi\)
\(678\) 1.48950e17 0.0588906
\(679\) 0 0
\(680\) 6.91729e17 0.268305
\(681\) 2.73294e18 1.04996
\(682\) −8.26553e17 −0.314538
\(683\) 1.60893e18 0.606461 0.303230 0.952917i \(-0.401935\pi\)
0.303230 + 0.952917i \(0.401935\pi\)
\(684\) −9.15548e17 −0.341835
\(685\) 5.18287e17 0.191682
\(686\) 0 0
\(687\) 1.07887e16 0.00391516
\(688\) 4.52448e17 0.162646
\(689\) 1.64313e18 0.585122
\(690\) −2.19497e17 −0.0774300
\(691\) 3.06331e18 1.07049 0.535247 0.844696i \(-0.320218\pi\)
0.535247 + 0.844696i \(0.320218\pi\)
\(692\) 3.00643e18 1.04079
\(693\) 0 0
\(694\) −5.75285e16 −0.0195455
\(695\) −3.19151e18 −1.07422
\(696\) −1.77925e17 −0.0593305
\(697\) 5.49721e17 0.181606
\(698\) 4.52280e17 0.148029
\(699\) 2.64666e18 0.858214
\(700\) 0 0
\(701\) 2.99144e18 0.952166 0.476083 0.879400i \(-0.342056\pi\)
0.476083 + 0.879400i \(0.342056\pi\)
\(702\) 3.74230e16 0.0118018
\(703\) −1.17695e18 −0.367747
\(704\) 5.50893e18 1.70547
\(705\) 6.50315e17 0.199478
\(706\) 5.76215e17 0.175127
\(707\) 0 0
\(708\) −1.75481e17 −0.0523616
\(709\) −5.31694e18 −1.57203 −0.786015 0.618207i \(-0.787859\pi\)
−0.786015 + 0.618207i \(0.787859\pi\)
\(710\) −4.76473e17 −0.139591
\(711\) −5.69928e17 −0.165450
\(712\) −4.35676e17 −0.125327
\(713\) −5.11568e18 −1.45822
\(714\) 0 0
\(715\) 2.71945e18 0.761187
\(716\) −3.40711e17 −0.0945043
\(717\) −3.16313e18 −0.869446
\(718\) −4.87939e17 −0.132910
\(719\) 4.03153e18 1.08826 0.544129 0.839001i \(-0.316860\pi\)
0.544129 + 0.839001i \(0.316860\pi\)
\(720\) 1.02094e18 0.273110
\(721\) 0 0
\(722\) −4.52315e16 −0.0118836
\(723\) −2.20429e18 −0.573945
\(724\) −2.49848e18 −0.644725
\(725\) 3.85813e17 0.0986688
\(726\) −7.91998e17 −0.200741
\(727\) 4.77643e18 1.19986 0.599928 0.800054i \(-0.295196\pi\)
0.599928 + 0.800054i \(0.295196\pi\)
\(728\) 0 0
\(729\) 1.50095e17 0.0370370
\(730\) −4.27366e17 −0.104520
\(731\) 8.35976e17 0.202643
\(732\) −7.88477e17 −0.189438
\(733\) −1.71668e18 −0.408803 −0.204401 0.978887i \(-0.565525\pi\)
−0.204401 + 0.978887i \(0.565525\pi\)
\(734\) 3.56080e17 0.0840471
\(735\) 0 0
\(736\) −1.95973e18 −0.454455
\(737\) −3.89745e18 −0.895864
\(738\) −2.98374e16 −0.00679820
\(739\) −8.69723e17 −0.196423 −0.0982114 0.995166i \(-0.531312\pi\)
−0.0982114 + 0.995166i \(0.531312\pi\)
\(740\) 1.33678e18 0.299263
\(741\) −1.25615e18 −0.278755
\(742\) 0 0
\(743\) 2.40272e18 0.523933 0.261966 0.965077i \(-0.415629\pi\)
0.261966 + 0.965077i \(0.415629\pi\)
\(744\) −8.75044e17 −0.189150
\(745\) −2.57852e18 −0.552529
\(746\) 1.08161e18 0.229758
\(747\) −5.97353e17 −0.125790
\(748\) 1.05745e19 2.20750
\(749\) 0 0
\(750\) 4.04017e17 0.0828898
\(751\) 9.37175e18 1.90617 0.953084 0.302706i \(-0.0978899\pi\)
0.953084 + 0.302706i \(0.0978899\pi\)
\(752\) 1.87775e18 0.378637
\(753\) 1.27681e18 0.255246
\(754\) −1.20976e17 −0.0239765
\(755\) −1.86219e18 −0.365905
\(756\) 0 0
\(757\) 3.09120e18 0.597040 0.298520 0.954403i \(-0.403507\pi\)
0.298520 + 0.954403i \(0.403507\pi\)
\(758\) 1.85810e17 0.0355810
\(759\) −6.77097e18 −1.28552
\(760\) 1.26025e18 0.237229
\(761\) 7.97787e18 1.48897 0.744486 0.667638i \(-0.232694\pi\)
0.744486 + 0.667638i \(0.232694\pi\)
\(762\) 3.93088e17 0.0727416
\(763\) 0 0
\(764\) 6.93957e18 1.26248
\(765\) 1.88636e18 0.340271
\(766\) 1.12451e17 0.0201129
\(767\) −2.40763e17 −0.0426991
\(768\) 2.72110e18 0.478517
\(769\) −7.37344e18 −1.28573 −0.642863 0.765981i \(-0.722254\pi\)
−0.642863 + 0.765981i \(0.722254\pi\)
\(770\) 0 0
\(771\) −3.55463e18 −0.609454
\(772\) 7.54771e18 1.28322
\(773\) 1.67335e18 0.282111 0.141056 0.990002i \(-0.454950\pi\)
0.141056 + 0.990002i \(0.454950\pi\)
\(774\) −4.53745e16 −0.00758570
\(775\) 1.89744e18 0.314563
\(776\) 2.77027e18 0.455429
\(777\) 0 0
\(778\) −3.54967e17 −0.0573879
\(779\) 1.00153e18 0.160572
\(780\) 1.42673e18 0.226844
\(781\) −1.46981e19 −2.31755
\(782\) −1.17103e18 −0.183115
\(783\) −4.85206e17 −0.0752444
\(784\) 0 0
\(785\) 3.56541e18 0.543822
\(786\) −1.05136e16 −0.00159039
\(787\) 3.75359e18 0.563133 0.281566 0.959542i \(-0.409146\pi\)
0.281566 + 0.959542i \(0.409146\pi\)
\(788\) 5.40596e18 0.804363
\(789\) 3.41086e18 0.503342
\(790\) 3.88774e17 0.0569012
\(791\) 0 0
\(792\) −1.15818e18 −0.166749
\(793\) −1.08180e18 −0.154480
\(794\) 2.16741e17 0.0306978
\(795\) −4.49546e18 −0.631522
\(796\) −3.51256e17 −0.0489428
\(797\) −3.38853e18 −0.468309 −0.234154 0.972199i \(-0.575232\pi\)
−0.234154 + 0.972199i \(0.575232\pi\)
\(798\) 0 0
\(799\) 3.46947e18 0.471747
\(800\) 7.26879e17 0.0980341
\(801\) −1.18810e18 −0.158942
\(802\) 1.44495e18 0.191743
\(803\) −1.31833e19 −1.73529
\(804\) −2.04476e18 −0.266979
\(805\) 0 0
\(806\) −5.94965e17 −0.0764387
\(807\) 1.31411e18 0.167476
\(808\) −3.31674e18 −0.419313
\(809\) −3.13119e18 −0.392685 −0.196343 0.980535i \(-0.562906\pi\)
−0.196343 + 0.980535i \(0.562906\pi\)
\(810\) −1.02386e17 −0.0127377
\(811\) −1.04731e19 −1.29253 −0.646264 0.763114i \(-0.723669\pi\)
−0.646264 + 0.763114i \(0.723669\pi\)
\(812\) 0 0
\(813\) −4.44702e18 −0.540108
\(814\) −7.37829e17 −0.0888991
\(815\) 4.67379e18 0.558657
\(816\) 5.44677e18 0.645881
\(817\) 1.52305e18 0.179172
\(818\) −2.13026e17 −0.0248620
\(819\) 0 0
\(820\) −1.13753e18 −0.130669
\(821\) −6.85162e18 −0.780841 −0.390421 0.920637i \(-0.627670\pi\)
−0.390421 + 0.920637i \(0.627670\pi\)
\(822\) −1.50082e17 −0.0169692
\(823\) 3.06934e17 0.0344308 0.0172154 0.999852i \(-0.494520\pi\)
0.0172154 + 0.999852i \(0.494520\pi\)
\(824\) −2.14181e18 −0.238372
\(825\) 2.51140e18 0.277310
\(826\) 0 0
\(827\) 7.75365e18 0.842792 0.421396 0.906877i \(-0.361540\pi\)
0.421396 + 0.906877i \(0.361540\pi\)
\(828\) −3.55232e18 −0.383102
\(829\) −2.34336e18 −0.250747 −0.125373 0.992110i \(-0.540013\pi\)
−0.125373 + 0.992110i \(0.540013\pi\)
\(830\) 4.07482e17 0.0432614
\(831\) −7.80200e18 −0.821863
\(832\) 3.96540e18 0.414463
\(833\) 0 0
\(834\) 9.24174e17 0.0950987
\(835\) −1.13593e19 −1.15982
\(836\) 1.92655e19 1.95182
\(837\) −2.38626e18 −0.239884
\(838\) 2.10804e18 0.210278
\(839\) 1.63297e19 1.61632 0.808158 0.588965i \(-0.200465\pi\)
0.808158 + 0.588965i \(0.200465\pi\)
\(840\) 0 0
\(841\) −8.69212e18 −0.847134
\(842\) −2.21368e18 −0.214085
\(843\) −1.78940e18 −0.171723
\(844\) 1.30508e19 1.24283
\(845\) −7.19236e18 −0.679677
\(846\) −1.88314e17 −0.0176593
\(847\) 0 0
\(848\) −1.29804e19 −1.19872
\(849\) −2.92442e18 −0.268003
\(850\) 4.34343e17 0.0395012
\(851\) −4.56655e18 −0.412142
\(852\) −7.71120e18 −0.690660
\(853\) −1.93794e19 −1.72255 −0.861276 0.508137i \(-0.830334\pi\)
−0.861276 + 0.508137i \(0.830334\pi\)
\(854\) 0 0
\(855\) 3.43672e18 0.300860
\(856\) −3.82751e18 −0.332534
\(857\) −1.20537e19 −1.03931 −0.519656 0.854376i \(-0.673940\pi\)
−0.519656 + 0.854376i \(0.673940\pi\)
\(858\) −7.87478e17 −0.0673862
\(859\) 1.00612e19 0.854465 0.427232 0.904142i \(-0.359489\pi\)
0.427232 + 0.904142i \(0.359489\pi\)
\(860\) −1.72987e18 −0.145806
\(861\) 0 0
\(862\) −9.66639e17 −0.0802541
\(863\) 8.01407e18 0.660363 0.330182 0.943917i \(-0.392890\pi\)
0.330182 + 0.943917i \(0.392890\pi\)
\(864\) −9.14136e17 −0.0747604
\(865\) −1.12853e19 −0.916029
\(866\) −2.36510e18 −0.190539
\(867\) 2.84340e18 0.227360
\(868\) 0 0
\(869\) 1.19928e19 0.944694
\(870\) 3.30981e17 0.0258778
\(871\) −2.80544e18 −0.217712
\(872\) −1.91391e18 −0.147423
\(873\) 7.55457e18 0.577587
\(874\) −2.13348e18 −0.161906
\(875\) 0 0
\(876\) −6.91646e18 −0.517139
\(877\) 8.87791e17 0.0658891 0.0329445 0.999457i \(-0.489512\pi\)
0.0329445 + 0.999457i \(0.489512\pi\)
\(878\) 1.18681e18 0.0874312
\(879\) −1.51768e18 −0.110982
\(880\) −2.14832e19 −1.55941
\(881\) −3.78774e18 −0.272921 −0.136460 0.990646i \(-0.543573\pi\)
−0.136460 + 0.990646i \(0.543573\pi\)
\(882\) 0 0
\(883\) −2.75428e19 −1.95553 −0.977763 0.209712i \(-0.932747\pi\)
−0.977763 + 0.209712i \(0.932747\pi\)
\(884\) 7.61169e18 0.536465
\(885\) 6.58707e17 0.0460851
\(886\) 1.50124e18 0.104263
\(887\) 2.84165e19 1.95914 0.979572 0.201092i \(-0.0644489\pi\)
0.979572 + 0.201092i \(0.0644489\pi\)
\(888\) −7.81114e17 −0.0534602
\(889\) 0 0
\(890\) 8.10454e17 0.0546630
\(891\) −3.15838e18 −0.211475
\(892\) 1.18574e19 0.788164
\(893\) 6.32097e18 0.417109
\(894\) 7.46670e17 0.0489142
\(895\) 1.27894e18 0.0831762
\(896\) 0 0
\(897\) −4.87384e18 −0.312407
\(898\) 2.16114e18 0.137527
\(899\) 7.71397e18 0.487349
\(900\) 1.31758e18 0.0826420
\(901\) −2.39836e19 −1.49349
\(902\) 6.27856e17 0.0388166
\(903\) 0 0
\(904\) −3.31816e18 −0.202210
\(905\) 9.37860e18 0.567443
\(906\) 5.39239e17 0.0323928
\(907\) 7.51023e18 0.447926 0.223963 0.974598i \(-0.428101\pi\)
0.223963 + 0.974598i \(0.428101\pi\)
\(908\) −3.01711e19 −1.78662
\(909\) −9.04482e18 −0.531783
\(910\) 0 0
\(911\) −2.34028e19 −1.35643 −0.678216 0.734863i \(-0.737247\pi\)
−0.678216 + 0.734863i \(0.737247\pi\)
\(912\) 9.92337e18 0.571074
\(913\) 1.25699e19 0.718242
\(914\) 1.13232e18 0.0642418
\(915\) 2.95973e18 0.166730
\(916\) −1.19105e17 −0.00666206
\(917\) 0 0
\(918\) −5.46238e17 −0.0301234
\(919\) 2.20881e19 1.20950 0.604752 0.796414i \(-0.293272\pi\)
0.604752 + 0.796414i \(0.293272\pi\)
\(920\) 4.88975e18 0.265868
\(921\) 9.64848e18 0.520920
\(922\) 9.60600e17 0.0514982
\(923\) −1.05799e19 −0.563210
\(924\) 0 0
\(925\) 1.69377e18 0.0889063
\(926\) −2.57009e18 −0.133960
\(927\) −5.84077e18 −0.302309
\(928\) 2.95509e18 0.151883
\(929\) 1.05632e19 0.539132 0.269566 0.962982i \(-0.413120\pi\)
0.269566 + 0.962982i \(0.413120\pi\)
\(930\) 1.62778e18 0.0825002
\(931\) 0 0
\(932\) −2.92185e19 −1.46034
\(933\) 5.89981e18 0.292824
\(934\) −2.16817e18 −0.106866
\(935\) −3.96939e19 −1.94289
\(936\) −8.33676e17 −0.0405233
\(937\) 1.72833e19 0.834294 0.417147 0.908839i \(-0.363030\pi\)
0.417147 + 0.908839i \(0.363030\pi\)
\(938\) 0 0
\(939\) 1.08024e19 0.514273
\(940\) −7.17933e18 −0.339432
\(941\) −2.14038e19 −1.00498 −0.502490 0.864583i \(-0.667583\pi\)
−0.502490 + 0.864583i \(0.667583\pi\)
\(942\) −1.03245e18 −0.0481434
\(943\) 3.88591e18 0.179956
\(944\) 1.90199e18 0.0874760
\(945\) 0 0
\(946\) 9.54799e17 0.0433131
\(947\) −5.91308e17 −0.0266403 −0.0133202 0.999911i \(-0.504240\pi\)
−0.0133202 + 0.999911i \(0.504240\pi\)
\(948\) 6.29188e18 0.281531
\(949\) −9.48950e18 −0.421709
\(950\) 7.91322e17 0.0349261
\(951\) −1.77271e19 −0.777079
\(952\) 0 0
\(953\) −2.39396e19 −1.03517 −0.517587 0.855631i \(-0.673170\pi\)
−0.517587 + 0.855631i \(0.673170\pi\)
\(954\) 1.30177e18 0.0559073
\(955\) −2.60493e19 −1.11115
\(956\) 3.49203e19 1.47945
\(957\) 1.02100e19 0.429633
\(958\) −3.20055e18 −0.133767
\(959\) 0 0
\(960\) −1.08490e19 −0.447329
\(961\) 1.35201e19 0.553702
\(962\) −5.31100e17 −0.0216042
\(963\) −1.04377e19 −0.421729
\(964\) 2.43349e19 0.976628
\(965\) −2.83320e19 −1.12941
\(966\) 0 0
\(967\) 1.99045e18 0.0782853 0.0391427 0.999234i \(-0.487537\pi\)
0.0391427 + 0.999234i \(0.487537\pi\)
\(968\) 1.76434e19 0.689275
\(969\) 1.83351e19 0.711507
\(970\) −5.15332e18 −0.198642
\(971\) −4.12385e19 −1.57898 −0.789492 0.613761i \(-0.789656\pi\)
−0.789492 + 0.613761i \(0.789656\pi\)
\(972\) −1.65701e18 −0.0630224
\(973\) 0 0
\(974\) 3.16262e18 0.118690
\(975\) 1.80774e18 0.0673917
\(976\) 8.54608e18 0.316478
\(977\) −1.25374e19 −0.461202 −0.230601 0.973048i \(-0.574069\pi\)
−0.230601 + 0.973048i \(0.574069\pi\)
\(978\) −1.35340e18 −0.0494567
\(979\) 2.50006e19 0.907535
\(980\) 0 0
\(981\) −5.21928e18 −0.186966
\(982\) −4.94080e18 −0.175822
\(983\) 1.83966e19 0.650340 0.325170 0.945656i \(-0.394578\pi\)
0.325170 + 0.945656i \(0.394578\pi\)
\(984\) 6.64690e17 0.0233427
\(985\) −2.02925e19 −0.707946
\(986\) 1.76580e18 0.0611987
\(987\) 0 0
\(988\) 1.38676e19 0.474331
\(989\) 5.90941e18 0.200802
\(990\) 2.15448e18 0.0727299
\(991\) −3.43064e19 −1.15053 −0.575263 0.817969i \(-0.695100\pi\)
−0.575263 + 0.817969i \(0.695100\pi\)
\(992\) 1.45333e19 0.484214
\(993\) 8.47329e18 0.280467
\(994\) 0 0
\(995\) 1.31852e18 0.0430761
\(996\) 6.59465e18 0.214045
\(997\) 5.72458e19 1.84597 0.922985 0.384835i \(-0.125742\pi\)
0.922985 + 0.384835i \(0.125742\pi\)
\(998\) −4.79589e18 −0.153646
\(999\) −2.13011e18 −0.0677995
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.14.a.a.1.1 1
7.6 odd 2 3.14.a.a.1.1 1
21.20 even 2 9.14.a.a.1.1 1
28.27 even 2 48.14.a.c.1.1 1
35.13 even 4 75.14.b.b.49.2 2
35.27 even 4 75.14.b.b.49.1 2
35.34 odd 2 75.14.a.a.1.1 1
56.13 odd 2 192.14.a.j.1.1 1
56.27 even 2 192.14.a.e.1.1 1
84.83 odd 2 144.14.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3.14.a.a.1.1 1 7.6 odd 2
9.14.a.a.1.1 1 21.20 even 2
48.14.a.c.1.1 1 28.27 even 2
75.14.a.a.1.1 1 35.34 odd 2
75.14.b.b.49.1 2 35.27 even 4
75.14.b.b.49.2 2 35.13 even 4
144.14.a.k.1.1 1 84.83 odd 2
147.14.a.a.1.1 1 1.1 even 1 trivial
192.14.a.e.1.1 1 56.27 even 2
192.14.a.j.1.1 1 56.13 odd 2