Newspace parameters
Level: | \( N \) | \(=\) | \( 1458 = 2 \cdot 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1458.c (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(11.6421886147\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\zeta_{18})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - x^{3} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | no (minimal twist has level 54) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( \zeta_{18}^{3} \)
|
\(\beta_{2}\) | \(=\) |
\( \zeta_{18}^{5} + \zeta_{18} \)
|
\(\beta_{3}\) | \(=\) |
\( -\zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18} \)
|
\(\beta_{4}\) | \(=\) |
\( -\zeta_{18}^{5} + \zeta_{18}^{4} \)
|
\(\beta_{5}\) | \(=\) |
\( -\zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18} \)
|
\(\zeta_{18}\) | \(=\) |
\( ( \beta_{5} + \beta_{4} + 2\beta_{2} ) / 3 \)
|
\(\zeta_{18}^{2}\) | \(=\) |
\( ( -2\beta_{5} + \beta_{4} + 3\beta_{3} - \beta_{2} ) / 3 \)
|
\(\zeta_{18}^{3}\) | \(=\) |
\( \beta_1 \)
|
\(\zeta_{18}^{4}\) | \(=\) |
\( ( -\beta_{5} + 2\beta_{4} + \beta_{2} ) / 3 \)
|
\(\zeta_{18}^{5}\) | \(=\) |
\( ( -\beta_{5} - \beta_{4} + \beta_{2} ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1458\mathbb{Z}\right)^\times\).
\(n\) | \(731\) |
\(\chi(n)\) | \(-1 + \beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
487.1 |
|
0.500000 | − | 0.866025i | 0 | −0.500000 | − | 0.866025i | −1.26604 | − | 2.19285i | 0 | 1.17365 | − | 2.03282i | −1.00000 | 0 | −2.53209 | ||||||||||||||||||||||||||||
487.2 | 0.500000 | − | 0.866025i | 0 | −0.500000 | − | 0.866025i | −0.673648 | − | 1.16679i | 0 | 0.0603074 | − | 0.104455i | −1.00000 | 0 | −1.34730 | |||||||||||||||||||||||||||||
487.3 | 0.500000 | − | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0.439693 | + | 0.761570i | 0 | 1.76604 | − | 3.05888i | −1.00000 | 0 | 0.879385 | |||||||||||||||||||||||||||||
973.1 | 0.500000 | + | 0.866025i | 0 | −0.500000 | + | 0.866025i | −1.26604 | + | 2.19285i | 0 | 1.17365 | + | 2.03282i | −1.00000 | 0 | −2.53209 | |||||||||||||||||||||||||||||
973.2 | 0.500000 | + | 0.866025i | 0 | −0.500000 | + | 0.866025i | −0.673648 | + | 1.16679i | 0 | 0.0603074 | + | 0.104455i | −1.00000 | 0 | −1.34730 | |||||||||||||||||||||||||||||
973.3 | 0.500000 | + | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0.439693 | − | 0.761570i | 0 | 1.76604 | + | 3.05888i | −1.00000 | 0 | 0.879385 | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1458.2.c.d | 6 | |
3.b | odd | 2 | 1 | 1458.2.c.a | 6 | ||
9.c | even | 3 | 1 | 1458.2.a.a | 3 | ||
9.c | even | 3 | 1 | inner | 1458.2.c.d | 6 | |
9.d | odd | 6 | 1 | 1458.2.a.d | 3 | ||
9.d | odd | 6 | 1 | 1458.2.c.a | 6 | ||
27.e | even | 9 | 2 | 54.2.e.a | ✓ | 6 | |
27.e | even | 9 | 2 | 486.2.e.b | 6 | ||
27.e | even | 9 | 2 | 486.2.e.d | 6 | ||
27.f | odd | 18 | 2 | 162.2.e.a | 6 | ||
27.f | odd | 18 | 2 | 486.2.e.a | 6 | ||
27.f | odd | 18 | 2 | 486.2.e.c | 6 | ||
108.j | odd | 18 | 2 | 432.2.u.a | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
54.2.e.a | ✓ | 6 | 27.e | even | 9 | 2 | |
162.2.e.a | 6 | 27.f | odd | 18 | 2 | ||
432.2.u.a | 6 | 108.j | odd | 18 | 2 | ||
486.2.e.a | 6 | 27.f | odd | 18 | 2 | ||
486.2.e.b | 6 | 27.e | even | 9 | 2 | ||
486.2.e.c | 6 | 27.f | odd | 18 | 2 | ||
486.2.e.d | 6 | 27.e | even | 9 | 2 | ||
1458.2.a.a | 3 | 9.c | even | 3 | 1 | ||
1458.2.a.d | 3 | 9.d | odd | 6 | 1 | ||
1458.2.c.a | 6 | 3.b | odd | 2 | 1 | ||
1458.2.c.a | 6 | 9.d | odd | 6 | 1 | ||
1458.2.c.d | 6 | 1.a | even | 1 | 1 | trivial | |
1458.2.c.d | 6 | 9.c | even | 3 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{6} + 3T_{5}^{5} + 9T_{5}^{4} + 6T_{5}^{3} + 9T_{5}^{2} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(1458, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - T + 1)^{3} \)
$3$
\( T^{6} \)
$5$
\( T^{6} + 3 T^{5} + 9 T^{4} + 6 T^{3} + \cdots + 9 \)
$7$
\( T^{6} - 6 T^{5} + 27 T^{4} - 52 T^{3} + \cdots + 1 \)
$11$
\( T^{6} + 3 T^{5} + 27 T^{4} + \cdots + 3249 \)
$13$
\( T^{6} - 9 T^{5} + 66 T^{4} - 169 T^{3} + \cdots + 289 \)
$17$
\( (T^{3} - 6 T^{2} - 27 T + 159)^{2} \)
$19$
\( (T^{3} + 9 T^{2} - 12 T - 179)^{2} \)
$23$
\( T^{6} - 3 T^{5} + 18 T^{4} + 21 T^{3} + \cdots + 9 \)
$29$
\( T^{6} + 3 T^{5} + 27 T^{4} - 48 T^{3} + \cdots + 9 \)
$31$
\( T^{6} - 12 T^{5} + 123 T^{4} + \cdots + 5041 \)
$37$
\( (T^{3} + 15 T^{2} + 54 T - 17)^{2} \)
$41$
\( T^{6} + 3 T^{5} + 63 T^{4} + \cdots + 47961 \)
$43$
\( T^{6} - 12 T^{5} + 132 T^{4} + \cdots + 64 \)
$47$
\( T^{6} - 9 T^{5} + 63 T^{4} - 144 T^{3} + \cdots + 81 \)
$53$
\( (T^{3} + 6 T^{2} - 9 T + 3)^{2} \)
$59$
\( T^{6} - 3 T^{5} + 45 T^{4} + \cdots + 3249 \)
$61$
\( T^{6} + 6 T^{5} + 87 T^{4} + \cdots + 2809 \)
$67$
\( T^{6} - 3 T^{5} + 33 T^{4} + 74 T^{3} + \cdots + 1 \)
$71$
\( (T^{3} + 12 T^{2} - 45 T - 327)^{2} \)
$73$
\( (T^{3} + 3 T^{2} - 114 T - 269)^{2} \)
$79$
\( T^{6} + 147 T^{4} - 1366 T^{3} + \cdots + 466489 \)
$83$
\( T^{6} + 36 T^{4} - 144 T^{3} + \cdots + 5184 \)
$89$
\( (T^{3} - 15 T^{2} + 36 T + 159)^{2} \)
$97$
\( T^{6} - 18 T^{5} + 237 T^{4} + \cdots + 16129 \)
show more
show less