Properties

Label 1458.2.a.h.1.4
Level $1458$
Weight $2$
Character 1458.1
Self dual yes
Analytic conductor $11.642$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1458,2,Mod(1,1458)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1458.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1458, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1458.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,0,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.6421886147\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{36})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 6x^{4} + 9x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.96962\) of defining polynomial
Character \(\chi\) \(=\) 1458.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +0.852666 q^{5} +1.37581 q^{7} +1.00000 q^{8} +0.852666 q^{10} +0.216780 q^{11} +1.95778 q^{13} +1.37581 q^{14} +1.00000 q^{16} +7.71783 q^{17} -6.12087 q^{19} +0.852666 q^{20} +0.216780 q^{22} -2.41293 q^{23} -4.27296 q^{25} +1.95778 q^{26} +1.37581 q^{28} +3.94668 q^{29} +8.84930 q^{31} +1.00000 q^{32} +7.71783 q^{34} +1.17310 q^{35} +6.63961 q^{37} -6.12087 q^{38} +0.852666 q^{40} -3.73396 q^{41} -10.6495 q^{43} +0.216780 q^{44} -2.41293 q^{46} -1.52861 q^{47} -5.10716 q^{49} -4.27296 q^{50} +1.95778 q^{52} +10.2304 q^{53} +0.184841 q^{55} +1.37581 q^{56} +3.94668 q^{58} +4.62382 q^{59} +5.24719 q^{61} +8.84930 q^{62} +1.00000 q^{64} +1.66933 q^{65} +4.45299 q^{67} +7.71783 q^{68} +1.17310 q^{70} +15.8545 q^{71} -5.39860 q^{73} +6.63961 q^{74} -6.12087 q^{76} +0.298248 q^{77} -8.02895 q^{79} +0.852666 q^{80} -3.73396 q^{82} -12.0654 q^{83} +6.58073 q^{85} -10.6495 q^{86} +0.216780 q^{88} +3.61359 q^{89} +2.69352 q^{91} -2.41293 q^{92} -1.52861 q^{94} -5.21905 q^{95} -10.6495 q^{97} -5.10716 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 6 q^{4} + 6 q^{5} + 6 q^{8} + 6 q^{10} + 6 q^{11} + 6 q^{13} + 6 q^{16} + 12 q^{17} + 6 q^{19} + 6 q^{20} + 6 q^{22} + 12 q^{23} + 6 q^{25} + 6 q^{26} + 6 q^{29} - 6 q^{31} + 6 q^{32} + 12 q^{34}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.852666 0.381324 0.190662 0.981656i \(-0.438937\pi\)
0.190662 + 0.981656i \(0.438937\pi\)
\(6\) 0 0
\(7\) 1.37581 0.520006 0.260003 0.965608i \(-0.416277\pi\)
0.260003 + 0.965608i \(0.416277\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0.852666 0.269637
\(11\) 0.216780 0.0653618 0.0326809 0.999466i \(-0.489595\pi\)
0.0326809 + 0.999466i \(0.489595\pi\)
\(12\) 0 0
\(13\) 1.95778 0.542991 0.271495 0.962440i \(-0.412482\pi\)
0.271495 + 0.962440i \(0.412482\pi\)
\(14\) 1.37581 0.367699
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 7.71783 1.87185 0.935925 0.352200i \(-0.114566\pi\)
0.935925 + 0.352200i \(0.114566\pi\)
\(18\) 0 0
\(19\) −6.12087 −1.40422 −0.702111 0.712067i \(-0.747759\pi\)
−0.702111 + 0.712067i \(0.747759\pi\)
\(20\) 0.852666 0.190662
\(21\) 0 0
\(22\) 0.216780 0.0462178
\(23\) −2.41293 −0.503131 −0.251566 0.967840i \(-0.580945\pi\)
−0.251566 + 0.967840i \(0.580945\pi\)
\(24\) 0 0
\(25\) −4.27296 −0.854592
\(26\) 1.95778 0.383952
\(27\) 0 0
\(28\) 1.37581 0.260003
\(29\) 3.94668 0.732879 0.366440 0.930442i \(-0.380577\pi\)
0.366440 + 0.930442i \(0.380577\pi\)
\(30\) 0 0
\(31\) 8.84930 1.58938 0.794691 0.607015i \(-0.207633\pi\)
0.794691 + 0.607015i \(0.207633\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 7.71783 1.32360
\(35\) 1.17310 0.198290
\(36\) 0 0
\(37\) 6.63961 1.09155 0.545773 0.837933i \(-0.316236\pi\)
0.545773 + 0.837933i \(0.316236\pi\)
\(38\) −6.12087 −0.992935
\(39\) 0 0
\(40\) 0.852666 0.134818
\(41\) −3.73396 −0.583146 −0.291573 0.956549i \(-0.594179\pi\)
−0.291573 + 0.956549i \(0.594179\pi\)
\(42\) 0 0
\(43\) −10.6495 −1.62404 −0.812018 0.583632i \(-0.801631\pi\)
−0.812018 + 0.583632i \(0.801631\pi\)
\(44\) 0.216780 0.0326809
\(45\) 0 0
\(46\) −2.41293 −0.355768
\(47\) −1.52861 −0.222971 −0.111485 0.993766i \(-0.535561\pi\)
−0.111485 + 0.993766i \(0.535561\pi\)
\(48\) 0 0
\(49\) −5.10716 −0.729594
\(50\) −4.27296 −0.604288
\(51\) 0 0
\(52\) 1.95778 0.271495
\(53\) 10.2304 1.40525 0.702624 0.711561i \(-0.252012\pi\)
0.702624 + 0.711561i \(0.252012\pi\)
\(54\) 0 0
\(55\) 0.184841 0.0249240
\(56\) 1.37581 0.183850
\(57\) 0 0
\(58\) 3.94668 0.518224
\(59\) 4.62382 0.601971 0.300985 0.953629i \(-0.402684\pi\)
0.300985 + 0.953629i \(0.402684\pi\)
\(60\) 0 0
\(61\) 5.24719 0.671834 0.335917 0.941892i \(-0.390954\pi\)
0.335917 + 0.941892i \(0.390954\pi\)
\(62\) 8.84930 1.12386
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.66933 0.207055
\(66\) 0 0
\(67\) 4.45299 0.544020 0.272010 0.962294i \(-0.412312\pi\)
0.272010 + 0.962294i \(0.412312\pi\)
\(68\) 7.71783 0.935925
\(69\) 0 0
\(70\) 1.17310 0.140213
\(71\) 15.8545 1.88158 0.940791 0.338987i \(-0.110084\pi\)
0.940791 + 0.338987i \(0.110084\pi\)
\(72\) 0 0
\(73\) −5.39860 −0.631858 −0.315929 0.948783i \(-0.602316\pi\)
−0.315929 + 0.948783i \(0.602316\pi\)
\(74\) 6.63961 0.771840
\(75\) 0 0
\(76\) −6.12087 −0.702111
\(77\) 0.298248 0.0339885
\(78\) 0 0
\(79\) −8.02895 −0.903328 −0.451664 0.892188i \(-0.649169\pi\)
−0.451664 + 0.892188i \(0.649169\pi\)
\(80\) 0.852666 0.0953309
\(81\) 0 0
\(82\) −3.73396 −0.412346
\(83\) −12.0654 −1.32435 −0.662174 0.749350i \(-0.730366\pi\)
−0.662174 + 0.749350i \(0.730366\pi\)
\(84\) 0 0
\(85\) 6.58073 0.713780
\(86\) −10.6495 −1.14837
\(87\) 0 0
\(88\) 0.216780 0.0231089
\(89\) 3.61359 0.383040 0.191520 0.981489i \(-0.438658\pi\)
0.191520 + 0.981489i \(0.438658\pi\)
\(90\) 0 0
\(91\) 2.69352 0.282358
\(92\) −2.41293 −0.251566
\(93\) 0 0
\(94\) −1.52861 −0.157664
\(95\) −5.21905 −0.535463
\(96\) 0 0
\(97\) −10.6495 −1.08129 −0.540645 0.841251i \(-0.681820\pi\)
−0.540645 + 0.841251i \(0.681820\pi\)
\(98\) −5.10716 −0.515901
\(99\) 0 0
\(100\) −4.27296 −0.427296
\(101\) −13.3509 −1.32846 −0.664232 0.747527i \(-0.731241\pi\)
−0.664232 + 0.747527i \(0.731241\pi\)
\(102\) 0 0
\(103\) −14.3519 −1.41414 −0.707069 0.707145i \(-0.749983\pi\)
−0.707069 + 0.707145i \(0.749983\pi\)
\(104\) 1.95778 0.191976
\(105\) 0 0
\(106\) 10.2304 0.993661
\(107\) 3.04925 0.294782 0.147391 0.989078i \(-0.452912\pi\)
0.147391 + 0.989078i \(0.452912\pi\)
\(108\) 0 0
\(109\) 9.71567 0.930593 0.465296 0.885155i \(-0.345948\pi\)
0.465296 + 0.885155i \(0.345948\pi\)
\(110\) 0.184841 0.0176239
\(111\) 0 0
\(112\) 1.37581 0.130001
\(113\) 9.26439 0.871521 0.435760 0.900063i \(-0.356479\pi\)
0.435760 + 0.900063i \(0.356479\pi\)
\(114\) 0 0
\(115\) −2.05742 −0.191856
\(116\) 3.94668 0.366440
\(117\) 0 0
\(118\) 4.62382 0.425657
\(119\) 10.6182 0.973372
\(120\) 0 0
\(121\) −10.9530 −0.995728
\(122\) 5.24719 0.475059
\(123\) 0 0
\(124\) 8.84930 0.794691
\(125\) −7.90673 −0.707200
\(126\) 0 0
\(127\) −0.0235456 −0.00208933 −0.00104467 0.999999i \(-0.500333\pi\)
−0.00104467 + 0.999999i \(0.500333\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 1.66933 0.146410
\(131\) 18.5654 1.62206 0.811031 0.585003i \(-0.198907\pi\)
0.811031 + 0.585003i \(0.198907\pi\)
\(132\) 0 0
\(133\) −8.42112 −0.730204
\(134\) 4.45299 0.384680
\(135\) 0 0
\(136\) 7.71783 0.661799
\(137\) 7.47470 0.638607 0.319303 0.947653i \(-0.396551\pi\)
0.319303 + 0.947653i \(0.396551\pi\)
\(138\) 0 0
\(139\) −7.56904 −0.641998 −0.320999 0.947080i \(-0.604019\pi\)
−0.320999 + 0.947080i \(0.604019\pi\)
\(140\) 1.17310 0.0991452
\(141\) 0 0
\(142\) 15.8545 1.33048
\(143\) 0.424409 0.0354908
\(144\) 0 0
\(145\) 3.36519 0.279464
\(146\) −5.39860 −0.446791
\(147\) 0 0
\(148\) 6.63961 0.545773
\(149\) −12.6704 −1.03800 −0.518998 0.854775i \(-0.673695\pi\)
−0.518998 + 0.854775i \(0.673695\pi\)
\(150\) 0 0
\(151\) 3.98749 0.324498 0.162249 0.986750i \(-0.448125\pi\)
0.162249 + 0.986750i \(0.448125\pi\)
\(152\) −6.12087 −0.496468
\(153\) 0 0
\(154\) 0.298248 0.0240335
\(155\) 7.54549 0.606069
\(156\) 0 0
\(157\) 0.523140 0.0417511 0.0208756 0.999782i \(-0.493355\pi\)
0.0208756 + 0.999782i \(0.493355\pi\)
\(158\) −8.02895 −0.638749
\(159\) 0 0
\(160\) 0.852666 0.0674091
\(161\) −3.31973 −0.261631
\(162\) 0 0
\(163\) −18.0795 −1.41609 −0.708046 0.706166i \(-0.750423\pi\)
−0.708046 + 0.706166i \(0.750423\pi\)
\(164\) −3.73396 −0.291573
\(165\) 0 0
\(166\) −12.0654 −0.936455
\(167\) −19.7557 −1.52874 −0.764369 0.644779i \(-0.776950\pi\)
−0.764369 + 0.644779i \(0.776950\pi\)
\(168\) 0 0
\(169\) −9.16710 −0.705161
\(170\) 6.58073 0.504719
\(171\) 0 0
\(172\) −10.6495 −0.812018
\(173\) 18.5746 1.41220 0.706101 0.708112i \(-0.250453\pi\)
0.706101 + 0.708112i \(0.250453\pi\)
\(174\) 0 0
\(175\) −5.87876 −0.444393
\(176\) 0.216780 0.0163404
\(177\) 0 0
\(178\) 3.61359 0.270850
\(179\) 10.1892 0.761579 0.380789 0.924662i \(-0.375652\pi\)
0.380789 + 0.924662i \(0.375652\pi\)
\(180\) 0 0
\(181\) 3.19006 0.237115 0.118558 0.992947i \(-0.462173\pi\)
0.118558 + 0.992947i \(0.462173\pi\)
\(182\) 2.69352 0.199657
\(183\) 0 0
\(184\) −2.41293 −0.177884
\(185\) 5.66137 0.416232
\(186\) 0 0
\(187\) 1.67308 0.122347
\(188\) −1.52861 −0.111485
\(189\) 0 0
\(190\) −5.21905 −0.378630
\(191\) −10.6274 −0.768971 −0.384485 0.923131i \(-0.625621\pi\)
−0.384485 + 0.923131i \(0.625621\pi\)
\(192\) 0 0
\(193\) −10.5447 −0.759026 −0.379513 0.925186i \(-0.623909\pi\)
−0.379513 + 0.925186i \(0.623909\pi\)
\(194\) −10.6495 −0.764588
\(195\) 0 0
\(196\) −5.10716 −0.364797
\(197\) −14.2848 −1.01775 −0.508873 0.860841i \(-0.669938\pi\)
−0.508873 + 0.860841i \(0.669938\pi\)
\(198\) 0 0
\(199\) −14.0693 −0.997348 −0.498674 0.866790i \(-0.666180\pi\)
−0.498674 + 0.866790i \(0.666180\pi\)
\(200\) −4.27296 −0.302144
\(201\) 0 0
\(202\) −13.3509 −0.939366
\(203\) 5.42986 0.381101
\(204\) 0 0
\(205\) −3.18381 −0.222367
\(206\) −14.3519 −0.999946
\(207\) 0 0
\(208\) 1.95778 0.135748
\(209\) −1.32688 −0.0917825
\(210\) 0 0
\(211\) 21.1542 1.45632 0.728159 0.685408i \(-0.240376\pi\)
0.728159 + 0.685408i \(0.240376\pi\)
\(212\) 10.2304 0.702624
\(213\) 0 0
\(214\) 3.04925 0.208443
\(215\) −9.08048 −0.619283
\(216\) 0 0
\(217\) 12.1749 0.826487
\(218\) 9.71567 0.658028
\(219\) 0 0
\(220\) 0.184841 0.0124620
\(221\) 15.1098 1.01640
\(222\) 0 0
\(223\) −7.33082 −0.490908 −0.245454 0.969408i \(-0.578937\pi\)
−0.245454 + 0.969408i \(0.578937\pi\)
\(224\) 1.37581 0.0919249
\(225\) 0 0
\(226\) 9.26439 0.616258
\(227\) 6.28319 0.417030 0.208515 0.978019i \(-0.433137\pi\)
0.208515 + 0.978019i \(0.433137\pi\)
\(228\) 0 0
\(229\) −0.0268956 −0.00177731 −0.000888656 1.00000i \(-0.500283\pi\)
−0.000888656 1.00000i \(0.500283\pi\)
\(230\) −2.05742 −0.135663
\(231\) 0 0
\(232\) 3.94668 0.259112
\(233\) −23.8435 −1.56204 −0.781019 0.624508i \(-0.785300\pi\)
−0.781019 + 0.624508i \(0.785300\pi\)
\(234\) 0 0
\(235\) −1.30339 −0.0850240
\(236\) 4.62382 0.300985
\(237\) 0 0
\(238\) 10.6182 0.688278
\(239\) −15.3682 −0.994088 −0.497044 0.867725i \(-0.665581\pi\)
−0.497044 + 0.867725i \(0.665581\pi\)
\(240\) 0 0
\(241\) −0.964379 −0.0621211 −0.0310605 0.999518i \(-0.509888\pi\)
−0.0310605 + 0.999518i \(0.509888\pi\)
\(242\) −10.9530 −0.704086
\(243\) 0 0
\(244\) 5.24719 0.335917
\(245\) −4.35470 −0.278212
\(246\) 0 0
\(247\) −11.9833 −0.762480
\(248\) 8.84930 0.561931
\(249\) 0 0
\(250\) −7.90673 −0.500066
\(251\) −18.2157 −1.14977 −0.574884 0.818235i \(-0.694953\pi\)
−0.574884 + 0.818235i \(0.694953\pi\)
\(252\) 0 0
\(253\) −0.523077 −0.0328856
\(254\) −0.0235456 −0.00147738
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −16.3732 −1.02133 −0.510665 0.859780i \(-0.670601\pi\)
−0.510665 + 0.859780i \(0.670601\pi\)
\(258\) 0 0
\(259\) 9.13482 0.567610
\(260\) 1.66933 0.103528
\(261\) 0 0
\(262\) 18.5654 1.14697
\(263\) −13.4275 −0.827977 −0.413989 0.910282i \(-0.635865\pi\)
−0.413989 + 0.910282i \(0.635865\pi\)
\(264\) 0 0
\(265\) 8.72308 0.535854
\(266\) −8.42112 −0.516332
\(267\) 0 0
\(268\) 4.45299 0.272010
\(269\) 1.91176 0.116562 0.0582809 0.998300i \(-0.481438\pi\)
0.0582809 + 0.998300i \(0.481438\pi\)
\(270\) 0 0
\(271\) −4.71707 −0.286542 −0.143271 0.989684i \(-0.545762\pi\)
−0.143271 + 0.989684i \(0.545762\pi\)
\(272\) 7.71783 0.467962
\(273\) 0 0
\(274\) 7.47470 0.451563
\(275\) −0.926295 −0.0558577
\(276\) 0 0
\(277\) −21.8798 −1.31463 −0.657316 0.753615i \(-0.728308\pi\)
−0.657316 + 0.753615i \(0.728308\pi\)
\(278\) −7.56904 −0.453961
\(279\) 0 0
\(280\) 1.17310 0.0701063
\(281\) −23.7942 −1.41945 −0.709723 0.704481i \(-0.751180\pi\)
−0.709723 + 0.704481i \(0.751180\pi\)
\(282\) 0 0
\(283\) 6.28259 0.373461 0.186731 0.982411i \(-0.440211\pi\)
0.186731 + 0.982411i \(0.440211\pi\)
\(284\) 15.8545 0.940791
\(285\) 0 0
\(286\) 0.424409 0.0250958
\(287\) −5.13720 −0.303239
\(288\) 0 0
\(289\) 42.5650 2.50382
\(290\) 3.36519 0.197611
\(291\) 0 0
\(292\) −5.39860 −0.315929
\(293\) 2.73672 0.159881 0.0799404 0.996800i \(-0.474527\pi\)
0.0799404 + 0.996800i \(0.474527\pi\)
\(294\) 0 0
\(295\) 3.94258 0.229546
\(296\) 6.63961 0.385920
\(297\) 0 0
\(298\) −12.6704 −0.733974
\(299\) −4.72399 −0.273196
\(300\) 0 0
\(301\) −14.6517 −0.844508
\(302\) 3.98749 0.229454
\(303\) 0 0
\(304\) −6.12087 −0.351056
\(305\) 4.47410 0.256186
\(306\) 0 0
\(307\) −28.4426 −1.62331 −0.811654 0.584139i \(-0.801432\pi\)
−0.811654 + 0.584139i \(0.801432\pi\)
\(308\) 0.298248 0.0169942
\(309\) 0 0
\(310\) 7.54549 0.428555
\(311\) 29.0437 1.64692 0.823458 0.567377i \(-0.192042\pi\)
0.823458 + 0.567377i \(0.192042\pi\)
\(312\) 0 0
\(313\) 16.6720 0.942357 0.471178 0.882038i \(-0.343829\pi\)
0.471178 + 0.882038i \(0.343829\pi\)
\(314\) 0.523140 0.0295225
\(315\) 0 0
\(316\) −8.02895 −0.451664
\(317\) 13.1666 0.739511 0.369756 0.929129i \(-0.379441\pi\)
0.369756 + 0.929129i \(0.379441\pi\)
\(318\) 0 0
\(319\) 0.855562 0.0479023
\(320\) 0.852666 0.0476655
\(321\) 0 0
\(322\) −3.31973 −0.185001
\(323\) −47.2398 −2.62849
\(324\) 0 0
\(325\) −8.36552 −0.464036
\(326\) −18.0795 −1.00133
\(327\) 0 0
\(328\) −3.73396 −0.206173
\(329\) −2.10307 −0.115946
\(330\) 0 0
\(331\) −23.6804 −1.30159 −0.650795 0.759253i \(-0.725564\pi\)
−0.650795 + 0.759253i \(0.725564\pi\)
\(332\) −12.0654 −0.662174
\(333\) 0 0
\(334\) −19.7557 −1.08098
\(335\) 3.79691 0.207448
\(336\) 0 0
\(337\) 26.5282 1.44508 0.722542 0.691327i \(-0.242973\pi\)
0.722542 + 0.691327i \(0.242973\pi\)
\(338\) −9.16710 −0.498624
\(339\) 0 0
\(340\) 6.58073 0.356890
\(341\) 1.91836 0.103885
\(342\) 0 0
\(343\) −16.6571 −0.899399
\(344\) −10.6495 −0.574183
\(345\) 0 0
\(346\) 18.5746 0.998577
\(347\) −13.8715 −0.744660 −0.372330 0.928100i \(-0.621441\pi\)
−0.372330 + 0.928100i \(0.621441\pi\)
\(348\) 0 0
\(349\) 23.7682 1.27228 0.636142 0.771572i \(-0.280529\pi\)
0.636142 + 0.771572i \(0.280529\pi\)
\(350\) −5.87876 −0.314233
\(351\) 0 0
\(352\) 0.216780 0.0115544
\(353\) 31.9264 1.69927 0.849636 0.527369i \(-0.176821\pi\)
0.849636 + 0.527369i \(0.176821\pi\)
\(354\) 0 0
\(355\) 13.5186 0.717492
\(356\) 3.61359 0.191520
\(357\) 0 0
\(358\) 10.1892 0.538518
\(359\) −35.0803 −1.85147 −0.925734 0.378174i \(-0.876552\pi\)
−0.925734 + 0.378174i \(0.876552\pi\)
\(360\) 0 0
\(361\) 18.4650 0.971842
\(362\) 3.19006 0.167666
\(363\) 0 0
\(364\) 2.69352 0.141179
\(365\) −4.60320 −0.240943
\(366\) 0 0
\(367\) −14.5368 −0.758813 −0.379407 0.925230i \(-0.623872\pi\)
−0.379407 + 0.925230i \(0.623872\pi\)
\(368\) −2.41293 −0.125783
\(369\) 0 0
\(370\) 5.66137 0.294321
\(371\) 14.0750 0.730737
\(372\) 0 0
\(373\) 23.2530 1.20400 0.601998 0.798497i \(-0.294371\pi\)
0.601998 + 0.798497i \(0.294371\pi\)
\(374\) 1.67308 0.0865127
\(375\) 0 0
\(376\) −1.52861 −0.0788320
\(377\) 7.72672 0.397946
\(378\) 0 0
\(379\) −8.25841 −0.424206 −0.212103 0.977247i \(-0.568031\pi\)
−0.212103 + 0.977247i \(0.568031\pi\)
\(380\) −5.21905 −0.267732
\(381\) 0 0
\(382\) −10.6274 −0.543745
\(383\) 9.20617 0.470413 0.235207 0.971945i \(-0.424423\pi\)
0.235207 + 0.971945i \(0.424423\pi\)
\(384\) 0 0
\(385\) 0.254306 0.0129606
\(386\) −10.5447 −0.536713
\(387\) 0 0
\(388\) −10.6495 −0.540645
\(389\) −34.8315 −1.76603 −0.883014 0.469348i \(-0.844489\pi\)
−0.883014 + 0.469348i \(0.844489\pi\)
\(390\) 0 0
\(391\) −18.6226 −0.941786
\(392\) −5.10716 −0.257950
\(393\) 0 0
\(394\) −14.2848 −0.719655
\(395\) −6.84601 −0.344460
\(396\) 0 0
\(397\) 30.4492 1.52820 0.764100 0.645097i \(-0.223183\pi\)
0.764100 + 0.645097i \(0.223183\pi\)
\(398\) −14.0693 −0.705232
\(399\) 0 0
\(400\) −4.27296 −0.213648
\(401\) −6.84345 −0.341745 −0.170873 0.985293i \(-0.554659\pi\)
−0.170873 + 0.985293i \(0.554659\pi\)
\(402\) 0 0
\(403\) 17.3250 0.863019
\(404\) −13.3509 −0.664232
\(405\) 0 0
\(406\) 5.42986 0.269479
\(407\) 1.43934 0.0713454
\(408\) 0 0
\(409\) 16.2080 0.801435 0.400717 0.916202i \(-0.368761\pi\)
0.400717 + 0.916202i \(0.368761\pi\)
\(410\) −3.18381 −0.157237
\(411\) 0 0
\(412\) −14.3519 −0.707069
\(413\) 6.36148 0.313028
\(414\) 0 0
\(415\) −10.2877 −0.505005
\(416\) 1.95778 0.0959881
\(417\) 0 0
\(418\) −1.32688 −0.0649000
\(419\) −12.1019 −0.591215 −0.295608 0.955309i \(-0.595522\pi\)
−0.295608 + 0.955309i \(0.595522\pi\)
\(420\) 0 0
\(421\) 25.4767 1.24166 0.620830 0.783945i \(-0.286796\pi\)
0.620830 + 0.783945i \(0.286796\pi\)
\(422\) 21.1542 1.02977
\(423\) 0 0
\(424\) 10.2304 0.496830
\(425\) −32.9780 −1.59967
\(426\) 0 0
\(427\) 7.21912 0.349358
\(428\) 3.04925 0.147391
\(429\) 0 0
\(430\) −9.08048 −0.437899
\(431\) 10.5220 0.506828 0.253414 0.967358i \(-0.418446\pi\)
0.253414 + 0.967358i \(0.418446\pi\)
\(432\) 0 0
\(433\) 6.89705 0.331451 0.165726 0.986172i \(-0.447003\pi\)
0.165726 + 0.986172i \(0.447003\pi\)
\(434\) 12.1749 0.584415
\(435\) 0 0
\(436\) 9.71567 0.465296
\(437\) 14.7692 0.706508
\(438\) 0 0
\(439\) 13.8072 0.658981 0.329491 0.944159i \(-0.393123\pi\)
0.329491 + 0.944159i \(0.393123\pi\)
\(440\) 0.184841 0.00881196
\(441\) 0 0
\(442\) 15.1098 0.718701
\(443\) −3.20767 −0.152401 −0.0762005 0.997093i \(-0.524279\pi\)
−0.0762005 + 0.997093i \(0.524279\pi\)
\(444\) 0 0
\(445\) 3.08119 0.146062
\(446\) −7.33082 −0.347124
\(447\) 0 0
\(448\) 1.37581 0.0650007
\(449\) −26.3248 −1.24235 −0.621173 0.783673i \(-0.713344\pi\)
−0.621173 + 0.783673i \(0.713344\pi\)
\(450\) 0 0
\(451\) −0.809449 −0.0381154
\(452\) 9.26439 0.435760
\(453\) 0 0
\(454\) 6.28319 0.294885
\(455\) 2.29668 0.107670
\(456\) 0 0
\(457\) −3.98002 −0.186177 −0.0930887 0.995658i \(-0.529674\pi\)
−0.0930887 + 0.995658i \(0.529674\pi\)
\(458\) −0.0268956 −0.00125675
\(459\) 0 0
\(460\) −2.05742 −0.0959279
\(461\) 7.93927 0.369769 0.184884 0.982760i \(-0.440809\pi\)
0.184884 + 0.982760i \(0.440809\pi\)
\(462\) 0 0
\(463\) −27.6106 −1.28317 −0.641587 0.767050i \(-0.721724\pi\)
−0.641587 + 0.767050i \(0.721724\pi\)
\(464\) 3.94668 0.183220
\(465\) 0 0
\(466\) −23.8435 −1.10453
\(467\) 20.6638 0.956207 0.478103 0.878304i \(-0.341324\pi\)
0.478103 + 0.878304i \(0.341324\pi\)
\(468\) 0 0
\(469\) 6.12645 0.282893
\(470\) −1.30339 −0.0601210
\(471\) 0 0
\(472\) 4.62382 0.212829
\(473\) −2.30861 −0.106150
\(474\) 0 0
\(475\) 26.1542 1.20004
\(476\) 10.6182 0.486686
\(477\) 0 0
\(478\) −15.3682 −0.702926
\(479\) 30.4658 1.39202 0.696009 0.718033i \(-0.254957\pi\)
0.696009 + 0.718033i \(0.254957\pi\)
\(480\) 0 0
\(481\) 12.9989 0.592699
\(482\) −0.964379 −0.0439262
\(483\) 0 0
\(484\) −10.9530 −0.497864
\(485\) −9.08044 −0.412322
\(486\) 0 0
\(487\) −11.9590 −0.541912 −0.270956 0.962592i \(-0.587340\pi\)
−0.270956 + 0.962592i \(0.587340\pi\)
\(488\) 5.24719 0.237529
\(489\) 0 0
\(490\) −4.35470 −0.196725
\(491\) −40.9377 −1.84749 −0.923745 0.383007i \(-0.874889\pi\)
−0.923745 + 0.383007i \(0.874889\pi\)
\(492\) 0 0
\(493\) 30.4598 1.37184
\(494\) −11.9833 −0.539155
\(495\) 0 0
\(496\) 8.84930 0.397345
\(497\) 21.8127 0.978433
\(498\) 0 0
\(499\) 6.69932 0.299903 0.149951 0.988693i \(-0.452088\pi\)
0.149951 + 0.988693i \(0.452088\pi\)
\(500\) −7.90673 −0.353600
\(501\) 0 0
\(502\) −18.2157 −0.813009
\(503\) 33.2407 1.48213 0.741065 0.671433i \(-0.234321\pi\)
0.741065 + 0.671433i \(0.234321\pi\)
\(504\) 0 0
\(505\) −11.3839 −0.506575
\(506\) −0.523077 −0.0232536
\(507\) 0 0
\(508\) −0.0235456 −0.00104467
\(509\) −11.8539 −0.525414 −0.262707 0.964876i \(-0.584615\pi\)
−0.262707 + 0.964876i \(0.584615\pi\)
\(510\) 0 0
\(511\) −7.42742 −0.328570
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −16.3732 −0.722189
\(515\) −12.2374 −0.539244
\(516\) 0 0
\(517\) −0.331373 −0.0145738
\(518\) 9.13482 0.401361
\(519\) 0 0
\(520\) 1.66933 0.0732050
\(521\) 4.70898 0.206304 0.103152 0.994666i \(-0.467107\pi\)
0.103152 + 0.994666i \(0.467107\pi\)
\(522\) 0 0
\(523\) −16.4344 −0.718624 −0.359312 0.933217i \(-0.616989\pi\)
−0.359312 + 0.933217i \(0.616989\pi\)
\(524\) 18.5654 0.811031
\(525\) 0 0
\(526\) −13.4275 −0.585468
\(527\) 68.2974 2.97508
\(528\) 0 0
\(529\) −17.1778 −0.746859
\(530\) 8.72308 0.378906
\(531\) 0 0
\(532\) −8.42112 −0.365102
\(533\) −7.31026 −0.316643
\(534\) 0 0
\(535\) 2.59999 0.112407
\(536\) 4.45299 0.192340
\(537\) 0 0
\(538\) 1.91176 0.0824216
\(539\) −1.10713 −0.0476876
\(540\) 0 0
\(541\) 26.0900 1.12170 0.560849 0.827918i \(-0.310475\pi\)
0.560849 + 0.827918i \(0.310475\pi\)
\(542\) −4.71707 −0.202616
\(543\) 0 0
\(544\) 7.71783 0.330899
\(545\) 8.28422 0.354857
\(546\) 0 0
\(547\) 28.3476 1.21205 0.606027 0.795444i \(-0.292762\pi\)
0.606027 + 0.795444i \(0.292762\pi\)
\(548\) 7.47470 0.319303
\(549\) 0 0
\(550\) −0.926295 −0.0394973
\(551\) −24.1571 −1.02913
\(552\) 0 0
\(553\) −11.0463 −0.469736
\(554\) −21.8798 −0.929585
\(555\) 0 0
\(556\) −7.56904 −0.320999
\(557\) −29.2139 −1.23783 −0.618916 0.785457i \(-0.712428\pi\)
−0.618916 + 0.785457i \(0.712428\pi\)
\(558\) 0 0
\(559\) −20.8494 −0.881836
\(560\) 1.17310 0.0495726
\(561\) 0 0
\(562\) −23.7942 −1.00370
\(563\) −2.30342 −0.0970776 −0.0485388 0.998821i \(-0.515456\pi\)
−0.0485388 + 0.998821i \(0.515456\pi\)
\(564\) 0 0
\(565\) 7.89943 0.332332
\(566\) 6.28259 0.264077
\(567\) 0 0
\(568\) 15.8545 0.665240
\(569\) −4.26971 −0.178996 −0.0894978 0.995987i \(-0.528526\pi\)
−0.0894978 + 0.995987i \(0.528526\pi\)
\(570\) 0 0
\(571\) 19.1153 0.799950 0.399975 0.916526i \(-0.369019\pi\)
0.399975 + 0.916526i \(0.369019\pi\)
\(572\) 0.424409 0.0177454
\(573\) 0 0
\(574\) −5.13720 −0.214422
\(575\) 10.3104 0.429972
\(576\) 0 0
\(577\) 8.31584 0.346193 0.173096 0.984905i \(-0.444623\pi\)
0.173096 + 0.984905i \(0.444623\pi\)
\(578\) 42.5650 1.77047
\(579\) 0 0
\(580\) 3.36519 0.139732
\(581\) −16.5996 −0.688668
\(582\) 0 0
\(583\) 2.21774 0.0918495
\(584\) −5.39860 −0.223396
\(585\) 0 0
\(586\) 2.73672 0.113053
\(587\) 36.5516 1.50865 0.754324 0.656502i \(-0.227965\pi\)
0.754324 + 0.656502i \(0.227965\pi\)
\(588\) 0 0
\(589\) −54.1654 −2.23185
\(590\) 3.94258 0.162313
\(591\) 0 0
\(592\) 6.63961 0.272886
\(593\) 22.4408 0.921535 0.460768 0.887521i \(-0.347574\pi\)
0.460768 + 0.887521i \(0.347574\pi\)
\(594\) 0 0
\(595\) 9.05381 0.371170
\(596\) −12.6704 −0.518998
\(597\) 0 0
\(598\) −4.72399 −0.193178
\(599\) −19.3129 −0.789105 −0.394553 0.918873i \(-0.629100\pi\)
−0.394553 + 0.918873i \(0.629100\pi\)
\(600\) 0 0
\(601\) −8.68146 −0.354124 −0.177062 0.984200i \(-0.556659\pi\)
−0.177062 + 0.984200i \(0.556659\pi\)
\(602\) −14.6517 −0.597157
\(603\) 0 0
\(604\) 3.98749 0.162249
\(605\) −9.33925 −0.379695
\(606\) 0 0
\(607\) 8.27174 0.335740 0.167870 0.985809i \(-0.446311\pi\)
0.167870 + 0.985809i \(0.446311\pi\)
\(608\) −6.12087 −0.248234
\(609\) 0 0
\(610\) 4.47410 0.181151
\(611\) −2.99268 −0.121071
\(612\) 0 0
\(613\) −15.0384 −0.607394 −0.303697 0.952769i \(-0.598221\pi\)
−0.303697 + 0.952769i \(0.598221\pi\)
\(614\) −28.4426 −1.14785
\(615\) 0 0
\(616\) 0.298248 0.0120167
\(617\) 32.6891 1.31601 0.658006 0.753012i \(-0.271400\pi\)
0.658006 + 0.753012i \(0.271400\pi\)
\(618\) 0 0
\(619\) −29.2318 −1.17493 −0.587463 0.809251i \(-0.699873\pi\)
−0.587463 + 0.809251i \(0.699873\pi\)
\(620\) 7.54549 0.303034
\(621\) 0 0
\(622\) 29.0437 1.16455
\(623\) 4.97160 0.199183
\(624\) 0 0
\(625\) 14.6230 0.584920
\(626\) 16.6720 0.666347
\(627\) 0 0
\(628\) 0.523140 0.0208756
\(629\) 51.2434 2.04321
\(630\) 0 0
\(631\) 37.6857 1.50024 0.750121 0.661300i \(-0.229995\pi\)
0.750121 + 0.661300i \(0.229995\pi\)
\(632\) −8.02895 −0.319375
\(633\) 0 0
\(634\) 13.1666 0.522913
\(635\) −0.0200765 −0.000796713 0
\(636\) 0 0
\(637\) −9.99870 −0.396163
\(638\) 0.855562 0.0338720
\(639\) 0 0
\(640\) 0.852666 0.0337046
\(641\) 8.66494 0.342244 0.171122 0.985250i \(-0.445261\pi\)
0.171122 + 0.985250i \(0.445261\pi\)
\(642\) 0 0
\(643\) −10.0722 −0.397210 −0.198605 0.980080i \(-0.563641\pi\)
−0.198605 + 0.980080i \(0.563641\pi\)
\(644\) −3.31973 −0.130816
\(645\) 0 0
\(646\) −47.2398 −1.85863
\(647\) 25.0736 0.985745 0.492873 0.870101i \(-0.335947\pi\)
0.492873 + 0.870101i \(0.335947\pi\)
\(648\) 0 0
\(649\) 1.00235 0.0393459
\(650\) −8.36552 −0.328123
\(651\) 0 0
\(652\) −18.0795 −0.708046
\(653\) 12.3050 0.481530 0.240765 0.970583i \(-0.422602\pi\)
0.240765 + 0.970583i \(0.422602\pi\)
\(654\) 0 0
\(655\) 15.8300 0.618531
\(656\) −3.73396 −0.145786
\(657\) 0 0
\(658\) −2.10307 −0.0819862
\(659\) 29.0125 1.13017 0.565084 0.825033i \(-0.308844\pi\)
0.565084 + 0.825033i \(0.308844\pi\)
\(660\) 0 0
\(661\) −40.9322 −1.59208 −0.796039 0.605245i \(-0.793075\pi\)
−0.796039 + 0.605245i \(0.793075\pi\)
\(662\) −23.6804 −0.920364
\(663\) 0 0
\(664\) −12.0654 −0.468228
\(665\) −7.18040 −0.278444
\(666\) 0 0
\(667\) −9.52306 −0.368734
\(668\) −19.7557 −0.764369
\(669\) 0 0
\(670\) 3.79691 0.146688
\(671\) 1.13749 0.0439123
\(672\) 0 0
\(673\) 10.9601 0.422482 0.211241 0.977434i \(-0.432249\pi\)
0.211241 + 0.977434i \(0.432249\pi\)
\(674\) 26.5282 1.02183
\(675\) 0 0
\(676\) −9.16710 −0.352581
\(677\) 29.9509 1.15111 0.575554 0.817764i \(-0.304786\pi\)
0.575554 + 0.817764i \(0.304786\pi\)
\(678\) 0 0
\(679\) −14.6516 −0.562277
\(680\) 6.58073 0.252360
\(681\) 0 0
\(682\) 1.91836 0.0734576
\(683\) 41.8638 1.60187 0.800937 0.598749i \(-0.204335\pi\)
0.800937 + 0.598749i \(0.204335\pi\)
\(684\) 0 0
\(685\) 6.37342 0.243516
\(686\) −16.6571 −0.635971
\(687\) 0 0
\(688\) −10.6495 −0.406009
\(689\) 20.0288 0.763037
\(690\) 0 0
\(691\) 16.0023 0.608758 0.304379 0.952551i \(-0.401551\pi\)
0.304379 + 0.952551i \(0.401551\pi\)
\(692\) 18.5746 0.706101
\(693\) 0 0
\(694\) −13.8715 −0.526554
\(695\) −6.45386 −0.244809
\(696\) 0 0
\(697\) −28.8180 −1.09156
\(698\) 23.7682 0.899640
\(699\) 0 0
\(700\) −5.87876 −0.222196
\(701\) 31.8940 1.20462 0.602309 0.798263i \(-0.294247\pi\)
0.602309 + 0.798263i \(0.294247\pi\)
\(702\) 0 0
\(703\) −40.6402 −1.53277
\(704\) 0.216780 0.00817022
\(705\) 0 0
\(706\) 31.9264 1.20157
\(707\) −18.3682 −0.690809
\(708\) 0 0
\(709\) 28.5427 1.07194 0.535972 0.844236i \(-0.319945\pi\)
0.535972 + 0.844236i \(0.319945\pi\)
\(710\) 13.5186 0.507343
\(711\) 0 0
\(712\) 3.61359 0.135425
\(713\) −21.3528 −0.799668
\(714\) 0 0
\(715\) 0.361879 0.0135335
\(716\) 10.1892 0.380789
\(717\) 0 0
\(718\) −35.0803 −1.30919
\(719\) 26.5082 0.988590 0.494295 0.869294i \(-0.335426\pi\)
0.494295 + 0.869294i \(0.335426\pi\)
\(720\) 0 0
\(721\) −19.7455 −0.735359
\(722\) 18.4650 0.687196
\(723\) 0 0
\(724\) 3.19006 0.118558
\(725\) −16.8640 −0.626313
\(726\) 0 0
\(727\) 37.9038 1.40577 0.702887 0.711302i \(-0.251894\pi\)
0.702887 + 0.711302i \(0.251894\pi\)
\(728\) 2.69352 0.0998287
\(729\) 0 0
\(730\) −4.60320 −0.170372
\(731\) −82.1912 −3.03995
\(732\) 0 0
\(733\) 18.3195 0.676647 0.338324 0.941030i \(-0.390140\pi\)
0.338324 + 0.941030i \(0.390140\pi\)
\(734\) −14.5368 −0.536562
\(735\) 0 0
\(736\) −2.41293 −0.0889419
\(737\) 0.965322 0.0355581
\(738\) 0 0
\(739\) −6.16227 −0.226683 −0.113341 0.993556i \(-0.536155\pi\)
−0.113341 + 0.993556i \(0.536155\pi\)
\(740\) 5.66137 0.208116
\(741\) 0 0
\(742\) 14.0750 0.516709
\(743\) 0.542730 0.0199108 0.00995542 0.999950i \(-0.496831\pi\)
0.00995542 + 0.999950i \(0.496831\pi\)
\(744\) 0 0
\(745\) −10.8036 −0.395812
\(746\) 23.2530 0.851354
\(747\) 0 0
\(748\) 1.67308 0.0611737
\(749\) 4.19518 0.153288
\(750\) 0 0
\(751\) −39.9221 −1.45678 −0.728389 0.685164i \(-0.759730\pi\)
−0.728389 + 0.685164i \(0.759730\pi\)
\(752\) −1.52861 −0.0557427
\(753\) 0 0
\(754\) 7.72672 0.281391
\(755\) 3.40000 0.123739
\(756\) 0 0
\(757\) 24.6220 0.894903 0.447452 0.894308i \(-0.352332\pi\)
0.447452 + 0.894308i \(0.352332\pi\)
\(758\) −8.25841 −0.299959
\(759\) 0 0
\(760\) −5.21905 −0.189315
\(761\) −18.8199 −0.682221 −0.341111 0.940023i \(-0.610803\pi\)
−0.341111 + 0.940023i \(0.610803\pi\)
\(762\) 0 0
\(763\) 13.3669 0.483913
\(764\) −10.6274 −0.384485
\(765\) 0 0
\(766\) 9.20617 0.332632
\(767\) 9.05243 0.326864
\(768\) 0 0
\(769\) 10.2179 0.368468 0.184234 0.982882i \(-0.441020\pi\)
0.184234 + 0.982882i \(0.441020\pi\)
\(770\) 0.254306 0.00916454
\(771\) 0 0
\(772\) −10.5447 −0.379513
\(773\) −19.8681 −0.714605 −0.357302 0.933989i \(-0.616303\pi\)
−0.357302 + 0.933989i \(0.616303\pi\)
\(774\) 0 0
\(775\) −37.8127 −1.35827
\(776\) −10.6495 −0.382294
\(777\) 0 0
\(778\) −34.8315 −1.24877
\(779\) 22.8550 0.818867
\(780\) 0 0
\(781\) 3.43694 0.122984
\(782\) −18.6226 −0.665943
\(783\) 0 0
\(784\) −5.10716 −0.182399
\(785\) 0.446063 0.0159207
\(786\) 0 0
\(787\) 31.9487 1.13885 0.569424 0.822044i \(-0.307166\pi\)
0.569424 + 0.822044i \(0.307166\pi\)
\(788\) −14.2848 −0.508873
\(789\) 0 0
\(790\) −6.84601 −0.243570
\(791\) 12.7460 0.453196
\(792\) 0 0
\(793\) 10.2729 0.364800
\(794\) 30.4492 1.08060
\(795\) 0 0
\(796\) −14.0693 −0.498674
\(797\) −9.66226 −0.342255 −0.171127 0.985249i \(-0.554741\pi\)
−0.171127 + 0.985249i \(0.554741\pi\)
\(798\) 0 0
\(799\) −11.7976 −0.417368
\(800\) −4.27296 −0.151072
\(801\) 0 0
\(802\) −6.84345 −0.241651
\(803\) −1.17031 −0.0412994
\(804\) 0 0
\(805\) −2.83062 −0.0997661
\(806\) 17.3250 0.610247
\(807\) 0 0
\(808\) −13.3509 −0.469683
\(809\) 10.0580 0.353621 0.176811 0.984245i \(-0.443422\pi\)
0.176811 + 0.984245i \(0.443422\pi\)
\(810\) 0 0
\(811\) 5.87482 0.206293 0.103146 0.994666i \(-0.467109\pi\)
0.103146 + 0.994666i \(0.467109\pi\)
\(812\) 5.42986 0.190551
\(813\) 0 0
\(814\) 1.43934 0.0504488
\(815\) −15.4157 −0.539989
\(816\) 0 0
\(817\) 65.1843 2.28051
\(818\) 16.2080 0.566700
\(819\) 0 0
\(820\) −3.18381 −0.111184
\(821\) −24.8647 −0.867785 −0.433893 0.900965i \(-0.642860\pi\)
−0.433893 + 0.900965i \(0.642860\pi\)
\(822\) 0 0
\(823\) −7.16718 −0.249832 −0.124916 0.992167i \(-0.539866\pi\)
−0.124916 + 0.992167i \(0.539866\pi\)
\(824\) −14.3519 −0.499973
\(825\) 0 0
\(826\) 6.36148 0.221344
\(827\) 10.5317 0.366223 0.183112 0.983092i \(-0.441383\pi\)
0.183112 + 0.983092i \(0.441383\pi\)
\(828\) 0 0
\(829\) 20.5499 0.713728 0.356864 0.934156i \(-0.383846\pi\)
0.356864 + 0.934156i \(0.383846\pi\)
\(830\) −10.2877 −0.357092
\(831\) 0 0
\(832\) 1.95778 0.0678738
\(833\) −39.4162 −1.36569
\(834\) 0 0
\(835\) −16.8450 −0.582944
\(836\) −1.32688 −0.0458912
\(837\) 0 0
\(838\) −12.1019 −0.418052
\(839\) 42.6483 1.47238 0.736192 0.676773i \(-0.236622\pi\)
0.736192 + 0.676773i \(0.236622\pi\)
\(840\) 0 0
\(841\) −13.4238 −0.462888
\(842\) 25.4767 0.877986
\(843\) 0 0
\(844\) 21.1542 0.728159
\(845\) −7.81647 −0.268895
\(846\) 0 0
\(847\) −15.0692 −0.517784
\(848\) 10.2304 0.351312
\(849\) 0 0
\(850\) −32.9780 −1.13114
\(851\) −16.0209 −0.549191
\(852\) 0 0
\(853\) −21.3810 −0.732071 −0.366036 0.930601i \(-0.619285\pi\)
−0.366036 + 0.930601i \(0.619285\pi\)
\(854\) 7.21912 0.247033
\(855\) 0 0
\(856\) 3.04925 0.104221
\(857\) −2.73552 −0.0934434 −0.0467217 0.998908i \(-0.514877\pi\)
−0.0467217 + 0.998908i \(0.514877\pi\)
\(858\) 0 0
\(859\) 11.9332 0.407156 0.203578 0.979059i \(-0.434743\pi\)
0.203578 + 0.979059i \(0.434743\pi\)
\(860\) −9.08048 −0.309642
\(861\) 0 0
\(862\) 10.5220 0.358382
\(863\) 9.23050 0.314210 0.157105 0.987582i \(-0.449784\pi\)
0.157105 + 0.987582i \(0.449784\pi\)
\(864\) 0 0
\(865\) 15.8379 0.538506
\(866\) 6.89705 0.234371
\(867\) 0 0
\(868\) 12.1749 0.413244
\(869\) −1.74052 −0.0590431
\(870\) 0 0
\(871\) 8.71798 0.295397
\(872\) 9.71567 0.329014
\(873\) 0 0
\(874\) 14.7692 0.499577
\(875\) −10.8781 −0.367748
\(876\) 0 0
\(877\) 32.0380 1.08185 0.540924 0.841072i \(-0.318075\pi\)
0.540924 + 0.841072i \(0.318075\pi\)
\(878\) 13.8072 0.465970
\(879\) 0 0
\(880\) 0.184841 0.00623100
\(881\) 20.5135 0.691116 0.345558 0.938397i \(-0.387690\pi\)
0.345558 + 0.938397i \(0.387690\pi\)
\(882\) 0 0
\(883\) 2.02711 0.0682176 0.0341088 0.999418i \(-0.489141\pi\)
0.0341088 + 0.999418i \(0.489141\pi\)
\(884\) 15.1098 0.508198
\(885\) 0 0
\(886\) −3.20767 −0.107764
\(887\) 0.862252 0.0289516 0.0144758 0.999895i \(-0.495392\pi\)
0.0144758 + 0.999895i \(0.495392\pi\)
\(888\) 0 0
\(889\) −0.0323942 −0.00108647
\(890\) 3.08119 0.103282
\(891\) 0 0
\(892\) −7.33082 −0.245454
\(893\) 9.35642 0.313101
\(894\) 0 0
\(895\) 8.68801 0.290408
\(896\) 1.37581 0.0459624
\(897\) 0 0
\(898\) −26.3248 −0.878472
\(899\) 34.9253 1.16482
\(900\) 0 0
\(901\) 78.9562 2.63041
\(902\) −0.809449 −0.0269517
\(903\) 0 0
\(904\) 9.26439 0.308129
\(905\) 2.72005 0.0904176
\(906\) 0 0
\(907\) −21.7579 −0.722458 −0.361229 0.932477i \(-0.617643\pi\)
−0.361229 + 0.932477i \(0.617643\pi\)
\(908\) 6.28319 0.208515
\(909\) 0 0
\(910\) 2.29668 0.0761341
\(911\) −49.0649 −1.62559 −0.812797 0.582547i \(-0.802056\pi\)
−0.812797 + 0.582547i \(0.802056\pi\)
\(912\) 0 0
\(913\) −2.61554 −0.0865617
\(914\) −3.98002 −0.131647
\(915\) 0 0
\(916\) −0.0268956 −0.000888656 0
\(917\) 25.5423 0.843482
\(918\) 0 0
\(919\) 20.1308 0.664053 0.332026 0.943270i \(-0.392268\pi\)
0.332026 + 0.943270i \(0.392268\pi\)
\(920\) −2.05742 −0.0678313
\(921\) 0 0
\(922\) 7.93927 0.261466
\(923\) 31.0396 1.02168
\(924\) 0 0
\(925\) −28.3708 −0.932827
\(926\) −27.6106 −0.907341
\(927\) 0 0
\(928\) 3.94668 0.129556
\(929\) −7.60365 −0.249468 −0.124734 0.992190i \(-0.539808\pi\)
−0.124734 + 0.992190i \(0.539808\pi\)
\(930\) 0 0
\(931\) 31.2602 1.02451
\(932\) −23.8435 −0.781019
\(933\) 0 0
\(934\) 20.6638 0.676140
\(935\) 1.42657 0.0466540
\(936\) 0 0
\(937\) 22.0037 0.718830 0.359415 0.933178i \(-0.382976\pi\)
0.359415 + 0.933178i \(0.382976\pi\)
\(938\) 6.12645 0.200036
\(939\) 0 0
\(940\) −1.30339 −0.0425120
\(941\) 32.1377 1.04766 0.523830 0.851823i \(-0.324503\pi\)
0.523830 + 0.851823i \(0.324503\pi\)
\(942\) 0 0
\(943\) 9.00978 0.293399
\(944\) 4.62382 0.150493
\(945\) 0 0
\(946\) −2.30861 −0.0750593
\(947\) 2.73709 0.0889435 0.0444717 0.999011i \(-0.485840\pi\)
0.0444717 + 0.999011i \(0.485840\pi\)
\(948\) 0 0
\(949\) −10.5693 −0.343093
\(950\) 26.1542 0.848555
\(951\) 0 0
\(952\) 10.6182 0.344139
\(953\) 32.8770 1.06499 0.532495 0.846433i \(-0.321254\pi\)
0.532495 + 0.846433i \(0.321254\pi\)
\(954\) 0 0
\(955\) −9.06161 −0.293227
\(956\) −15.3682 −0.497044
\(957\) 0 0
\(958\) 30.4658 0.984306
\(959\) 10.2837 0.332079
\(960\) 0 0
\(961\) 47.3101 1.52613
\(962\) 12.9989 0.419102
\(963\) 0 0
\(964\) −0.964379 −0.0310605
\(965\) −8.99113 −0.289435
\(966\) 0 0
\(967\) −18.4425 −0.593071 −0.296535 0.955022i \(-0.595831\pi\)
−0.296535 + 0.955022i \(0.595831\pi\)
\(968\) −10.9530 −0.352043
\(969\) 0 0
\(970\) −9.08044 −0.291555
\(971\) −57.1595 −1.83434 −0.917168 0.398500i \(-0.869531\pi\)
−0.917168 + 0.398500i \(0.869531\pi\)
\(972\) 0 0
\(973\) −10.4135 −0.333842
\(974\) −11.9590 −0.383190
\(975\) 0 0
\(976\) 5.24719 0.167959
\(977\) −3.67102 −0.117446 −0.0587232 0.998274i \(-0.518703\pi\)
−0.0587232 + 0.998274i \(0.518703\pi\)
\(978\) 0 0
\(979\) 0.783356 0.0250362
\(980\) −4.35470 −0.139106
\(981\) 0 0
\(982\) −40.9377 −1.30637
\(983\) 6.68787 0.213310 0.106655 0.994296i \(-0.465986\pi\)
0.106655 + 0.994296i \(0.465986\pi\)
\(984\) 0 0
\(985\) −12.1801 −0.388091
\(986\) 30.4598 0.970037
\(987\) 0 0
\(988\) −11.9833 −0.381240
\(989\) 25.6966 0.817103
\(990\) 0 0
\(991\) −51.4790 −1.63528 −0.817642 0.575728i \(-0.804719\pi\)
−0.817642 + 0.575728i \(0.804719\pi\)
\(992\) 8.84930 0.280966
\(993\) 0 0
\(994\) 21.8127 0.691857
\(995\) −11.9964 −0.380313
\(996\) 0 0
\(997\) −44.2781 −1.40230 −0.701150 0.713014i \(-0.747330\pi\)
−0.701150 + 0.713014i \(0.747330\pi\)
\(998\) 6.69932 0.212063
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.2.a.h.1.4 yes 6
3.2 odd 2 1458.2.a.e.1.3 6
9.2 odd 6 1458.2.c.h.973.4 12
9.4 even 3 1458.2.c.e.487.3 12
9.5 odd 6 1458.2.c.h.487.4 12
9.7 even 3 1458.2.c.e.973.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1458.2.a.e.1.3 6 3.2 odd 2
1458.2.a.h.1.4 yes 6 1.1 even 1 trivial
1458.2.c.e.487.3 12 9.4 even 3
1458.2.c.e.973.3 12 9.7 even 3
1458.2.c.h.487.4 12 9.5 odd 6
1458.2.c.h.973.4 12 9.2 odd 6