Newspace parameters
Level: | \( N \) | \(=\) | \( 1458 = 2 \cdot 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1458.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(11.6421886147\) |
Analytic rank: | \(1\) |
Dimension: | \(3\) |
Coefficient field: | \(\Q(\zeta_{18})^+\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{3} - 3x - 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 54) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + 2 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.00000 | 0 | 1.00000 | −0.879385 | 0 | −3.53209 | −1.00000 | 0 | 0.879385 | |||||||||||||||||||||||||||
1.2 | −1.00000 | 0 | 1.00000 | 1.34730 | 0 | −0.120615 | −1.00000 | 0 | −1.34730 | ||||||||||||||||||||||||||||
1.3 | −1.00000 | 0 | 1.00000 | 2.53209 | 0 | −2.34730 | −1.00000 | 0 | −2.53209 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(3\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1458.2.a.a | 3 | |
3.b | odd | 2 | 1 | 1458.2.a.d | 3 | ||
9.c | even | 3 | 2 | 1458.2.c.d | 6 | ||
9.d | odd | 6 | 2 | 1458.2.c.a | 6 | ||
27.e | even | 9 | 2 | 54.2.e.a | ✓ | 6 | |
27.e | even | 9 | 2 | 486.2.e.b | 6 | ||
27.e | even | 9 | 2 | 486.2.e.d | 6 | ||
27.f | odd | 18 | 2 | 162.2.e.a | 6 | ||
27.f | odd | 18 | 2 | 486.2.e.a | 6 | ||
27.f | odd | 18 | 2 | 486.2.e.c | 6 | ||
108.j | odd | 18 | 2 | 432.2.u.a | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
54.2.e.a | ✓ | 6 | 27.e | even | 9 | 2 | |
162.2.e.a | 6 | 27.f | odd | 18 | 2 | ||
432.2.u.a | 6 | 108.j | odd | 18 | 2 | ||
486.2.e.a | 6 | 27.f | odd | 18 | 2 | ||
486.2.e.b | 6 | 27.e | even | 9 | 2 | ||
486.2.e.c | 6 | 27.f | odd | 18 | 2 | ||
486.2.e.d | 6 | 27.e | even | 9 | 2 | ||
1458.2.a.a | 3 | 1.a | even | 1 | 1 | trivial | |
1458.2.a.d | 3 | 3.b | odd | 2 | 1 | ||
1458.2.c.a | 6 | 9.d | odd | 6 | 2 | ||
1458.2.c.d | 6 | 9.c | even | 3 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{3} - 3T_{5}^{2} + 3 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1458))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T + 1)^{3} \)
$3$
\( T^{3} \)
$5$
\( T^{3} - 3T^{2} + 3 \)
$7$
\( T^{3} + 6 T^{2} + 9 T + 1 \)
$11$
\( T^{3} - 3 T^{2} - 18 T + 57 \)
$13$
\( T^{3} + 9 T^{2} + 15 T - 17 \)
$17$
\( T^{3} - 6 T^{2} - 27 T + 159 \)
$19$
\( T^{3} + 9 T^{2} - 12 T - 179 \)
$23$
\( T^{3} + 3 T^{2} - 9 T - 3 \)
$29$
\( T^{3} - 3 T^{2} - 18 T + 3 \)
$31$
\( T^{3} + 12 T^{2} + 21 T - 71 \)
$37$
\( T^{3} + 15 T^{2} + 54 T - 17 \)
$41$
\( T^{3} - 3 T^{2} - 54 T + 219 \)
$43$
\( T^{3} + 12 T^{2} + 12 T - 8 \)
$47$
\( T^{3} + 9 T^{2} + 18 T + 9 \)
$53$
\( T^{3} + 6 T^{2} - 9 T + 3 \)
$59$
\( T^{3} + 3 T^{2} - 36 T - 57 \)
$61$
\( T^{3} - 6 T^{2} - 51 T - 53 \)
$67$
\( T^{3} + 3 T^{2} - 24 T + 1 \)
$71$
\( T^{3} + 12 T^{2} - 45 T - 327 \)
$73$
\( T^{3} + 3 T^{2} - 114 T - 269 \)
$79$
\( T^{3} - 147T - 683 \)
$83$
\( T^{3} - 36T - 72 \)
$89$
\( T^{3} - 15 T^{2} + 36 T + 159 \)
$97$
\( T^{3} + 18 T^{2} + 87 T + 127 \)
show more
show less