Properties

Label 1456.2.s.q.1121.2
Level $1456$
Weight $2$
Character 1456.1121
Analytic conductor $11.626$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1456,2,Mod(113,1456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1456.113"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1456, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,1,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.59066497296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 7x^{6} + 38x^{4} - 16x^{3} + 15x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1121.2
Root \(-1.11000 + 1.92258i\) of defining polynomial
Character \(\chi\) \(=\) 1456.1121
Dual form 1456.2.s.q.113.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.274776 + 0.475925i) q^{3} -4.22001 q^{5} +(-0.500000 + 0.866025i) q^{7} +(1.34900 - 2.33653i) q^{9} +(-0.274776 - 0.475925i) q^{11} +(-2.95900 - 2.06017i) q^{13} +(-1.15956 - 2.00841i) q^{15} +(1.18944 - 2.06017i) q^{17} +(-1.80534 + 3.12694i) q^{19} -0.549551 q^{21} +(2.90945 + 5.03931i) q^{23} +12.8085 q^{25} +3.13134 q^{27} +(1.79945 + 3.11673i) q^{29} +5.14844 q^{31} +(0.151003 - 0.261545i) q^{33} +(2.11000 - 3.65463i) q^{35} +(0.164772 + 0.285393i) q^{37} +(0.167428 - 1.97435i) q^{39} +(3.14579 + 5.44866i) q^{41} +(1.61000 - 2.78861i) q^{43} +(-5.69278 + 9.86018i) q^{45} -8.20957 q^{47} +(-0.500000 - 0.866025i) q^{49} +1.30732 q^{51} +2.65866 q^{53} +(1.15956 + 2.00841i) q^{55} -1.98426 q^{57} +(-0.903765 + 1.56537i) q^{59} +(-0.304662 + 0.527691i) q^{61} +(1.34900 + 2.33653i) q^{63} +(12.4870 + 8.69395i) q^{65} +(5.18490 + 8.98052i) q^{67} +(-1.59889 + 2.76936i) q^{69} +(-5.59889 + 9.69756i) q^{71} +4.90621 q^{73} +(3.51945 + 6.09587i) q^{75} +0.549551 q^{77} +14.0171 q^{79} +(-3.18657 - 5.51931i) q^{81} +5.73159 q^{83} +(-5.01945 + 8.69395i) q^{85} +(-0.988887 + 1.71280i) q^{87} +(3.73378 + 6.46709i) q^{89} +(3.26366 - 1.53248i) q^{91} +(1.41467 + 2.45027i) q^{93} +(7.61856 - 13.1957i) q^{95} +(3.42035 - 5.92422i) q^{97} -1.48269 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{3} - 14 q^{5} - 4 q^{7} - 7 q^{9} - q^{11} + 4 q^{13} + 3 q^{15} + 4 q^{17} + q^{19} - 2 q^{21} - 2 q^{23} + 10 q^{25} + 52 q^{27} - q^{29} + 8 q^{31} + 19 q^{33} + 7 q^{35} + 10 q^{37} - 20 q^{39}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.274776 + 0.475925i 0.158642 + 0.274776i 0.934379 0.356280i \(-0.115955\pi\)
−0.775737 + 0.631056i \(0.782622\pi\)
\(4\) 0 0
\(5\) −4.22001 −1.88724 −0.943622 0.331024i \(-0.892606\pi\)
−0.943622 + 0.331024i \(0.892606\pi\)
\(6\) 0 0
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) 0 0
\(9\) 1.34900 2.33653i 0.449666 0.778844i
\(10\) 0 0
\(11\) −0.274776 0.475925i −0.0828480 0.143497i 0.821624 0.570030i \(-0.193068\pi\)
−0.904472 + 0.426533i \(0.859735\pi\)
\(12\) 0 0
\(13\) −2.95900 2.06017i −0.820679 0.571389i
\(14\) 0 0
\(15\) −1.15956 2.00841i −0.299396 0.518569i
\(16\) 0 0
\(17\) 1.18944 2.06017i 0.288482 0.499665i −0.684966 0.728575i \(-0.740183\pi\)
0.973448 + 0.228910i \(0.0735161\pi\)
\(18\) 0 0
\(19\) −1.80534 + 3.12694i −0.414174 + 0.717370i −0.995341 0.0964139i \(-0.969263\pi\)
0.581168 + 0.813784i \(0.302596\pi\)
\(20\) 0 0
\(21\) −0.549551 −0.119922
\(22\) 0 0
\(23\) 2.90945 + 5.03931i 0.606662 + 1.05077i 0.991786 + 0.127905i \(0.0408253\pi\)
−0.385124 + 0.922865i \(0.625841\pi\)
\(24\) 0 0
\(25\) 12.8085 2.56169
\(26\) 0 0
\(27\) 3.13134 0.602626
\(28\) 0 0
\(29\) 1.79945 + 3.11673i 0.334149 + 0.578762i 0.983321 0.181879i \(-0.0582179\pi\)
−0.649172 + 0.760641i \(0.724885\pi\)
\(30\) 0 0
\(31\) 5.14844 0.924688 0.462344 0.886701i \(-0.347009\pi\)
0.462344 + 0.886701i \(0.347009\pi\)
\(32\) 0 0
\(33\) 0.151003 0.261545i 0.0262863 0.0455292i
\(34\) 0 0
\(35\) 2.11000 3.65463i 0.356656 0.617746i
\(36\) 0 0
\(37\) 0.164772 + 0.285393i 0.0270883 + 0.0469183i 0.879252 0.476357i \(-0.158043\pi\)
−0.852163 + 0.523276i \(0.824710\pi\)
\(38\) 0 0
\(39\) 0.167428 1.97435i 0.0268099 0.316149i
\(40\) 0 0
\(41\) 3.14579 + 5.44866i 0.491289 + 0.850938i 0.999950 0.0100292i \(-0.00319244\pi\)
−0.508660 + 0.860967i \(0.669859\pi\)
\(42\) 0 0
\(43\) 1.61000 2.78861i 0.245523 0.425259i −0.716755 0.697325i \(-0.754374\pi\)
0.962279 + 0.272066i \(0.0877069\pi\)
\(44\) 0 0
\(45\) −5.69278 + 9.86018i −0.848629 + 1.46987i
\(46\) 0 0
\(47\) −8.20957 −1.19749 −0.598745 0.800940i \(-0.704334\pi\)
−0.598745 + 0.800940i \(0.704334\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 0 0
\(51\) 1.30732 0.183061
\(52\) 0 0
\(53\) 2.65866 0.365196 0.182598 0.983188i \(-0.441549\pi\)
0.182598 + 0.983188i \(0.441549\pi\)
\(54\) 0 0
\(55\) 1.15956 + 2.00841i 0.156354 + 0.270814i
\(56\) 0 0
\(57\) −1.98426 −0.262821
\(58\) 0 0
\(59\) −0.903765 + 1.56537i −0.117660 + 0.203793i −0.918840 0.394630i \(-0.870873\pi\)
0.801180 + 0.598424i \(0.204206\pi\)
\(60\) 0 0
\(61\) −0.304662 + 0.527691i −0.0390080 + 0.0675639i −0.884870 0.465838i \(-0.845753\pi\)
0.845862 + 0.533401i \(0.179086\pi\)
\(62\) 0 0
\(63\) 1.34900 + 2.33653i 0.169958 + 0.294375i
\(64\) 0 0
\(65\) 12.4870 + 8.69395i 1.54882 + 1.07835i
\(66\) 0 0
\(67\) 5.18490 + 8.98052i 0.633437 + 1.09714i 0.986844 + 0.161675i \(0.0516897\pi\)
−0.353407 + 0.935470i \(0.614977\pi\)
\(68\) 0 0
\(69\) −1.59889 + 2.76936i −0.192484 + 0.333392i
\(70\) 0 0
\(71\) −5.59889 + 9.69756i −0.664466 + 1.15089i 0.314964 + 0.949104i \(0.398008\pi\)
−0.979430 + 0.201785i \(0.935326\pi\)
\(72\) 0 0
\(73\) 4.90621 0.574228 0.287114 0.957896i \(-0.407304\pi\)
0.287114 + 0.957896i \(0.407304\pi\)
\(74\) 0 0
\(75\) 3.51945 + 6.09587i 0.406391 + 0.703891i
\(76\) 0 0
\(77\) 0.549551 0.0626272
\(78\) 0 0
\(79\) 14.0171 1.57705 0.788524 0.615004i \(-0.210846\pi\)
0.788524 + 0.615004i \(0.210846\pi\)
\(80\) 0 0
\(81\) −3.18657 5.51931i −0.354064 0.613257i
\(82\) 0 0
\(83\) 5.73159 0.629124 0.314562 0.949237i \(-0.398142\pi\)
0.314562 + 0.949237i \(0.398142\pi\)
\(84\) 0 0
\(85\) −5.01945 + 8.69395i −0.544436 + 0.942991i
\(86\) 0 0
\(87\) −0.988887 + 1.71280i −0.106020 + 0.183632i
\(88\) 0 0
\(89\) 3.73378 + 6.46709i 0.395779 + 0.685510i 0.993200 0.116418i \(-0.0371411\pi\)
−0.597421 + 0.801928i \(0.703808\pi\)
\(90\) 0 0
\(91\) 3.26366 1.53248i 0.342125 0.160648i
\(92\) 0 0
\(93\) 1.41467 + 2.45027i 0.146694 + 0.254082i
\(94\) 0 0
\(95\) 7.61856 13.1957i 0.781647 1.35385i
\(96\) 0 0
\(97\) 3.42035 5.92422i 0.347284 0.601514i −0.638482 0.769637i \(-0.720437\pi\)
0.985766 + 0.168123i \(0.0537706\pi\)
\(98\) 0 0
\(99\) −1.48269 −0.149015
\(100\) 0 0
\(101\) −2.87956 4.98755i −0.286527 0.496280i 0.686451 0.727176i \(-0.259168\pi\)
−0.972978 + 0.230896i \(0.925834\pi\)
\(102\) 0 0
\(103\) −0.571776 −0.0563388 −0.0281694 0.999603i \(-0.508968\pi\)
−0.0281694 + 0.999603i \(0.508968\pi\)
\(104\) 0 0
\(105\) 2.31911 0.226322
\(106\) 0 0
\(107\) 2.03578 + 3.52608i 0.196807 + 0.340879i 0.947491 0.319782i \(-0.103610\pi\)
−0.750685 + 0.660661i \(0.770276\pi\)
\(108\) 0 0
\(109\) 15.3087 1.46631 0.733153 0.680064i \(-0.238048\pi\)
0.733153 + 0.680064i \(0.238048\pi\)
\(110\) 0 0
\(111\) −0.0905505 + 0.156838i −0.00859467 + 0.0148864i
\(112\) 0 0
\(113\) −6.08846 + 10.5455i −0.572754 + 0.992039i 0.423528 + 0.905883i \(0.360792\pi\)
−0.996282 + 0.0861558i \(0.972542\pi\)
\(114\) 0 0
\(115\) −12.2779 21.2659i −1.14492 1.98306i
\(116\) 0 0
\(117\) −8.80534 + 4.13463i −0.814054 + 0.382247i
\(118\) 0 0
\(119\) 1.18944 + 2.06017i 0.109036 + 0.188856i
\(120\) 0 0
\(121\) 5.34900 9.26473i 0.486272 0.842249i
\(122\) 0 0
\(123\) −1.72877 + 2.99432i −0.155878 + 0.269989i
\(124\) 0 0
\(125\) −32.9518 −2.94730
\(126\) 0 0
\(127\) 0.980336 + 1.69799i 0.0869907 + 0.150672i 0.906238 0.422768i \(-0.138942\pi\)
−0.819247 + 0.573441i \(0.805608\pi\)
\(128\) 0 0
\(129\) 1.76956 0.155801
\(130\) 0 0
\(131\) 6.50021 0.567926 0.283963 0.958835i \(-0.408351\pi\)
0.283963 + 0.958835i \(0.408351\pi\)
\(132\) 0 0
\(133\) −1.80534 3.12694i −0.156543 0.271140i
\(134\) 0 0
\(135\) −13.2143 −1.13730
\(136\) 0 0
\(137\) 7.62878 13.2134i 0.651770 1.12890i −0.330923 0.943658i \(-0.607360\pi\)
0.982693 0.185242i \(-0.0593068\pi\)
\(138\) 0 0
\(139\) −8.74801 + 15.1520i −0.741997 + 1.28518i 0.209588 + 0.977790i \(0.432788\pi\)
−0.951585 + 0.307386i \(0.900546\pi\)
\(140\) 0 0
\(141\) −2.25579 3.90714i −0.189972 0.329041i
\(142\) 0 0
\(143\) −0.167428 + 1.97435i −0.0140010 + 0.165103i
\(144\) 0 0
\(145\) −7.59367 13.1526i −0.630620 1.09227i
\(146\) 0 0
\(147\) 0.274776 0.475925i 0.0226631 0.0392537i
\(148\) 0 0
\(149\) −2.27743 + 3.94463i −0.186574 + 0.323156i −0.944106 0.329642i \(-0.893072\pi\)
0.757531 + 0.652799i \(0.226405\pi\)
\(150\) 0 0
\(151\) 6.32912 0.515057 0.257528 0.966271i \(-0.417092\pi\)
0.257528 + 0.966271i \(0.417092\pi\)
\(152\) 0 0
\(153\) −3.20911 5.55833i −0.259441 0.449365i
\(154\) 0 0
\(155\) −21.7265 −1.74511
\(156\) 0 0
\(157\) 16.3100 1.30168 0.650841 0.759214i \(-0.274416\pi\)
0.650841 + 0.759214i \(0.274416\pi\)
\(158\) 0 0
\(159\) 0.730536 + 1.26533i 0.0579353 + 0.100347i
\(160\) 0 0
\(161\) −5.81890 −0.458593
\(162\) 0 0
\(163\) 11.7999 20.4381i 0.924241 1.60083i 0.131463 0.991321i \(-0.458033\pi\)
0.792778 0.609511i \(-0.208634\pi\)
\(164\) 0 0
\(165\) −0.637235 + 1.10372i −0.0496087 + 0.0859247i
\(166\) 0 0
\(167\) −8.91513 15.4415i −0.689874 1.19490i −0.971878 0.235483i \(-0.924333\pi\)
0.282005 0.959413i \(-0.409001\pi\)
\(168\) 0 0
\(169\) 4.51137 + 12.1921i 0.347028 + 0.937855i
\(170\) 0 0
\(171\) 4.87080 + 8.43647i 0.372479 + 0.645153i
\(172\) 0 0
\(173\) 3.78568 6.55699i 0.287820 0.498518i −0.685469 0.728101i \(-0.740403\pi\)
0.973289 + 0.229583i \(0.0737363\pi\)
\(174\) 0 0
\(175\) −6.40423 + 11.0925i −0.484115 + 0.838511i
\(176\) 0 0
\(177\) −0.993330 −0.0746632
\(178\) 0 0
\(179\) −11.4017 19.7483i −0.852201 1.47606i −0.879218 0.476420i \(-0.841934\pi\)
0.0270166 0.999635i \(-0.491399\pi\)
\(180\) 0 0
\(181\) 13.9294 1.03536 0.517681 0.855574i \(-0.326795\pi\)
0.517681 + 0.855574i \(0.326795\pi\)
\(182\) 0 0
\(183\) −0.334855 −0.0247532
\(184\) 0 0
\(185\) −0.695338 1.20436i −0.0511222 0.0885463i
\(186\) 0 0
\(187\) −1.30732 −0.0956006
\(188\) 0 0
\(189\) −1.56567 + 2.71182i −0.113886 + 0.197256i
\(190\) 0 0
\(191\) −6.33591 + 10.9741i −0.458450 + 0.794059i −0.998879 0.0473305i \(-0.984929\pi\)
0.540429 + 0.841390i \(0.318262\pi\)
\(192\) 0 0
\(193\) 2.07746 + 3.59827i 0.149539 + 0.259009i 0.931057 0.364873i \(-0.118888\pi\)
−0.781518 + 0.623882i \(0.785554\pi\)
\(194\) 0 0
\(195\) −0.706545 + 8.33177i −0.0505968 + 0.596650i
\(196\) 0 0
\(197\) 3.42510 + 5.93245i 0.244028 + 0.422669i 0.961858 0.273549i \(-0.0881977\pi\)
−0.717830 + 0.696219i \(0.754864\pi\)
\(198\) 0 0
\(199\) −0.406794 + 0.704587i −0.0288368 + 0.0499469i −0.880084 0.474819i \(-0.842514\pi\)
0.851247 + 0.524766i \(0.175847\pi\)
\(200\) 0 0
\(201\) −2.84937 + 4.93525i −0.200979 + 0.348106i
\(202\) 0 0
\(203\) −3.59889 −0.252593
\(204\) 0 0
\(205\) −13.2752 22.9934i −0.927183 1.60593i
\(206\) 0 0
\(207\) 15.6994 1.09118
\(208\) 0 0
\(209\) 1.98426 0.137254
\(210\) 0 0
\(211\) −6.98670 12.1013i −0.480984 0.833089i 0.518778 0.854909i \(-0.326387\pi\)
−0.999762 + 0.0218200i \(0.993054\pi\)
\(212\) 0 0
\(213\) −6.15375 −0.421648
\(214\) 0 0
\(215\) −6.79423 + 11.7679i −0.463363 + 0.802568i
\(216\) 0 0
\(217\) −2.57422 + 4.45868i −0.174750 + 0.302675i
\(218\) 0 0
\(219\) 1.34811 + 2.33499i 0.0910966 + 0.157784i
\(220\) 0 0
\(221\) −7.76387 + 3.64560i −0.522255 + 0.245229i
\(222\) 0 0
\(223\) −6.76700 11.7208i −0.453152 0.784882i 0.545428 0.838158i \(-0.316367\pi\)
−0.998580 + 0.0532758i \(0.983034\pi\)
\(224\) 0 0
\(225\) 17.2786 29.9274i 1.15191 1.99516i
\(226\) 0 0
\(227\) −2.68376 + 4.64840i −0.178127 + 0.308525i −0.941239 0.337741i \(-0.890337\pi\)
0.763112 + 0.646266i \(0.223671\pi\)
\(228\) 0 0
\(229\) 3.09910 0.204794 0.102397 0.994744i \(-0.467349\pi\)
0.102397 + 0.994744i \(0.467349\pi\)
\(230\) 0 0
\(231\) 0.151003 + 0.261545i 0.00993528 + 0.0172084i
\(232\) 0 0
\(233\) −20.3712 −1.33456 −0.667280 0.744807i \(-0.732541\pi\)
−0.667280 + 0.744807i \(0.732541\pi\)
\(234\) 0 0
\(235\) 34.6445 2.25996
\(236\) 0 0
\(237\) 3.85156 + 6.67109i 0.250186 + 0.433334i
\(238\) 0 0
\(239\) 1.29157 0.0835449 0.0417725 0.999127i \(-0.486700\pi\)
0.0417725 + 0.999127i \(0.486700\pi\)
\(240\) 0 0
\(241\) −1.06635 + 1.84697i −0.0686896 + 0.118974i −0.898325 0.439332i \(-0.855215\pi\)
0.829635 + 0.558306i \(0.188548\pi\)
\(242\) 0 0
\(243\) 6.44819 11.1686i 0.413652 0.716466i
\(244\) 0 0
\(245\) 2.11000 + 3.65463i 0.134803 + 0.233486i
\(246\) 0 0
\(247\) 11.7841 5.53331i 0.749801 0.352076i
\(248\) 0 0
\(249\) 1.57490 + 2.72781i 0.0998053 + 0.172868i
\(250\) 0 0
\(251\) −15.3856 + 26.6486i −0.971128 + 1.68204i −0.278964 + 0.960302i \(0.589991\pi\)
−0.692164 + 0.721741i \(0.743342\pi\)
\(252\) 0 0
\(253\) 1.59889 2.76936i 0.100521 0.174108i
\(254\) 0 0
\(255\) −5.51689 −0.345481
\(256\) 0 0
\(257\) 0.736805 + 1.27618i 0.0459607 + 0.0796062i 0.888091 0.459669i \(-0.152032\pi\)
−0.842130 + 0.539275i \(0.818698\pi\)
\(258\) 0 0
\(259\) −0.329543 −0.0204768
\(260\) 0 0
\(261\) 9.70979 0.601021
\(262\) 0 0
\(263\) 3.33847 + 5.78240i 0.205859 + 0.356558i 0.950406 0.311012i \(-0.100668\pi\)
−0.744547 + 0.667570i \(0.767335\pi\)
\(264\) 0 0
\(265\) −11.2196 −0.689214
\(266\) 0 0
\(267\) −2.05190 + 3.55400i −0.125574 + 0.217501i
\(268\) 0 0
\(269\) −3.78786 + 6.56077i −0.230950 + 0.400017i −0.958088 0.286474i \(-0.907517\pi\)
0.727138 + 0.686492i \(0.240850\pi\)
\(270\) 0 0
\(271\) 10.2840 + 17.8124i 0.624709 + 1.08203i 0.988597 + 0.150585i \(0.0481157\pi\)
−0.363888 + 0.931443i \(0.618551\pi\)
\(272\) 0 0
\(273\) 1.62612 + 1.13217i 0.0984174 + 0.0685221i
\(274\) 0 0
\(275\) −3.51945 6.09587i −0.212231 0.367595i
\(276\) 0 0
\(277\) −2.85271 + 4.94103i −0.171402 + 0.296878i −0.938910 0.344162i \(-0.888163\pi\)
0.767508 + 0.641039i \(0.221497\pi\)
\(278\) 0 0
\(279\) 6.94523 12.0295i 0.415800 0.720187i
\(280\) 0 0
\(281\) −6.37315 −0.380190 −0.190095 0.981766i \(-0.560880\pi\)
−0.190095 + 0.981766i \(0.560880\pi\)
\(282\) 0 0
\(283\) 13.5097 + 23.3995i 0.803068 + 1.39096i 0.917587 + 0.397534i \(0.130134\pi\)
−0.114519 + 0.993421i \(0.536533\pi\)
\(284\) 0 0
\(285\) 8.37357 0.496008
\(286\) 0 0
\(287\) −6.29157 −0.371380
\(288\) 0 0
\(289\) 5.67046 + 9.82152i 0.333556 + 0.577736i
\(290\) 0 0
\(291\) 3.75932 0.220375
\(292\) 0 0
\(293\) 2.43736 4.22163i 0.142392 0.246630i −0.786005 0.618220i \(-0.787854\pi\)
0.928397 + 0.371590i \(0.121187\pi\)
\(294\) 0 0
\(295\) 3.81389 6.60586i 0.222053 0.384608i
\(296\) 0 0
\(297\) −0.860415 1.49028i −0.0499264 0.0864750i
\(298\) 0 0
\(299\) 1.77280 20.9053i 0.102524 1.20899i
\(300\) 0 0
\(301\) 1.61000 + 2.78861i 0.0927991 + 0.160733i
\(302\) 0 0
\(303\) 1.58247 2.74091i 0.0909104 0.157461i
\(304\) 0 0
\(305\) 1.28568 2.22686i 0.0736177 0.127510i
\(306\) 0 0
\(307\) −16.1760 −0.923212 −0.461606 0.887085i \(-0.652727\pi\)
−0.461606 + 0.887085i \(0.652727\pi\)
\(308\) 0 0
\(309\) −0.157110 0.272123i −0.00893769 0.0154805i
\(310\) 0 0
\(311\) 1.30806 0.0741735 0.0370868 0.999312i \(-0.488192\pi\)
0.0370868 + 0.999312i \(0.488192\pi\)
\(312\) 0 0
\(313\) 13.1978 0.745983 0.372991 0.927835i \(-0.378332\pi\)
0.372991 + 0.927835i \(0.378332\pi\)
\(314\) 0 0
\(315\) −5.69278 9.86018i −0.320752 0.555558i
\(316\) 0 0
\(317\) −8.07552 −0.453566 −0.226783 0.973945i \(-0.572821\pi\)
−0.226783 + 0.973945i \(0.572821\pi\)
\(318\) 0 0
\(319\) 0.988887 1.71280i 0.0553671 0.0958986i
\(320\) 0 0
\(321\) −1.11877 + 1.93776i −0.0624435 + 0.108155i
\(322\) 0 0
\(323\) 4.29470 + 7.43863i 0.238963 + 0.413897i
\(324\) 0 0
\(325\) −37.9003 26.3877i −2.10233 1.46372i
\(326\) 0 0
\(327\) 4.20645 + 7.28579i 0.232617 + 0.402905i
\(328\) 0 0
\(329\) 4.10479 7.10970i 0.226304 0.391970i
\(330\) 0 0
\(331\) −7.47256 + 12.9429i −0.410729 + 0.711403i −0.994970 0.100177i \(-0.968059\pi\)
0.584241 + 0.811580i \(0.301392\pi\)
\(332\) 0 0
\(333\) 0.889106 0.0487227
\(334\) 0 0
\(335\) −21.8803 37.8979i −1.19545 2.07058i
\(336\) 0 0
\(337\) −17.1695 −0.935282 −0.467641 0.883918i \(-0.654896\pi\)
−0.467641 + 0.883918i \(0.654896\pi\)
\(338\) 0 0
\(339\) −6.69184 −0.363451
\(340\) 0 0
\(341\) −1.41467 2.45027i −0.0766085 0.132690i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 6.74733 11.6867i 0.363264 0.629192i
\(346\) 0 0
\(347\) −1.96922 + 3.41079i −0.105713 + 0.183101i −0.914029 0.405648i \(-0.867046\pi\)
0.808316 + 0.588749i \(0.200379\pi\)
\(348\) 0 0
\(349\) −8.58883 14.8763i −0.459750 0.796310i 0.539198 0.842179i \(-0.318728\pi\)
−0.998947 + 0.0458695i \(0.985394\pi\)
\(350\) 0 0
\(351\) −9.26563 6.45110i −0.494563 0.344334i
\(352\) 0 0
\(353\) 9.09821 + 15.7586i 0.484249 + 0.838744i 0.999836 0.0180932i \(-0.00575957\pi\)
−0.515587 + 0.856837i \(0.672426\pi\)
\(354\) 0 0
\(355\) 23.6274 40.9238i 1.25401 2.17201i
\(356\) 0 0
\(357\) −0.653659 + 1.13217i −0.0345953 + 0.0599208i
\(358\) 0 0
\(359\) −16.3126 −0.860948 −0.430474 0.902603i \(-0.641654\pi\)
−0.430474 + 0.902603i \(0.641654\pi\)
\(360\) 0 0
\(361\) 2.98148 + 5.16408i 0.156920 + 0.271794i
\(362\) 0 0
\(363\) 5.87909 0.308572
\(364\) 0 0
\(365\) −20.7042 −1.08371
\(366\) 0 0
\(367\) −18.0982 31.3469i −0.944716 1.63630i −0.756319 0.654203i \(-0.773004\pi\)
−0.188398 0.982093i \(-0.560329\pi\)
\(368\) 0 0
\(369\) 16.9746 0.883664
\(370\) 0 0
\(371\) −1.32933 + 2.30247i −0.0690155 + 0.119538i
\(372\) 0 0
\(373\) −4.89892 + 8.48518i −0.253657 + 0.439346i −0.964530 0.263974i \(-0.914967\pi\)
0.710873 + 0.703320i \(0.248300\pi\)
\(374\) 0 0
\(375\) −9.05435 15.6826i −0.467564 0.809845i
\(376\) 0 0
\(377\) 1.09645 12.9296i 0.0564699 0.665907i
\(378\) 0 0
\(379\) 6.53275 + 11.3151i 0.335565 + 0.581216i 0.983593 0.180401i \(-0.0577394\pi\)
−0.648028 + 0.761616i \(0.724406\pi\)
\(380\) 0 0
\(381\) −0.538745 + 0.933133i −0.0276007 + 0.0478058i
\(382\) 0 0
\(383\) 13.8965 24.0694i 0.710076 1.22989i −0.254753 0.967006i \(-0.581994\pi\)
0.964828 0.262881i \(-0.0846726\pi\)
\(384\) 0 0
\(385\) −2.31911 −0.118193
\(386\) 0 0
\(387\) −4.34378 7.52365i −0.220807 0.382449i
\(388\) 0 0
\(389\) 13.7047 0.694854 0.347427 0.937707i \(-0.387055\pi\)
0.347427 + 0.937707i \(0.387055\pi\)
\(390\) 0 0
\(391\) 13.8425 0.700044
\(392\) 0 0
\(393\) 1.78610 + 3.09361i 0.0900968 + 0.156052i
\(394\) 0 0
\(395\) −59.1523 −2.97627
\(396\) 0 0
\(397\) −3.95597 + 6.85194i −0.198545 + 0.343889i −0.948057 0.318101i \(-0.896955\pi\)
0.749512 + 0.661991i \(0.230288\pi\)
\(398\) 0 0
\(399\) 0.992128 1.71842i 0.0496685 0.0860284i
\(400\) 0 0
\(401\) 8.27212 + 14.3277i 0.413090 + 0.715493i 0.995226 0.0975987i \(-0.0311162\pi\)
−0.582136 + 0.813092i \(0.697783\pi\)
\(402\) 0 0
\(403\) −15.2342 10.6067i −0.758872 0.528357i
\(404\) 0 0
\(405\) 13.4474 + 23.2915i 0.668205 + 1.15737i
\(406\) 0 0
\(407\) 0.0905505 0.156838i 0.00448842 0.00777417i
\(408\) 0 0
\(409\) −12.8909 + 22.3278i −0.637416 + 1.10404i 0.348582 + 0.937278i \(0.386663\pi\)
−0.985998 + 0.166758i \(0.946670\pi\)
\(410\) 0 0
\(411\) 8.38481 0.413592
\(412\) 0 0
\(413\) −0.903765 1.56537i −0.0444713 0.0770266i
\(414\) 0 0
\(415\) −24.1873 −1.18731
\(416\) 0 0
\(417\) −9.61496 −0.470847
\(418\) 0 0
\(419\) 11.8436 + 20.5137i 0.578596 + 1.00216i 0.995641 + 0.0932720i \(0.0297326\pi\)
−0.417044 + 0.908886i \(0.636934\pi\)
\(420\) 0 0
\(421\) −20.8246 −1.01493 −0.507465 0.861672i \(-0.669417\pi\)
−0.507465 + 0.861672i \(0.669417\pi\)
\(422\) 0 0
\(423\) −11.0747 + 19.1819i −0.538470 + 0.932657i
\(424\) 0 0
\(425\) 15.2349 26.3877i 0.739002 1.27999i
\(426\) 0 0
\(427\) −0.304662 0.527691i −0.0147436 0.0255367i
\(428\) 0 0
\(429\) −0.985647 + 0.462820i −0.0475875 + 0.0223451i
\(430\) 0 0
\(431\) 9.97521 + 17.2776i 0.480489 + 0.832232i 0.999749 0.0223845i \(-0.00712581\pi\)
−0.519260 + 0.854616i \(0.673792\pi\)
\(432\) 0 0
\(433\) −0.00834083 + 0.0144467i −0.000400835 + 0.000694266i −0.866226 0.499653i \(-0.833461\pi\)
0.865825 + 0.500347i \(0.166794\pi\)
\(434\) 0 0
\(435\) 4.17311 7.22804i 0.200085 0.346558i
\(436\) 0 0
\(437\) −21.0102 −1.00505
\(438\) 0 0
\(439\) 6.74801 + 11.6879i 0.322065 + 0.557833i 0.980914 0.194442i \(-0.0622897\pi\)
−0.658849 + 0.752275i \(0.728956\pi\)
\(440\) 0 0
\(441\) −2.69799 −0.128476
\(442\) 0 0
\(443\) 15.0110 0.713196 0.356598 0.934258i \(-0.383937\pi\)
0.356598 + 0.934258i \(0.383937\pi\)
\(444\) 0 0
\(445\) −15.7566 27.2912i −0.746933 1.29373i
\(446\) 0 0
\(447\) −2.50313 −0.118394
\(448\) 0 0
\(449\) 11.8918 20.5972i 0.561210 0.972044i −0.436181 0.899859i \(-0.643669\pi\)
0.997391 0.0721852i \(-0.0229973\pi\)
\(450\) 0 0
\(451\) 1.72877 2.99432i 0.0814046 0.140997i
\(452\) 0 0
\(453\) 1.73909 + 3.01219i 0.0817095 + 0.141525i
\(454\) 0 0
\(455\) −13.7727 + 6.46709i −0.645673 + 0.303182i
\(456\) 0 0
\(457\) −9.06567 15.7022i −0.424074 0.734518i 0.572259 0.820073i \(-0.306067\pi\)
−0.996333 + 0.0855548i \(0.972734\pi\)
\(458\) 0 0
\(459\) 3.72455 6.45110i 0.173847 0.301112i
\(460\) 0 0
\(461\) 3.03980 5.26508i 0.141577 0.245219i −0.786513 0.617573i \(-0.788116\pi\)
0.928091 + 0.372354i \(0.121449\pi\)
\(462\) 0 0
\(463\) −5.19289 −0.241334 −0.120667 0.992693i \(-0.538503\pi\)
−0.120667 + 0.992693i \(0.538503\pi\)
\(464\) 0 0
\(465\) −5.96990 10.3402i −0.276848 0.479514i
\(466\) 0 0
\(467\) 8.69968 0.402573 0.201287 0.979532i \(-0.435488\pi\)
0.201287 + 0.979532i \(0.435488\pi\)
\(468\) 0 0
\(469\) −10.3698 −0.478833
\(470\) 0 0
\(471\) 4.48160 + 7.76236i 0.206501 + 0.357671i
\(472\) 0 0
\(473\) −1.76956 −0.0813644
\(474\) 0 0
\(475\) −23.1237 + 40.0513i −1.06099 + 1.83768i
\(476\) 0 0
\(477\) 3.58653 6.21205i 0.164216 0.284430i
\(478\) 0 0
\(479\) 12.1094 + 20.9741i 0.553294 + 0.958332i 0.998034 + 0.0626730i \(0.0199625\pi\)
−0.444741 + 0.895659i \(0.646704\pi\)
\(480\) 0 0
\(481\) 0.100399 1.18394i 0.00457782 0.0539828i
\(482\) 0 0
\(483\) −1.59889 2.76936i −0.0727521 0.126010i
\(484\) 0 0
\(485\) −14.4339 + 25.0003i −0.655410 + 1.13520i
\(486\) 0 0
\(487\) 0.886967 1.53627i 0.0401923 0.0696151i −0.845229 0.534404i \(-0.820536\pi\)
0.885422 + 0.464788i \(0.153870\pi\)
\(488\) 0 0
\(489\) 12.9693 0.586493
\(490\) 0 0
\(491\) −3.34483 5.79342i −0.150950 0.261453i 0.780627 0.624997i \(-0.214900\pi\)
−0.931577 + 0.363544i \(0.881567\pi\)
\(492\) 0 0
\(493\) 8.56134 0.385584
\(494\) 0 0
\(495\) 6.25694 0.281229
\(496\) 0 0
\(497\) −5.59889 9.69756i −0.251145 0.434995i
\(498\) 0 0
\(499\) −24.6387 −1.10298 −0.551491 0.834181i \(-0.685941\pi\)
−0.551491 + 0.834181i \(0.685941\pi\)
\(500\) 0 0
\(501\) 4.89932 8.48588i 0.218886 0.379121i
\(502\) 0 0
\(503\) 16.5726 28.7046i 0.738936 1.27987i −0.214039 0.976825i \(-0.568662\pi\)
0.952975 0.303049i \(-0.0980046\pi\)
\(504\) 0 0
\(505\) 12.1518 + 21.0475i 0.540747 + 0.936601i
\(506\) 0 0
\(507\) −4.56292 + 5.49717i −0.202646 + 0.244138i
\(508\) 0 0
\(509\) 13.8290 + 23.9526i 0.612961 + 1.06168i 0.990739 + 0.135783i \(0.0433549\pi\)
−0.377778 + 0.925896i \(0.623312\pi\)
\(510\) 0 0
\(511\) −2.45310 + 4.24890i −0.108519 + 0.187960i
\(512\) 0 0
\(513\) −5.65314 + 9.79152i −0.249592 + 0.432306i
\(514\) 0 0
\(515\) 2.41290 0.106325
\(516\) 0 0
\(517\) 2.25579 + 3.90714i 0.0992096 + 0.171836i
\(518\) 0 0
\(519\) 4.16085 0.182641
\(520\) 0 0
\(521\) 1.42217 0.0623062 0.0311531 0.999515i \(-0.490082\pi\)
0.0311531 + 0.999515i \(0.490082\pi\)
\(522\) 0 0
\(523\) −1.68089 2.91139i −0.0735002 0.127306i 0.826933 0.562301i \(-0.190084\pi\)
−0.900433 + 0.434995i \(0.856750\pi\)
\(524\) 0 0
\(525\) −7.03891 −0.307203
\(526\) 0 0
\(527\) 6.12377 10.6067i 0.266756 0.462034i
\(528\) 0 0
\(529\) −5.42979 + 9.40468i −0.236078 + 0.408899i
\(530\) 0 0
\(531\) 2.43835 + 4.22335i 0.105815 + 0.183278i
\(532\) 0 0
\(533\) 1.91681 22.6035i 0.0830260 0.979065i
\(534\) 0 0
\(535\) −8.59102 14.8801i −0.371422 0.643322i
\(536\) 0 0
\(537\) 6.26580 10.8527i 0.270389 0.468328i
\(538\) 0 0
\(539\) −0.274776 + 0.475925i −0.0118354 + 0.0204996i
\(540\) 0 0
\(541\) 7.76289 0.333753 0.166876 0.985978i \(-0.446632\pi\)
0.166876 + 0.985978i \(0.446632\pi\)
\(542\) 0 0
\(543\) 3.82745 + 6.62934i 0.164252 + 0.284492i
\(544\) 0 0
\(545\) −64.6027 −2.76728
\(546\) 0 0
\(547\) 6.19247 0.264771 0.132385 0.991198i \(-0.457736\pi\)
0.132385 + 0.991198i \(0.457736\pi\)
\(548\) 0 0
\(549\) 0.821977 + 1.42371i 0.0350811 + 0.0607623i
\(550\) 0 0
\(551\) −12.9945 −0.553582
\(552\) 0 0
\(553\) −7.00855 + 12.1392i −0.298034 + 0.516210i
\(554\) 0 0
\(555\) 0.382124 0.661858i 0.0162202 0.0280943i
\(556\) 0 0
\(557\) −14.7729 25.5874i −0.625948 1.08417i −0.988357 0.152154i \(-0.951379\pi\)
0.362409 0.932019i \(-0.381954\pi\)
\(558\) 0 0
\(559\) −10.5090 + 4.93461i −0.444484 + 0.208712i
\(560\) 0 0
\(561\) −0.359219 0.622186i −0.0151662 0.0262687i
\(562\) 0 0
\(563\) 3.23368 5.60090i 0.136283 0.236050i −0.789804 0.613360i \(-0.789818\pi\)
0.926087 + 0.377310i \(0.123151\pi\)
\(564\) 0 0
\(565\) 25.6933 44.5022i 1.08093 1.87222i
\(566\) 0 0
\(567\) 6.37315 0.267647
\(568\) 0 0
\(569\) −10.8478 18.7889i −0.454763 0.787673i 0.543911 0.839143i \(-0.316943\pi\)
−0.998675 + 0.0514697i \(0.983609\pi\)
\(570\) 0 0
\(571\) 16.6418 0.696436 0.348218 0.937414i \(-0.386787\pi\)
0.348218 + 0.937414i \(0.386787\pi\)
\(572\) 0 0
\(573\) −6.96381 −0.290917
\(574\) 0 0
\(575\) 37.2656 + 64.5459i 1.55408 + 2.69175i
\(576\) 0 0
\(577\) −2.64240 −0.110005 −0.0550024 0.998486i \(-0.517517\pi\)
−0.0550024 + 0.998486i \(0.517517\pi\)
\(578\) 0 0
\(579\) −1.14167 + 1.97743i −0.0474462 + 0.0821793i
\(580\) 0 0
\(581\) −2.86579 + 4.96370i −0.118893 + 0.205929i
\(582\) 0 0
\(583\) −0.730536 1.26533i −0.0302557 0.0524044i
\(584\) 0 0
\(585\) 37.1586 17.4482i 1.53632 0.721393i
\(586\) 0 0
\(587\) 3.69407 + 6.39832i 0.152471 + 0.264087i 0.932135 0.362110i \(-0.117944\pi\)
−0.779664 + 0.626198i \(0.784610\pi\)
\(588\) 0 0
\(589\) −9.29470 + 16.0989i −0.382981 + 0.663343i
\(590\) 0 0
\(591\) −1.88227 + 3.26018i −0.0774261 + 0.134106i
\(592\) 0 0
\(593\) 46.9030 1.92607 0.963037 0.269370i \(-0.0868153\pi\)
0.963037 + 0.269370i \(0.0868153\pi\)
\(594\) 0 0
\(595\) −5.01945 8.69395i −0.205778 0.356417i
\(596\) 0 0
\(597\) −0.447108 −0.0182989
\(598\) 0 0
\(599\) −1.62290 −0.0663098 −0.0331549 0.999450i \(-0.510555\pi\)
−0.0331549 + 0.999450i \(0.510555\pi\)
\(600\) 0 0
\(601\) 23.5174 + 40.7333i 0.959293 + 1.66154i 0.724223 + 0.689566i \(0.242199\pi\)
0.235070 + 0.971978i \(0.424468\pi\)
\(602\) 0 0
\(603\) 27.9777 1.13934
\(604\) 0 0
\(605\) −22.5728 + 39.0973i −0.917715 + 1.58953i
\(606\) 0 0
\(607\) −14.1935 + 24.5838i −0.576095 + 0.997825i 0.419827 + 0.907604i \(0.362091\pi\)
−0.995922 + 0.0902211i \(0.971243\pi\)
\(608\) 0 0
\(609\) −0.988887 1.71280i −0.0400717 0.0694063i
\(610\) 0 0
\(611\) 24.2921 + 16.9131i 0.982755 + 0.684233i
\(612\) 0 0
\(613\) 23.7782 + 41.1851i 0.960393 + 1.66345i 0.721514 + 0.692399i \(0.243446\pi\)
0.238878 + 0.971050i \(0.423220\pi\)
\(614\) 0 0
\(615\) 7.29543 12.6360i 0.294180 0.509535i
\(616\) 0 0
\(617\) 8.24338 14.2780i 0.331866 0.574809i −0.651012 0.759068i \(-0.725655\pi\)
0.982878 + 0.184259i \(0.0589885\pi\)
\(618\) 0 0
\(619\) 31.9412 1.28382 0.641912 0.766778i \(-0.278141\pi\)
0.641912 + 0.766778i \(0.278141\pi\)
\(620\) 0 0
\(621\) 9.11047 + 15.7798i 0.365591 + 0.633222i
\(622\) 0 0
\(623\) −7.46755 −0.299181
\(624\) 0 0
\(625\) 75.0145 3.00058
\(626\) 0 0
\(627\) 0.545225 + 0.944357i 0.0217742 + 0.0377140i
\(628\) 0 0
\(629\) 0.783945 0.0312579
\(630\) 0 0
\(631\) 6.59577 11.4242i 0.262573 0.454790i −0.704352 0.709851i \(-0.748762\pi\)
0.966925 + 0.255061i \(0.0820955\pi\)
\(632\) 0 0
\(633\) 3.83955 6.65029i 0.152608 0.264325i
\(634\) 0 0
\(635\) −4.13702 7.16554i −0.164173 0.284356i
\(636\) 0 0
\(637\) −0.304662 + 3.59266i −0.0120712 + 0.142346i
\(638\) 0 0
\(639\) 15.1058 + 26.1640i 0.597575 + 1.03503i
\(640\) 0 0
\(641\) 23.5814 40.8441i 0.931408 1.61325i 0.150490 0.988612i \(-0.451915\pi\)
0.780918 0.624634i \(-0.214752\pi\)
\(642\) 0 0
\(643\) −1.40679 + 2.43664i −0.0554785 + 0.0960916i −0.892431 0.451184i \(-0.851002\pi\)
0.836952 + 0.547276i \(0.184335\pi\)
\(644\) 0 0
\(645\) −7.46755 −0.294035
\(646\) 0 0
\(647\) 12.9891 + 22.4979i 0.510656 + 0.884482i 0.999924 + 0.0123485i \(0.00393074\pi\)
−0.489268 + 0.872134i \(0.662736\pi\)
\(648\) 0 0
\(649\) 0.993330 0.0389916
\(650\) 0 0
\(651\) −2.82933 −0.110890
\(652\) 0 0
\(653\) 13.4213 + 23.2464i 0.525216 + 0.909700i 0.999569 + 0.0293654i \(0.00934865\pi\)
−0.474353 + 0.880335i \(0.657318\pi\)
\(654\) 0 0
\(655\) −27.4309 −1.07182
\(656\) 0 0
\(657\) 6.61846 11.4635i 0.258211 0.447234i
\(658\) 0 0
\(659\) 7.78666 13.4869i 0.303325 0.525375i −0.673562 0.739131i \(-0.735236\pi\)
0.976887 + 0.213756i \(0.0685698\pi\)
\(660\) 0 0
\(661\) −16.6902 28.9083i −0.649174 1.12440i −0.983320 0.181881i \(-0.941781\pi\)
0.334146 0.942521i \(-0.391552\pi\)
\(662\) 0 0
\(663\) −3.86836 2.69330i −0.150234 0.104599i
\(664\) 0 0
\(665\) 7.61856 + 13.1957i 0.295435 + 0.511708i
\(666\) 0 0
\(667\) −10.4708 + 18.1359i −0.405431 + 0.702227i
\(668\) 0 0
\(669\) 3.71881 6.44117i 0.143778 0.249030i
\(670\) 0 0
\(671\) 0.334855 0.0129269
\(672\) 0 0
\(673\) −0.427076 0.739717i −0.0164626 0.0285140i 0.857677 0.514189i \(-0.171907\pi\)
−0.874139 + 0.485675i \(0.838574\pi\)
\(674\) 0 0
\(675\) 40.1076 1.54374
\(676\) 0 0
\(677\) −24.5449 −0.943339 −0.471669 0.881775i \(-0.656348\pi\)
−0.471669 + 0.881775i \(0.656348\pi\)
\(678\) 0 0
\(679\) 3.42035 + 5.92422i 0.131261 + 0.227351i
\(680\) 0 0
\(681\) −2.94972 −0.113034
\(682\) 0 0
\(683\) −21.5186 + 37.2714i −0.823387 + 1.42615i 0.0797583 + 0.996814i \(0.474585\pi\)
−0.903146 + 0.429334i \(0.858748\pi\)
\(684\) 0 0
\(685\) −32.1935 + 55.7608i −1.23005 + 2.13051i
\(686\) 0 0
\(687\) 0.851558 + 1.47494i 0.0324889 + 0.0562725i
\(688\) 0 0
\(689\) −7.86699 5.47731i −0.299708 0.208669i
\(690\) 0 0
\(691\) −12.9098 22.3604i −0.491110 0.850628i 0.508837 0.860863i \(-0.330075\pi\)
−0.999948 + 0.0102348i \(0.996742\pi\)
\(692\) 0 0
\(693\) 0.741343 1.28404i 0.0281613 0.0487768i
\(694\) 0 0
\(695\) 36.9167 63.9416i 1.40033 2.42544i
\(696\) 0 0
\(697\) 14.9669 0.566913
\(698\) 0 0
\(699\) −5.59750 9.69515i −0.211717 0.366704i
\(700\) 0 0
\(701\) 16.3178 0.616313 0.308156 0.951336i \(-0.400288\pi\)
0.308156 + 0.951336i \(0.400288\pi\)
\(702\) 0 0
\(703\) −1.18988 −0.0448770
\(704\) 0 0
\(705\) 9.51945 + 16.4882i 0.358523 + 0.620981i
\(706\) 0 0
\(707\) 5.75913 0.216594
\(708\) 0 0
\(709\) 11.1897 19.3811i 0.420238 0.727874i −0.575725 0.817644i \(-0.695280\pi\)
0.995963 + 0.0897702i \(0.0286133\pi\)
\(710\) 0 0
\(711\) 18.9090 32.7514i 0.709144 1.22827i
\(712\) 0 0
\(713\) 14.9791 + 25.9446i 0.560973 + 0.971634i
\(714\) 0 0
\(715\) 0.706545 8.33177i 0.0264233 0.311590i
\(716\) 0 0
\(717\) 0.354893 + 0.614692i 0.0132537 + 0.0229561i
\(718\) 0 0
\(719\) −11.3723 + 19.6973i −0.424113 + 0.734586i −0.996337 0.0855115i \(-0.972748\pi\)
0.572224 + 0.820098i \(0.306081\pi\)
\(720\) 0 0
\(721\) 0.285888 0.495173i 0.0106470 0.0184412i
\(722\) 0 0
\(723\) −1.17203 −0.0435881
\(724\) 0 0
\(725\) 23.0481 + 39.9205i 0.855986 + 1.48261i
\(726\) 0 0
\(727\) −18.7274 −0.694561 −0.347280 0.937761i \(-0.612895\pi\)
−0.347280 + 0.937761i \(0.612895\pi\)
\(728\) 0 0
\(729\) −12.0322 −0.445638
\(730\) 0 0
\(731\) −3.83001 6.63377i −0.141658 0.245359i
\(732\) 0 0
\(733\) −1.69268 −0.0625206 −0.0312603 0.999511i \(-0.509952\pi\)
−0.0312603 + 0.999511i \(0.509952\pi\)
\(734\) 0 0
\(735\) −1.15956 + 2.00841i −0.0427708 + 0.0740813i
\(736\) 0 0
\(737\) 2.84937 4.93525i 0.104958 0.181792i
\(738\) 0 0
\(739\) 23.4581 + 40.6305i 0.862919 + 1.49462i 0.869099 + 0.494638i \(0.164699\pi\)
−0.00618065 + 0.999981i \(0.501967\pi\)
\(740\) 0 0
\(741\) 5.87141 + 4.08791i 0.215692 + 0.150173i
\(742\) 0 0
\(743\) 6.44831 + 11.1688i 0.236566 + 0.409744i 0.959727 0.280936i \(-0.0906449\pi\)
−0.723161 + 0.690680i \(0.757312\pi\)
\(744\) 0 0
\(745\) 9.61078 16.6464i 0.352112 0.609875i
\(746\) 0 0
\(747\) 7.73189 13.3920i 0.282895 0.489989i
\(748\) 0 0
\(749\) −4.07157 −0.148772
\(750\) 0 0
\(751\) −22.8166 39.5196i −0.832591 1.44209i −0.895977 0.444101i \(-0.853523\pi\)
0.0633855 0.997989i \(-0.479810\pi\)
\(752\) 0 0
\(753\) −16.9103 −0.616245
\(754\) 0 0
\(755\) −26.7089 −0.972038
\(756\) 0 0
\(757\) 19.0782 + 33.0445i 0.693410 + 1.20102i 0.970714 + 0.240239i \(0.0772260\pi\)
−0.277303 + 0.960782i \(0.589441\pi\)
\(758\) 0 0
\(759\) 1.75735 0.0637876
\(760\) 0 0
\(761\) −21.3672 + 37.0092i −0.774562 + 1.34158i 0.160478 + 0.987039i \(0.448696\pi\)
−0.935040 + 0.354542i \(0.884637\pi\)
\(762\) 0 0
\(763\) −7.65434 + 13.2577i −0.277106 + 0.479961i
\(764\) 0 0
\(765\) 13.5425 + 23.4562i 0.489628 + 0.848061i
\(766\) 0 0
\(767\) 5.89917 2.77001i 0.213007 0.100019i
\(768\) 0 0
\(769\) −10.8088 18.7215i −0.389777 0.675113i 0.602643 0.798011i \(-0.294114\pi\)
−0.992419 + 0.122898i \(0.960781\pi\)
\(770\) 0 0
\(771\) −0.404912 + 0.701329i −0.0145826 + 0.0252577i
\(772\) 0 0
\(773\) −5.00056 + 8.66123i −0.179858 + 0.311523i −0.941832 0.336085i \(-0.890897\pi\)
0.761974 + 0.647608i \(0.224230\pi\)
\(774\) 0 0
\(775\) 65.9436 2.36877
\(776\) 0 0
\(777\) −0.0905505 0.156838i −0.00324848 0.00562653i
\(778\) 0 0
\(779\) −22.7169 −0.813917
\(780\) 0 0
\(781\) 6.15375 0.220199
\(782\) 0 0
\(783\) 5.63467 + 9.75954i 0.201367 + 0.348778i
\(784\) 0 0
\(785\) −68.8285 −2.45659
\(786\) 0 0
\(787\) 20.8939 36.1893i 0.744787 1.29001i −0.205507 0.978656i \(-0.565884\pi\)
0.950294 0.311353i \(-0.100782\pi\)
\(788\) 0 0
\(789\) −1.83466 + 3.17772i −0.0653156 + 0.113130i
\(790\) 0 0
\(791\) −6.08846 10.5455i −0.216481 0.374955i
\(792\) 0 0
\(793\) 1.98863 0.933780i 0.0706183 0.0331595i
\(794\) 0 0
\(795\) −3.08287 5.33968i −0.109338 0.189379i
\(796\) 0 0
\(797\) 11.3856 19.7204i 0.403297 0.698531i −0.590825 0.806800i \(-0.701197\pi\)
0.994122 + 0.108269i \(0.0345308\pi\)
\(798\) 0 0
\(799\) −9.76481 + 16.9131i −0.345454 + 0.598344i
\(800\) 0 0
\(801\) 20.1474 0.711874
\(802\) 0 0
\(803\) −1.34811 2.33499i −0.0475736 0.0824000i
\(804\) 0 0
\(805\) 24.5558 0.865478
\(806\) 0 0
\(807\) −4.16325 −0.146553
\(808\) 0 0
\(809\) 18.7851 + 32.5367i 0.660449 + 1.14393i 0.980498 + 0.196530i \(0.0629672\pi\)
−0.320049 + 0.947401i \(0.603699\pi\)
\(810\) 0 0
\(811\) −11.5936 −0.407106 −0.203553 0.979064i \(-0.565249\pi\)
−0.203553 + 0.979064i \(0.565249\pi\)
\(812\) 0 0
\(813\) −5.65159 + 9.78884i −0.198210 + 0.343309i
\(814\) 0 0
\(815\) −49.7957 + 86.2487i −1.74427 + 3.02116i
\(816\) 0 0
\(817\) 5.81321 + 10.0688i 0.203379 + 0.352262i
\(818\) 0 0
\(819\) 0.821977 9.69296i 0.0287222 0.338700i
\(820\) 0 0
\(821\) −15.5121 26.8678i −0.541378 0.937693i −0.998825 0.0484569i \(-0.984570\pi\)
0.457448 0.889237i \(-0.348764\pi\)
\(822\) 0 0
\(823\) 14.5387 25.1818i 0.506789 0.877784i −0.493180 0.869927i \(-0.664166\pi\)
0.999969 0.00785682i \(-0.00250093\pi\)
\(824\) 0 0
\(825\) 1.93412 3.34999i 0.0673374 0.116632i
\(826\) 0 0
\(827\) −14.8920 −0.517846 −0.258923 0.965898i \(-0.583368\pi\)
−0.258923 + 0.965898i \(0.583368\pi\)
\(828\) 0 0
\(829\) 2.18594 + 3.78617i 0.0759210 + 0.131499i 0.901486 0.432807i \(-0.142477\pi\)
−0.825565 + 0.564306i \(0.809144\pi\)
\(830\) 0 0
\(831\) −3.13541 −0.108766
\(832\) 0 0
\(833\) −2.37888 −0.0824234
\(834\) 0 0
\(835\) 37.6219 + 65.1631i 1.30196 + 2.25506i
\(836\) 0 0
\(837\) 16.1215 0.557241
\(838\) 0 0
\(839\) 11.4109 19.7643i 0.393948 0.682338i −0.599018 0.800735i \(-0.704442\pi\)
0.992966 + 0.118397i \(0.0377756\pi\)
\(840\) 0 0
\(841\) 8.02399 13.8980i 0.276689 0.479240i
\(842\) 0 0
\(843\) −1.75119 3.03314i −0.0603140 0.104467i
\(844\) 0 0
\(845\) −19.0380 51.4508i −0.654928 1.76996i
\(846\) 0 0
\(847\) 5.34900 + 9.26473i 0.183794 + 0.318340i
\(848\) 0 0
\(849\) −7.42427 + 12.8592i −0.254800 + 0.441327i
\(850\) 0 0
\(851\) −0.958790 + 1.66067i −0.0328669 + 0.0569271i
\(852\) 0 0
\(853\) 23.3549 0.799656 0.399828 0.916590i \(-0.369070\pi\)
0.399828 + 0.916590i \(0.369070\pi\)
\(854\) 0 0
\(855\) −20.5548 35.6020i −0.702960 1.21756i
\(856\) 0 0
\(857\) −43.5306 −1.48698 −0.743488 0.668750i \(-0.766830\pi\)
−0.743488 + 0.668750i \(0.766830\pi\)
\(858\) 0 0
\(859\) −20.5113 −0.699838 −0.349919 0.936780i \(-0.613791\pi\)
−0.349919 + 0.936780i \(0.613791\pi\)
\(860\) 0 0
\(861\) −1.72877 2.99432i −0.0589163 0.102046i
\(862\) 0 0
\(863\) 50.6678 1.72475 0.862376 0.506268i \(-0.168975\pi\)
0.862376 + 0.506268i \(0.168975\pi\)
\(864\) 0 0
\(865\) −15.9756 + 27.6705i −0.543186 + 0.940826i
\(866\) 0 0
\(867\) −3.11621 + 5.39743i −0.105832 + 0.183306i
\(868\) 0 0
\(869\) −3.85156 6.67109i −0.130655 0.226301i
\(870\) 0 0
\(871\) 3.15929 37.2552i 0.107048 1.26234i
\(872\) 0 0
\(873\) −9.22809 15.9835i −0.312323 0.540960i
\(874\) 0 0
\(875\) 16.4759 28.5371i 0.556987 0.964730i
\(876\) 0 0
\(877\) 23.5180 40.7344i 0.794148 1.37550i −0.129231 0.991615i \(-0.541251\pi\)
0.923379 0.383890i \(-0.125416\pi\)
\(878\) 0 0
\(879\) 2.67891 0.0903573
\(880\) 0 0
\(881\) 8.05674 + 13.9547i 0.271439 + 0.470145i 0.969230 0.246155i \(-0.0791673\pi\)
−0.697792 + 0.716301i \(0.745834\pi\)
\(882\) 0 0
\(883\) −42.0733 −1.41588 −0.707940 0.706273i \(-0.750375\pi\)
−0.707940 + 0.706273i \(0.750375\pi\)
\(884\) 0 0
\(885\) 4.19186 0.140908
\(886\) 0 0
\(887\) −20.8814 36.1676i −0.701128 1.21439i −0.968071 0.250678i \(-0.919347\pi\)
0.266942 0.963713i \(-0.413987\pi\)
\(888\) 0 0
\(889\) −1.96067 −0.0657588
\(890\) 0 0
\(891\) −1.75119 + 3.03314i −0.0586669 + 0.101614i
\(892\) 0 0
\(893\) 14.8211 25.6709i 0.495969 0.859043i
\(894\) 0 0
\(895\) 48.1151 + 83.3379i 1.60831 + 2.78568i
\(896\) 0 0
\(897\) 10.4365 4.90055i 0.348464 0.163625i
\(898\) 0 0
\(899\) 9.26434 + 16.0463i 0.308983 + 0.535174i
\(900\) 0 0
\(901\) 3.16233 5.47731i 0.105352 0.182476i
\(902\) 0 0
\(903\) −0.884779 + 1.53248i −0.0294436 + 0.0509978i
\(904\) 0 0
\(905\) −58.7821 −1.95398
\(906\) 0 0
\(907\) −7.71125 13.3563i −0.256048 0.443488i 0.709132 0.705076i \(-0.249087\pi\)
−0.965180 + 0.261588i \(0.915754\pi\)
\(908\) 0 0
\(909\) −15.5381 −0.515366
\(910\) 0 0
\(911\) −37.5462 −1.24396 −0.621981 0.783033i \(-0.713672\pi\)
−0.621981 + 0.783033i \(0.713672\pi\)
\(912\) 0 0
\(913\) −1.57490 2.72781i −0.0521216 0.0902773i
\(914\) 0 0
\(915\) 1.41309 0.0467153
\(916\) 0 0
\(917\) −3.25011 + 5.62935i −0.107328 + 0.185897i
\(918\) 0 0
\(919\) −4.73732 + 8.20528i −0.156270 + 0.270667i −0.933521 0.358524i \(-0.883280\pi\)
0.777251 + 0.629191i \(0.216614\pi\)
\(920\) 0 0
\(921\) −4.44476 7.69856i −0.146460 0.253676i
\(922\) 0 0
\(923\) 36.5458 17.1604i 1.20292 0.564842i
\(924\) 0 0
\(925\) 2.11047 + 3.65545i 0.0693919 + 0.120190i
\(926\) 0 0
\(927\) −0.771324 + 1.33597i −0.0253336 + 0.0438791i
\(928\) 0 0
\(929\) −17.9220 + 31.0418i −0.588001 + 1.01845i 0.406493 + 0.913654i \(0.366751\pi\)
−0.994494 + 0.104793i \(0.966582\pi\)
\(930\) 0 0
\(931\) 3.61068 0.118335
\(932\) 0 0
\(933\) 0.359424 + 0.622541i 0.0117670 + 0.0203811i
\(934\) 0 0
\(935\) 5.51689 0.180422
\(936\) 0 0
\(937\) −31.3709 −1.02484 −0.512422 0.858734i \(-0.671252\pi\)
−0.512422 + 0.858734i \(0.671252\pi\)
\(938\) 0 0
\(939\) 3.62643 + 6.28116i 0.118344 + 0.204978i
\(940\) 0 0
\(941\) 44.7844 1.45993 0.729964 0.683486i \(-0.239537\pi\)
0.729964 + 0.683486i \(0.239537\pi\)
\(942\) 0 0
\(943\) −18.3050 + 31.7052i −0.596093 + 1.03246i
\(944\) 0 0
\(945\) 6.60714 11.4439i 0.214930 0.372270i
\(946\) 0 0
\(947\) −17.5337 30.3692i −0.569768 0.986868i −0.996588 0.0825312i \(-0.973700\pi\)
0.426820 0.904337i \(-0.359634\pi\)
\(948\) 0 0
\(949\) −14.5175 10.1076i −0.471257 0.328108i
\(950\) 0 0
\(951\) −2.21896 3.84334i −0.0719546 0.124629i
\(952\) 0 0
\(953\) −29.4852 + 51.0699i −0.955120 + 1.65432i −0.221027 + 0.975268i \(0.570941\pi\)
−0.734093 + 0.679048i \(0.762393\pi\)
\(954\) 0 0
\(955\) 26.7376 46.3108i 0.865208 1.49858i
\(956\) 0 0
\(957\) 1.08689 0.0351341
\(958\) 0 0
\(959\) 7.62878 + 13.2134i 0.246346 + 0.426684i
\(960\) 0 0
\(961\) −4.49354 −0.144953
\(962\) 0 0
\(963\) 10.9851 0.353989
\(964\) 0 0
\(965\) −8.76690 15.1847i −0.282217 0.488813i
\(966\) 0 0
\(967\) −30.3671 −0.976540 −0.488270 0.872693i \(-0.662372\pi\)
−0.488270 + 0.872693i \(0.662372\pi\)
\(968\) 0 0
\(969\) −2.36016 + 4.08791i −0.0758191 + 0.131323i
\(970\) 0 0
\(971\) −24.7588 + 42.8834i −0.794546 + 1.37619i 0.128581 + 0.991699i \(0.458958\pi\)
−0.923127 + 0.384495i \(0.874375\pi\)
\(972\) 0 0
\(973\) −8.74801 15.1520i −0.280448 0.485751i
\(974\) 0 0
\(975\) 2.14449 25.2884i 0.0686786 0.809876i
\(976\) 0 0
\(977\) 5.43356 + 9.41120i 0.173835 + 0.301091i 0.939757 0.341842i \(-0.111051\pi\)
−0.765923 + 0.642933i \(0.777717\pi\)
\(978\) 0 0
\(979\) 2.05190 3.55400i 0.0655790 0.113586i
\(980\) 0 0
\(981\) 20.6514 35.7692i 0.659347 1.14202i
\(982\) 0 0
\(983\) −2.34833 −0.0749001 −0.0374501 0.999299i \(-0.511924\pi\)
−0.0374501 + 0.999299i \(0.511924\pi\)
\(984\) 0 0
\(985\) −14.4539 25.0350i −0.460541 0.797680i
\(986\) 0 0
\(987\) 4.51158 0.143605
\(988\) 0 0
\(989\) 18.7369 0.595799
\(990\) 0 0
\(991\) 12.2408 + 21.2016i 0.388841 + 0.673492i 0.992294 0.123907i \(-0.0395424\pi\)
−0.603453 + 0.797398i \(0.706209\pi\)
\(992\) 0 0
\(993\) −8.21311 −0.260635
\(994\) 0 0
\(995\) 1.71667 2.97336i 0.0544222 0.0942620i
\(996\) 0 0
\(997\) 3.31171 5.73604i 0.104883 0.181662i −0.808808 0.588073i \(-0.799887\pi\)
0.913690 + 0.406411i \(0.133220\pi\)
\(998\) 0 0
\(999\) 0.515956 + 0.893662i 0.0163241 + 0.0282742i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1456.2.s.q.1121.2 8
4.3 odd 2 91.2.f.c.29.1 yes 8
12.11 even 2 819.2.o.h.757.4 8
13.9 even 3 inner 1456.2.s.q.113.2 8
28.3 even 6 637.2.h.i.471.4 8
28.11 odd 6 637.2.h.h.471.4 8
28.19 even 6 637.2.g.j.263.1 8
28.23 odd 6 637.2.g.k.263.1 8
28.27 even 2 637.2.f.i.393.1 8
52.3 odd 6 1183.2.a.k.1.4 4
52.11 even 12 1183.2.c.g.337.7 8
52.15 even 12 1183.2.c.g.337.2 8
52.23 odd 6 1183.2.a.l.1.1 4
52.35 odd 6 91.2.f.c.22.1 8
156.35 even 6 819.2.o.h.568.4 8
364.55 even 6 8281.2.a.bp.1.4 4
364.87 even 6 637.2.g.j.373.1 8
364.139 even 6 637.2.f.i.295.1 8
364.191 odd 6 637.2.h.h.165.4 8
364.243 even 6 637.2.h.i.165.4 8
364.335 even 6 8281.2.a.bt.1.1 4
364.347 odd 6 637.2.g.k.373.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.f.c.22.1 8 52.35 odd 6
91.2.f.c.29.1 yes 8 4.3 odd 2
637.2.f.i.295.1 8 364.139 even 6
637.2.f.i.393.1 8 28.27 even 2
637.2.g.j.263.1 8 28.19 even 6
637.2.g.j.373.1 8 364.87 even 6
637.2.g.k.263.1 8 28.23 odd 6
637.2.g.k.373.1 8 364.347 odd 6
637.2.h.h.165.4 8 364.191 odd 6
637.2.h.h.471.4 8 28.11 odd 6
637.2.h.i.165.4 8 364.243 even 6
637.2.h.i.471.4 8 28.3 even 6
819.2.o.h.568.4 8 156.35 even 6
819.2.o.h.757.4 8 12.11 even 2
1183.2.a.k.1.4 4 52.3 odd 6
1183.2.a.l.1.1 4 52.23 odd 6
1183.2.c.g.337.2 8 52.15 even 12
1183.2.c.g.337.7 8 52.11 even 12
1456.2.s.q.113.2 8 13.9 even 3 inner
1456.2.s.q.1121.2 8 1.1 even 1 trivial
8281.2.a.bp.1.4 4 364.55 even 6
8281.2.a.bt.1.1 4 364.335 even 6