# Properties

 Label 1456.2.s.h Level $1456$ Weight $2$ Character orbit 1456.s Analytic conductor $11.626$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1456 = 2^{4} \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1456.s (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$11.6262185343$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{5})$$ Defining polynomial: $$x^{4} - x^{3} + 2 x^{2} + x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 91) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -1 - \beta_{1} - \beta_{3} ) q^{3} + ( 1 - \beta_{2} ) q^{5} -\beta_{3} q^{7} + ( 3 \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{9} +O(q^{10})$$ $$q + ( -1 - \beta_{1} - \beta_{3} ) q^{3} + ( 1 - \beta_{2} ) q^{5} -\beta_{3} q^{7} + ( 3 \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{9} + ( -3 + 3 \beta_{1} - 3 \beta_{3} ) q^{11} + ( -4 - 3 \beta_{3} ) q^{13} + ( -2 - 3 \beta_{1} - 2 \beta_{3} ) q^{15} + ( -4 \beta_{1} - 4 \beta_{2} + 5 \beta_{3} ) q^{17} + ( 3 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} ) q^{19} + ( -1 + \beta_{2} ) q^{21} + ( 2 - 4 \beta_{1} + 2 \beta_{3} ) q^{23} + ( -3 - 3 \beta_{2} ) q^{25} + ( -1 - 2 \beta_{2} ) q^{27} + ( 1 - 5 \beta_{1} + \beta_{3} ) q^{29} + ( -5 - 6 \beta_{2} ) q^{31} + ( -3 \beta_{1} - 3 \beta_{2} ) q^{33} + ( -\beta_{1} - \beta_{2} - \beta_{3} ) q^{35} + ( -4 - 4 \beta_{3} ) q^{37} + ( 1 + 4 \beta_{1} + 3 \beta_{2} + 4 \beta_{3} ) q^{39} + ( -4 + 2 \beta_{1} - 4 \beta_{3} ) q^{41} + ( -9 \beta_{1} - 9 \beta_{2} + 2 \beta_{3} ) q^{43} + ( 5 \beta_{1} + 5 \beta_{2} + 2 \beta_{3} ) q^{45} + ( -1 - 2 \beta_{2} ) q^{47} + ( -1 - \beta_{3} ) q^{49} + ( 1 + 3 \beta_{2} ) q^{51} + ( 7 + 2 \beta_{2} ) q^{53} + 3 \beta_{1} q^{55} -3 \beta_{2} q^{57} + ( 2 \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{59} -6 \beta_{3} q^{61} + ( -1 + 3 \beta_{1} - \beta_{3} ) q^{63} + ( -4 - 3 \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{65} + ( -3 - 6 \beta_{1} - 3 \beta_{3} ) q^{67} + ( 6 \beta_{1} + 6 \beta_{2} + 2 \beta_{3} ) q^{69} + ( 10 \beta_{1} + 10 \beta_{2} - 2 \beta_{3} ) q^{71} -2 q^{73} -3 \beta_{1} q^{75} + ( -3 - 3 \beta_{2} ) q^{77} -4 q^{79} + ( -4 + 6 \beta_{1} - 4 \beta_{3} ) q^{81} + ( 3 + 6 \beta_{2} ) q^{83} + ( -3 \beta_{1} - 3 \beta_{2} + \beta_{3} ) q^{85} + ( 9 \beta_{1} + 9 \beta_{2} + 4 \beta_{3} ) q^{87} + ( -13 + 5 \beta_{1} - 13 \beta_{3} ) q^{89} + ( -3 + \beta_{3} ) q^{91} + ( -1 - 7 \beta_{1} - \beta_{3} ) q^{93} + ( 3 \beta_{1} + 3 \beta_{2} ) q^{95} + ( 3 \beta_{1} + 3 \beta_{2} + 14 \beta_{3} ) q^{97} + ( -12 - 3 \beta_{2} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 3q^{3} + 6q^{5} + 2q^{7} - q^{9} + O(q^{10})$$ $$4q - 3q^{3} + 6q^{5} + 2q^{7} - q^{9} - 3q^{11} - 10q^{13} - 7q^{15} - 6q^{17} + 3q^{19} - 6q^{21} - 6q^{25} - 3q^{29} - 8q^{31} + 3q^{33} + 3q^{35} - 8q^{37} - 6q^{39} - 6q^{41} + 5q^{43} - 9q^{45} - 2q^{49} - 2q^{51} + 24q^{53} + 3q^{55} + 6q^{57} + 12q^{61} + q^{63} - 15q^{65} - 12q^{67} - 10q^{69} - 6q^{71} - 8q^{73} - 3q^{75} - 6q^{77} - 16q^{79} - 2q^{81} + q^{85} - 17q^{87} - 21q^{89} - 14q^{91} - 9q^{93} - 3q^{95} - 31q^{97} - 42q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - x^{3} + 2 x^{2} + x + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{3} + 1$$$$)/2$$ $$\beta_{3}$$ $$=$$ $$($$$$-\nu^{3} + 2 \nu^{2} - 2 \nu - 1$$$$)/2$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{3} + \beta_{2} + \beta_{1}$$ $$\nu^{3}$$ $$=$$ $$2 \beta_{2} - 1$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times$$.

 $$n$$ $$561$$ $$911$$ $$1093$$ $$1249$$ $$\chi(n)$$ $$\beta_{3}$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
113.1
 0.809017 − 1.40126i −0.309017 + 0.535233i 0.809017 + 1.40126i −0.309017 − 0.535233i
0 −1.30902 + 2.26728i 0 2.61803 0 0.500000 + 0.866025i 0 −1.92705 3.33775i 0
113.2 0 −0.190983 + 0.330792i 0 0.381966 0 0.500000 + 0.866025i 0 1.42705 + 2.47172i 0
1121.1 0 −1.30902 2.26728i 0 2.61803 0 0.500000 0.866025i 0 −1.92705 + 3.33775i 0
1121.2 0 −0.190983 0.330792i 0 0.381966 0 0.500000 0.866025i 0 1.42705 2.47172i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1456.2.s.h 4
4.b odd 2 1 91.2.f.a 4
12.b even 2 1 819.2.o.c 4
13.c even 3 1 inner 1456.2.s.h 4
28.d even 2 1 637.2.f.c 4
28.f even 6 1 637.2.g.c 4
28.f even 6 1 637.2.h.f 4
28.g odd 6 1 637.2.g.b 4
28.g odd 6 1 637.2.h.g 4
52.i odd 6 1 1183.2.a.c 2
52.j odd 6 1 91.2.f.a 4
52.j odd 6 1 1183.2.a.g 2
52.l even 12 2 1183.2.c.c 4
156.p even 6 1 819.2.o.c 4
364.q odd 6 1 637.2.h.g 4
364.v even 6 1 637.2.f.c 4
364.v even 6 1 8281.2.a.bb 2
364.ba even 6 1 637.2.g.c 4
364.bc even 6 1 8281.2.a.n 2
364.bi odd 6 1 637.2.g.b 4
364.br even 6 1 637.2.h.f 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.f.a 4 4.b odd 2 1
91.2.f.a 4 52.j odd 6 1
637.2.f.c 4 28.d even 2 1
637.2.f.c 4 364.v even 6 1
637.2.g.b 4 28.g odd 6 1
637.2.g.b 4 364.bi odd 6 1
637.2.g.c 4 28.f even 6 1
637.2.g.c 4 364.ba even 6 1
637.2.h.f 4 28.f even 6 1
637.2.h.f 4 364.br even 6 1
637.2.h.g 4 28.g odd 6 1
637.2.h.g 4 364.q odd 6 1
819.2.o.c 4 12.b even 2 1
819.2.o.c 4 156.p even 6 1
1183.2.a.c 2 52.i odd 6 1
1183.2.a.g 2 52.j odd 6 1
1183.2.c.c 4 52.l even 12 2
1456.2.s.h 4 1.a even 1 1 trivial
1456.2.s.h 4 13.c even 3 1 inner
8281.2.a.n 2 364.bc even 6 1
8281.2.a.bb 2 364.v even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1456, [\chi])$$:

 $$T_{3}^{4} + 3 T_{3}^{3} + 8 T_{3}^{2} + 3 T_{3} + 1$$ $$T_{5}^{2} - 3 T_{5} + 1$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$1 + 3 T + 8 T^{2} + 3 T^{3} + T^{4}$$
$5$ $$( 1 - 3 T + T^{2} )^{2}$$
$7$ $$( 1 - T + T^{2} )^{2}$$
$11$ $$81 - 27 T + 18 T^{2} + 3 T^{3} + T^{4}$$
$13$ $$( 13 + 5 T + T^{2} )^{2}$$
$17$ $$121 - 66 T + 47 T^{2} + 6 T^{3} + T^{4}$$
$19$ $$81 + 27 T + 18 T^{2} - 3 T^{3} + T^{4}$$
$23$ $$400 + 20 T^{2} + T^{4}$$
$29$ $$841 - 87 T + 38 T^{2} + 3 T^{3} + T^{4}$$
$31$ $$( -41 + 4 T + T^{2} )^{2}$$
$37$ $$( 16 + 4 T + T^{2} )^{2}$$
$41$ $$16 + 24 T + 32 T^{2} + 6 T^{3} + T^{4}$$
$43$ $$9025 + 475 T + 120 T^{2} - 5 T^{3} + T^{4}$$
$47$ $$( -5 + T^{2} )^{2}$$
$53$ $$( 31 - 12 T + T^{2} )^{2}$$
$59$ $$25 + 5 T^{2} + T^{4}$$
$61$ $$( 36 - 6 T + T^{2} )^{2}$$
$67$ $$81 - 108 T + 153 T^{2} + 12 T^{3} + T^{4}$$
$71$ $$13456 - 696 T + 152 T^{2} + 6 T^{3} + T^{4}$$
$73$ $$( 2 + T )^{4}$$
$79$ $$( 4 + T )^{4}$$
$83$ $$( -45 + T^{2} )^{2}$$
$89$ $$6241 + 1659 T + 362 T^{2} + 21 T^{3} + T^{4}$$
$97$ $$52441 + 7099 T + 732 T^{2} + 31 T^{3} + T^{4}$$