gp: [N,k,chi] = [1456,2,Mod(113,1456)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1456, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1456.113");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,0,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 1456 Z ) × \left(\mathbb{Z}/1456\mathbb{Z}\right)^\times ( Z / 1 4 5 6 Z ) × .
n n n
561 561 5 6 1
911 911 9 1 1
1093 1093 1 0 9 3
1249 1249 1 2 4 9
χ ( n ) \chi(n) χ ( n )
− ζ 6 -\zeta_{6} − ζ 6
1 1 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 1456 , [ χ ] ) S_{2}^{\mathrm{new}}(1456, [\chi]) S 2 n e w ( 1 4 5 6 , [ χ ] ) :
T 3 T_{3} T 3
T3
T 5 + 1 T_{5} + 1 T 5 + 1
T5 + 1
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
7 7 7
T 2 + T + 1 T^{2} + T + 1 T 2 + T + 1
T^2 + T + 1
11 11 1 1
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
13 13 1 3
T 2 − 7 T + 13 T^{2} - 7T + 13 T 2 − 7 T + 1 3
T^2 - 7*T + 13
17 17 1 7
T 2 − 3 T + 9 T^{2} - 3T + 9 T 2 − 3 T + 9
T^2 - 3*T + 9
19 19 1 9
T 2 + 6 T + 36 T^{2} + 6T + 36 T 2 + 6 T + 3 6
T^2 + 6*T + 36
23 23 2 3
T 2 + 4 T + 16 T^{2} + 4T + 16 T 2 + 4 T + 1 6
T^2 + 4*T + 16
29 29 2 9
T 2 − 7 T + 49 T^{2} - 7T + 49 T 2 − 7 T + 4 9
T^2 - 7*T + 49
31 31 3 1
( T + 4 ) 2 (T + 4)^{2} ( T + 4 ) 2
(T + 4)^2
37 37 3 7
T 2 + 9 T + 81 T^{2} + 9T + 81 T 2 + 9 T + 8 1
T^2 + 9*T + 81
41 41 4 1
T 2 + 9 T + 81 T^{2} + 9T + 81 T 2 + 9 T + 8 1
T^2 + 9*T + 81
43 43 4 3
T 2 − 10 T + 100 T^{2} - 10T + 100 T 2 − 1 0 T + 1 0 0
T^2 - 10*T + 100
47 47 4 7
( T − 2 ) 2 (T - 2)^{2} ( T − 2 ) 2
(T - 2)^2
53 53 5 3
( T − 9 ) 2 (T - 9)^{2} ( T − 9 ) 2
(T - 9)^2
59 59 5 9
T 2 − 14 T + 196 T^{2} - 14T + 196 T 2 − 1 4 T + 1 9 6
T^2 - 14*T + 196
61 61 6 1
T 2 − 5 T + 25 T^{2} - 5T + 25 T 2 − 5 T + 2 5
T^2 - 5*T + 25
67 67 6 7
T 2 + 8 T + 64 T^{2} + 8T + 64 T 2 + 8 T + 6 4
T^2 + 8*T + 64
71 71 7 1
T 2 − 10 T + 100 T^{2} - 10T + 100 T 2 − 1 0 T + 1 0 0
T^2 - 10*T + 100
73 73 7 3
( T + 7 ) 2 (T + 7)^{2} ( T + 7 ) 2
(T + 7)^2
79 79 7 9
( T + 2 ) 2 (T + 2)^{2} ( T + 2 ) 2
(T + 2)^2
83 83 8 3
( T − 6 ) 2 (T - 6)^{2} ( T − 6 ) 2
(T - 6)^2
89 89 8 9
T 2 + 6 T + 36 T^{2} + 6T + 36 T 2 + 6 T + 3 6
T^2 + 6*T + 36
97 97 9 7
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
show more
show less