Properties

Label 1456.2.s.c
Level 14561456
Weight 22
Character orbit 1456.s
Analytic conductor 11.62611.626
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1456,2,Mod(113,1456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1456, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1456.113"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1456=24713 1456 = 2^{4} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1456.s (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.626218534311.6262185343
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq5ζ6q7+3ζ6q9+(2ζ62)q11+(ζ6+3)q13+3ζ6q176ζ6q19+(4ζ64)q234q25+(7ζ6+7)q29+6q99+O(q100) q - q^{5} - \zeta_{6} q^{7} + 3 \zeta_{6} q^{9} + (2 \zeta_{6} - 2) q^{11} + (\zeta_{6} + 3) q^{13} + 3 \zeta_{6} q^{17} - 6 \zeta_{6} q^{19} + (4 \zeta_{6} - 4) q^{23} - 4 q^{25} + ( - 7 \zeta_{6} + 7) q^{29} + \cdots - 6 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q5q7+3q92q11+7q13+3q176q194q238q25+7q298q31+q359q379q41+10q433q45+4q47q49+18q53+12q99+O(q100) 2 q - 2 q^{5} - q^{7} + 3 q^{9} - 2 q^{11} + 7 q^{13} + 3 q^{17} - 6 q^{19} - 4 q^{23} - 8 q^{25} + 7 q^{29} - 8 q^{31} + q^{35} - 9 q^{37} - 9 q^{41} + 10 q^{43} - 3 q^{45} + 4 q^{47} - q^{49} + 18 q^{53}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1456Z)×\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times.

nn 561561 911911 10931093 12491249
χ(n)\chi(n) ζ6-\zeta_{6} 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
113.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −1.00000 0 −0.500000 0.866025i 0 1.50000 + 2.59808i 0
1121.1 0 0 0 −1.00000 0 −0.500000 + 0.866025i 0 1.50000 2.59808i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1456.2.s.c 2
4.b odd 2 1 364.2.k.a 2
12.b even 2 1 3276.2.z.c 2
13.c even 3 1 inner 1456.2.s.c 2
28.d even 2 1 2548.2.k.c 2
28.f even 6 1 2548.2.i.d 2
28.f even 6 1 2548.2.l.d 2
28.g odd 6 1 2548.2.i.e 2
28.g odd 6 1 2548.2.l.e 2
52.i odd 6 1 4732.2.a.d 1
52.j odd 6 1 364.2.k.a 2
52.j odd 6 1 4732.2.a.c 1
52.l even 12 2 4732.2.g.b 2
156.p even 6 1 3276.2.z.c 2
364.q odd 6 1 2548.2.i.e 2
364.v even 6 1 2548.2.k.c 2
364.ba even 6 1 2548.2.l.d 2
364.bi odd 6 1 2548.2.l.e 2
364.br even 6 1 2548.2.i.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.k.a 2 4.b odd 2 1
364.2.k.a 2 52.j odd 6 1
1456.2.s.c 2 1.a even 1 1 trivial
1456.2.s.c 2 13.c even 3 1 inner
2548.2.i.d 2 28.f even 6 1
2548.2.i.d 2 364.br even 6 1
2548.2.i.e 2 28.g odd 6 1
2548.2.i.e 2 364.q odd 6 1
2548.2.k.c 2 28.d even 2 1
2548.2.k.c 2 364.v even 6 1
2548.2.l.d 2 28.f even 6 1
2548.2.l.d 2 364.ba even 6 1
2548.2.l.e 2 28.g odd 6 1
2548.2.l.e 2 364.bi odd 6 1
3276.2.z.c 2 12.b even 2 1
3276.2.z.c 2 156.p even 6 1
4732.2.a.c 1 52.j odd 6 1
4732.2.a.d 1 52.i odd 6 1
4732.2.g.b 2 52.l even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1456,[χ])S_{2}^{\mathrm{new}}(1456, [\chi]):

T3 T_{3} Copy content Toggle raw display
T5+1 T_{5} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
77 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1111 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
1313 T27T+13 T^{2} - 7T + 13 Copy content Toggle raw display
1717 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1919 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
2323 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
2929 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
3131 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
3737 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
4141 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
4343 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
4747 (T2)2 (T - 2)^{2} Copy content Toggle raw display
5353 (T9)2 (T - 9)^{2} Copy content Toggle raw display
5959 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
6161 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
6767 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
7171 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
7373 (T+7)2 (T + 7)^{2} Copy content Toggle raw display
7979 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
8383 (T6)2 (T - 6)^{2} Copy content Toggle raw display
8989 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
9797 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
show more
show less