Newspace parameters
Level: | \( N \) | \(=\) | \( 1456 = 2^{4} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1456.k (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(11.6262185343\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | 6.0.350464.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 91) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -\nu^{5} + 8\nu^{4} - 4\nu^{3} - \nu^{2} + 2\nu + 38 ) / 23 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -5\nu^{5} + 17\nu^{4} - 20\nu^{3} - 5\nu^{2} + 10\nu + 29 ) / 23 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 7\nu^{5} - 10\nu^{4} + 5\nu^{3} + 30\nu^{2} + 32\nu - 13 ) / 23 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -11\nu^{5} + 19\nu^{4} - 21\nu^{3} - 11\nu^{2} - 70\nu + 27 ) / 23 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -14\nu^{5} + 20\nu^{4} - 10\nu^{3} - 37\nu^{2} - 64\nu + 26 ) / 23 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} - \beta _1 + 1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{5} + 2\beta_{3} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{5} - \beta_{4} + 2\beta_{3} - \beta_{2} + 2\beta _1 - 2 \)
|
\(\nu^{4}\) | \(=\) |
\( -\beta_{2} + 5\beta _1 - 7 \)
|
\(\nu^{5}\) | \(=\) |
\( -8\beta_{5} + 3\beta_{4} - 9\beta_{3} - 3\beta_{2} + 8\beta _1 - 9 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).
\(n\) | \(561\) | \(911\) | \(1093\) | \(1249\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
337.1 |
|
0 | −1.67513 | 0 | − | 0.675131i | 0 | − | 1.00000i | 0 | −0.193937 | 0 | ||||||||||||||||||||||||||||||||||
337.2 | 0 | −1.67513 | 0 | 0.675131i | 0 | 1.00000i | 0 | −0.193937 | 0 | |||||||||||||||||||||||||||||||||||||
337.3 | 0 | −0.539189 | 0 | − | 0.460811i | 0 | 1.00000i | 0 | −2.70928 | 0 | ||||||||||||||||||||||||||||||||||||
337.4 | 0 | −0.539189 | 0 | 0.460811i | 0 | − | 1.00000i | 0 | −2.70928 | 0 | ||||||||||||||||||||||||||||||||||||
337.5 | 0 | 2.21432 | 0 | − | 3.21432i | 0 | 1.00000i | 0 | 1.90321 | 0 | ||||||||||||||||||||||||||||||||||||
337.6 | 0 | 2.21432 | 0 | 3.21432i | 0 | − | 1.00000i | 0 | 1.90321 | 0 | ||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1456.2.k.c | 6 | |
4.b | odd | 2 | 1 | 91.2.c.a | ✓ | 6 | |
12.b | even | 2 | 1 | 819.2.c.b | 6 | ||
13.b | even | 2 | 1 | inner | 1456.2.k.c | 6 | |
28.d | even | 2 | 1 | 637.2.c.d | 6 | ||
28.f | even | 6 | 2 | 637.2.r.d | 12 | ||
28.g | odd | 6 | 2 | 637.2.r.e | 12 | ||
52.b | odd | 2 | 1 | 91.2.c.a | ✓ | 6 | |
52.f | even | 4 | 1 | 1183.2.a.h | 3 | ||
52.f | even | 4 | 1 | 1183.2.a.j | 3 | ||
156.h | even | 2 | 1 | 819.2.c.b | 6 | ||
364.h | even | 2 | 1 | 637.2.c.d | 6 | ||
364.p | odd | 4 | 1 | 8281.2.a.be | 3 | ||
364.p | odd | 4 | 1 | 8281.2.a.bi | 3 | ||
364.x | even | 6 | 2 | 637.2.r.d | 12 | ||
364.bl | odd | 6 | 2 | 637.2.r.e | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.c.a | ✓ | 6 | 4.b | odd | 2 | 1 | |
91.2.c.a | ✓ | 6 | 52.b | odd | 2 | 1 | |
637.2.c.d | 6 | 28.d | even | 2 | 1 | ||
637.2.c.d | 6 | 364.h | even | 2 | 1 | ||
637.2.r.d | 12 | 28.f | even | 6 | 2 | ||
637.2.r.d | 12 | 364.x | even | 6 | 2 | ||
637.2.r.e | 12 | 28.g | odd | 6 | 2 | ||
637.2.r.e | 12 | 364.bl | odd | 6 | 2 | ||
819.2.c.b | 6 | 12.b | even | 2 | 1 | ||
819.2.c.b | 6 | 156.h | even | 2 | 1 | ||
1183.2.a.h | 3 | 52.f | even | 4 | 1 | ||
1183.2.a.j | 3 | 52.f | even | 4 | 1 | ||
1456.2.k.c | 6 | 1.a | even | 1 | 1 | trivial | |
1456.2.k.c | 6 | 13.b | even | 2 | 1 | inner | |
8281.2.a.be | 3 | 364.p | odd | 4 | 1 | ||
8281.2.a.bi | 3 | 364.p | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{3} - 4T_{3} - 2 \)
acting on \(S_{2}^{\mathrm{new}}(1456, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} \)
$3$
\( (T^{3} - 4 T - 2)^{2} \)
$5$
\( T^{6} + 11 T^{4} + 7 T^{2} + 1 \)
$7$
\( (T^{2} + 1)^{3} \)
$11$
\( T^{6} + 28 T^{4} + 164 T^{2} + \cdots + 100 \)
$13$
\( T^{6} - 8 T^{5} + 7 T^{4} + 64 T^{3} + \cdots + 2197 \)
$17$
\( (T^{3} + 4 T^{2} - 8 T - 34)^{2} \)
$19$
\( T^{6} + 119 T^{4} + 3867 T^{2} + \cdots + 37249 \)
$23$
\( (T^{3} + 3 T^{2} - 25 T - 79)^{2} \)
$29$
\( (T^{3} + 7 T^{2} - 21 T + 5)^{2} \)
$31$
\( T^{6} + 83 T^{4} + 1791 T^{2} + \cdots + 4225 \)
$37$
\( T^{6} + 108 T^{4} + 1620 T^{2} + \cdots + 2916 \)
$41$
\( T^{6} + 108 T^{4} + 2864 T^{2} + \cdots + 1600 \)
$43$
\( (T^{3} - 13 T^{2} + 35 T + 17)^{2} \)
$47$
\( T^{6} + 151 T^{4} + 5819 T^{2} + \cdots + 18769 \)
$53$
\( (T^{3} - T^{2} - 9 T + 13)^{2} \)
$59$
\( T^{6} + 68 T^{4} + 816 T^{2} + \cdots + 2704 \)
$61$
\( (T^{3} - 14 T^{2} + 28 T + 152)^{2} \)
$67$
\( T^{6} + 80 T^{4} + 1408 T^{2} + \cdots + 256 \)
$71$
\( T^{6} + 304 T^{4} + 27836 T^{2} + \cdots + 792100 \)
$73$
\( T^{6} + 263 T^{4} + 7723 T^{2} + \cdots + 961 \)
$79$
\( (T^{3} + 13 T^{2} - 37 T - 185)^{2} \)
$83$
\( T^{6} + 227 T^{4} + 13095 T^{2} + \cdots + 26569 \)
$89$
\( T^{6} + 119 T^{4} + 4387 T^{2} + \cdots + 51529 \)
$97$
\( T^{6} + 575 T^{4} + 96115 T^{2} + \cdots + 4765489 \)
show more
show less