Properties

Label 1456.2.hj
Level $1456$
Weight $2$
Character orbit 1456.hj
Rep. character $\chi_{1456}(655,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $224$
Sturm bound $448$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.hj (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 364 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(448\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1456, [\chi])\).

Total New Old
Modular forms 944 224 720
Cusp forms 848 224 624
Eisenstein series 96 0 96

Trace form

\( 224 q + 112 q^{9} - 16 q^{21} + 8 q^{37} - 48 q^{41} - 24 q^{53} - 80 q^{57} + 24 q^{61} - 24 q^{65} + 8 q^{73} - 112 q^{81} - 48 q^{89} + 56 q^{93} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1456, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1456, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1456, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(364, [\chi])\)\(^{\oplus 3}\)