Properties

Label 1456.2.cc.c
Level $1456$
Weight $2$
Character orbit 1456.cc
Analytic conductor $11.626$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.cc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.58891012706304.1
Defining polynomial: \( x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{10} + \beta_{2}) q^{3} + ( - \beta_{11} - \beta_{7} - \beta_{5} - \beta_{3}) q^{5} + ( - \beta_{7} - \beta_{4}) q^{7} + (\beta_{10} - 2 \beta_{8} - \beta_{7} + \beta_{6} + \beta_{4} + 2 \beta_{3} - \beta_{2}) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{10} + \beta_{2}) q^{3} + ( - \beta_{11} - \beta_{7} - \beta_{5} - \beta_{3}) q^{5} + ( - \beta_{7} - \beta_{4}) q^{7} + (\beta_{10} - 2 \beta_{8} - \beta_{7} + \beta_{6} + \beta_{4} + 2 \beta_{3} - \beta_{2}) q^{9} + ( - \beta_{11} - \beta_{8} + \beta_{6} + \beta_{5} + 2 \beta_{3} - \beta_{2} + \beta_1) q^{11} + (2 \beta_{11} - \beta_{10} - \beta_{9} - 2 \beta_{8} + \beta_{7} + 2 \beta_{6} + 2 \beta_{4} + \beta_{3} + \cdots + 1) q^{13}+ \cdots + ( - 4 \beta_{11} - 2 \beta_{10} - 6 \beta_{9} + 4 \beta_{8} - \beta_{7} - 2 \beta_{6} + \cdots + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 4 q^{9} - 6 q^{11} + 4 q^{13} - 6 q^{15} - 4 q^{17} + 12 q^{23} - 20 q^{25} - 12 q^{27} + 8 q^{29} - 30 q^{33} - 6 q^{35} - 42 q^{37} + 4 q^{39} + 30 q^{41} - 2 q^{43} + 6 q^{49} - 52 q^{51} - 44 q^{53} + 6 q^{55} - 18 q^{59} + 14 q^{61} - 12 q^{63} + 60 q^{65} + 24 q^{67} + 4 q^{69} + 24 q^{71} - 46 q^{75} + 8 q^{77} + 56 q^{79} + 2 q^{81} - 48 q^{85} + 2 q^{87} - 12 q^{89} - 14 q^{91} - 18 q^{93} + 22 q^{95} + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{11} - 5\nu^{9} - 2\nu^{8} + 15\nu^{7} + 2\nu^{6} - 30\nu^{5} + 4\nu^{4} + 60\nu^{3} - 16\nu^{2} - 80\nu ) / 32 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 3 \nu^{11} + 4 \nu^{10} + 7 \nu^{9} - 6 \nu^{8} - 13 \nu^{7} + 30 \nu^{6} - 6 \nu^{5} - 28 \nu^{4} - 4 \nu^{3} + 16 \nu^{2} - 48 \nu + 96 ) / 32 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3 \nu^{11} + 2 \nu^{10} - 11 \nu^{9} - 8 \nu^{8} + 21 \nu^{7} + 4 \nu^{6} - 42 \nu^{5} + 84 \nu^{3} + 24 \nu^{2} - 64 \nu - 64 ) / 32 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{11} + 3 \nu^{10} - 3 \nu^{9} - 13 \nu^{8} + 7 \nu^{7} + 23 \nu^{6} - 26 \nu^{5} - 38 \nu^{4} + 60 \nu^{3} + 68 \nu^{2} - 56 \nu - 64 ) / 16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 5 \nu^{11} + 4 \nu^{10} + 13 \nu^{9} - 10 \nu^{8} - 23 \nu^{7} + 42 \nu^{6} + 10 \nu^{5} - 68 \nu^{4} - 20 \nu^{3} + 48 \nu^{2} - 32 \nu + 64 ) / 32 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 5 \nu^{11} + 2 \nu^{10} + 17 \nu^{9} - 8 \nu^{8} - 39 \nu^{7} + 44 \nu^{6} + 50 \nu^{5} - 88 \nu^{4} - 68 \nu^{3} + 120 \nu^{2} + 16 \nu - 32 ) / 32 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - \nu^{11} + \nu^{10} + 5 \nu^{9} - 3 \nu^{8} - 13 \nu^{7} + 13 \nu^{6} + 20 \nu^{5} - 34 \nu^{4} - 28 \nu^{3} + 52 \nu^{2} + 24 \nu - 32 ) / 8 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - \nu^{11} + 3 \nu^{10} + 5 \nu^{9} - 13 \nu^{8} - 13 \nu^{7} + 35 \nu^{6} + 12 \nu^{5} - 70 \nu^{4} + 8 \nu^{3} + 108 \nu^{2} - 16 \nu - 80 ) / 16 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 3 \nu^{11} + 15 \nu^{9} - 2 \nu^{8} - 37 \nu^{7} + 18 \nu^{6} + 66 \nu^{5} - 68 \nu^{4} - 92 \nu^{3} + 96 \nu^{2} + 96 \nu - 64 ) / 16 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - \nu^{11} + 4 \nu^{10} + 9 \nu^{9} - 18 \nu^{8} - 27 \nu^{7} + 50 \nu^{6} + 34 \nu^{5} - 116 \nu^{4} - 20 \nu^{3} + 192 \nu^{2} + 16 \nu - 160 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{11} + \beta_{8} + \beta_{7} - \beta_{6} + \beta_{5} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{11} + \beta_{10} + \beta_{9} - \beta_{6} + \beta_{4} + \beta_{3} + \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{11} + \beta_{9} + \beta_{7} - 2\beta_{6} + \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -2\beta_{11} + 4\beta_{9} + \beta_{8} - \beta_{7} - \beta_{6} - \beta_{5} - \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2 \beta_{11} - 2 \beta_{10} + \beta_{9} - \beta_{8} - \beta_{6} - 2 \beta_{5} - 3 \beta_{4} + \beta_{3} + \beta_{2} + 4 \beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 5 \beta_{11} - 3 \beta_{10} + 5 \beta_{9} + 7 \beta_{8} - \beta_{7} - 2 \beta_{6} + 3 \beta_{5} - 7 \beta_{4} - 3 \beta_{3} + \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -3\beta_{11} + 7\beta_{8} + \beta_{7} - 5\beta_{6} - \beta_{5} + 2\beta_{4} + 4\beta_{3} + 10\beta_{2} + 8\beta _1 - 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 7 \beta_{11} + 3 \beta_{10} + 3 \beta_{9} + 6 \beta_{8} - 4 \beta_{7} - 11 \beta_{6} + 12 \beta_{5} - 17 \beta_{4} + 7 \beta_{3} + 7 \beta_{2} + \beta _1 - 8 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 17 \beta_{11} + 4 \beta_{10} + 13 \beta_{9} + 18 \beta_{8} - 9 \beta_{7} - 8 \beta_{6} + 3 \beta_{5} + 7 \beta_{4} + 9 \beta_{3} + 3 \beta_{2} - 6 \beta _1 - 11 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 18 \beta_{11} + 4 \beta_{10} - 6 \beta_{9} - 13 \beta_{8} - 21 \beta_{7} - 11 \beta_{6} - \beta_{5} - 26 \beta_{4} + 22 \beta_{3} + 14 \beta_{2} + 3 \beta _1 - 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(1 - \beta_{9}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
225.1
0.759479 + 1.19298i
1.40744 0.138282i
1.34408 0.439820i
−1.12906 + 0.851598i
−1.30089 0.554694i
−1.08105 0.911778i
0.759479 1.19298i
1.40744 + 0.138282i
1.34408 + 0.439820i
−1.12906 0.851598i
−1.30089 + 0.554694i
−1.08105 + 0.911778i
0 −1.41289 + 2.44719i 0 0.518957i 0 0.866025 0.500000i 0 −2.49250 4.31714i 0
225.2 0 −0.583963 + 1.01145i 0 1.81487i 0 0.866025 0.500000i 0 0.817975 + 1.41677i 0
225.3 0 −0.291146 + 0.504280i 0 1.68817i 0 −0.866025 + 0.500000i 0 1.33047 + 2.30444i 0
225.4 0 −0.172975 + 0.299601i 0 3.25812i 0 −0.866025 + 0.500000i 0 1.44016 + 2.49443i 0
225.5 0 1.13082 1.95864i 0 3.60178i 0 0.866025 0.500000i 0 −1.05753 1.83169i 0
225.6 0 1.33015 2.30388i 0 3.16209i 0 −0.866025 + 0.500000i 0 −2.03858 3.53092i 0
673.1 0 −1.41289 2.44719i 0 0.518957i 0 0.866025 + 0.500000i 0 −2.49250 + 4.31714i 0
673.2 0 −0.583963 1.01145i 0 1.81487i 0 0.866025 + 0.500000i 0 0.817975 1.41677i 0
673.3 0 −0.291146 0.504280i 0 1.68817i 0 −0.866025 0.500000i 0 1.33047 2.30444i 0
673.4 0 −0.172975 0.299601i 0 3.25812i 0 −0.866025 0.500000i 0 1.44016 2.49443i 0
673.5 0 1.13082 + 1.95864i 0 3.60178i 0 0.866025 + 0.500000i 0 −1.05753 + 1.83169i 0
673.6 0 1.33015 + 2.30388i 0 3.16209i 0 −0.866025 0.500000i 0 −2.03858 + 3.53092i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 673.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1456.2.cc.c 12
4.b odd 2 1 91.2.q.a 12
12.b even 2 1 819.2.ct.a 12
13.e even 6 1 inner 1456.2.cc.c 12
28.d even 2 1 637.2.q.h 12
28.f even 6 1 637.2.k.g 12
28.f even 6 1 637.2.u.i 12
28.g odd 6 1 637.2.k.h 12
28.g odd 6 1 637.2.u.h 12
52.i odd 6 1 91.2.q.a 12
52.i odd 6 1 1183.2.c.i 12
52.j odd 6 1 1183.2.c.i 12
52.l even 12 1 1183.2.a.m 6
52.l even 12 1 1183.2.a.p 6
156.r even 6 1 819.2.ct.a 12
364.s odd 6 1 637.2.k.h 12
364.w even 6 1 637.2.u.i 12
364.bc even 6 1 637.2.q.h 12
364.bk odd 6 1 637.2.u.h 12
364.bp even 6 1 637.2.k.g 12
364.bv odd 12 1 8281.2.a.by 6
364.bv odd 12 1 8281.2.a.ch 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.q.a 12 4.b odd 2 1
91.2.q.a 12 52.i odd 6 1
637.2.k.g 12 28.f even 6 1
637.2.k.g 12 364.bp even 6 1
637.2.k.h 12 28.g odd 6 1
637.2.k.h 12 364.s odd 6 1
637.2.q.h 12 28.d even 2 1
637.2.q.h 12 364.bc even 6 1
637.2.u.h 12 28.g odd 6 1
637.2.u.h 12 364.bk odd 6 1
637.2.u.i 12 28.f even 6 1
637.2.u.i 12 364.w even 6 1
819.2.ct.a 12 12.b even 2 1
819.2.ct.a 12 156.r even 6 1
1183.2.a.m 6 52.l even 12 1
1183.2.a.p 6 52.l even 12 1
1183.2.c.i 12 52.i odd 6 1
1183.2.c.i 12 52.j odd 6 1
1456.2.cc.c 12 1.a even 1 1 trivial
1456.2.cc.c 12 13.e even 6 1 inner
8281.2.a.by 6 364.bv odd 12 1
8281.2.a.ch 6 364.bv odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} + 11 T_{3}^{10} + 4 T_{3}^{9} + 96 T_{3}^{8} + 42 T_{3}^{7} + 287 T_{3}^{6} + 390 T_{3}^{5} + 709 T_{3}^{4} + 516 T_{3}^{3} + 300 T_{3}^{2} + 80 T_{3} + 16 \) acting on \(S_{2}^{\mathrm{new}}(1456, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} + 11 T^{10} + 4 T^{9} + 96 T^{8} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( T^{12} + 40 T^{10} + 600 T^{8} + \cdots + 3481 \) Copy content Toggle raw display
$7$ \( (T^{4} - T^{2} + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{12} + 6 T^{11} - 7 T^{10} - 114 T^{9} + \cdots + 256 \) Copy content Toggle raw display
$13$ \( T^{12} - 4 T^{11} + 21 T^{10} + \cdots + 4826809 \) Copy content Toggle raw display
$17$ \( T^{12} + 4 T^{11} + 37 T^{10} + \cdots + 241081 \) Copy content Toggle raw display
$19$ \( T^{12} - 29 T^{10} + 748 T^{8} + \cdots + 55696 \) Copy content Toggle raw display
$23$ \( T^{12} - 12 T^{11} + 164 T^{10} + \cdots + 38539264 \) Copy content Toggle raw display
$29$ \( T^{12} - 8 T^{11} + 108 T^{10} + \cdots + 10042561 \) Copy content Toggle raw display
$31$ \( T^{12} + 136 T^{10} + 5854 T^{8} + \cdots + 913936 \) Copy content Toggle raw display
$37$ \( T^{12} + 42 T^{11} + \cdots + 1755945216 \) Copy content Toggle raw display
$41$ \( T^{12} - 30 T^{11} + \cdots + 884705536 \) Copy content Toggle raw display
$43$ \( T^{12} + 2 T^{11} + 113 T^{10} + \cdots + 2408704 \) Copy content Toggle raw display
$47$ \( T^{12} + 272 T^{10} + 21782 T^{8} + \cdots + 9461776 \) Copy content Toggle raw display
$53$ \( (T^{6} + 22 T^{5} + 91 T^{4} - 700 T^{3} + \cdots - 2339)^{2} \) Copy content Toggle raw display
$59$ \( T^{12} + 18 T^{11} + \cdots + 4571923456 \) Copy content Toggle raw display
$61$ \( T^{12} - 14 T^{11} + 283 T^{10} + \cdots + 5607424 \) Copy content Toggle raw display
$67$ \( T^{12} - 24 T^{11} + \cdots + 613651984 \) Copy content Toggle raw display
$71$ \( T^{12} - 24 T^{11} + 212 T^{10} + \cdots + 46895104 \) Copy content Toggle raw display
$73$ \( T^{12} + 334 T^{10} + \cdots + 1386221824 \) Copy content Toggle raw display
$79$ \( (T^{6} - 28 T^{5} + 212 T^{4} - 192 T^{3} + \cdots - 512)^{2} \) Copy content Toggle raw display
$83$ \( T^{12} + 304 T^{10} + \cdots + 141324544 \) Copy content Toggle raw display
$89$ \( T^{12} + 12 T^{11} + \cdots + 1834580224 \) Copy content Toggle raw display
$97$ \( T^{12} - 6 T^{11} - 173 T^{10} + \cdots + 53465344 \) Copy content Toggle raw display
show more
show less