Properties

 Label 1456.2.a.h Level $1456$ Weight $2$ Character orbit 1456.a Self dual yes Analytic conductor $11.626$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1456,2,Mod(1,1456)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1456, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1456.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1456 = 2^{4} \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1456.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$11.6262185343$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 728) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{5} + q^{7} - 3 q^{9}+O(q^{10})$$ q - q^5 + q^7 - 3 * q^9 $$q - q^{5} + q^{7} - 3 q^{9} - 2 q^{11} + q^{13} + 7 q^{19} + 3 q^{23} - 4 q^{25} - 9 q^{29} - 5 q^{31} - q^{35} - 8 q^{37} - 10 q^{41} - 5 q^{43} + 3 q^{45} - 7 q^{47} + q^{49} + 3 q^{53} + 2 q^{55} + 6 q^{61} - 3 q^{63} - q^{65} + 10 q^{67} - 4 q^{71} - 11 q^{73} - 2 q^{77} + 11 q^{79} + 9 q^{81} - 11 q^{83} - 3 q^{89} + q^{91} - 7 q^{95} - 15 q^{97} + 6 q^{99}+O(q^{100})$$ q - q^5 + q^7 - 3 * q^9 - 2 * q^11 + q^13 + 7 * q^19 + 3 * q^23 - 4 * q^25 - 9 * q^29 - 5 * q^31 - q^35 - 8 * q^37 - 10 * q^41 - 5 * q^43 + 3 * q^45 - 7 * q^47 + q^49 + 3 * q^53 + 2 * q^55 + 6 * q^61 - 3 * q^63 - q^65 + 10 * q^67 - 4 * q^71 - 11 * q^73 - 2 * q^77 + 11 * q^79 + 9 * q^81 - 11 * q^83 - 3 * q^89 + q^91 - 7 * q^95 - 15 * q^97 + 6 * q^99

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 1.00000 0 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$7$$ $$-1$$
$$13$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1456.2.a.h 1
4.b odd 2 1 728.2.a.c 1
8.b even 2 1 5824.2.a.o 1
8.d odd 2 1 5824.2.a.n 1
12.b even 2 1 6552.2.a.q 1
28.d even 2 1 5096.2.a.f 1
52.b odd 2 1 9464.2.a.d 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.a.c 1 4.b odd 2 1
1456.2.a.h 1 1.a even 1 1 trivial
5096.2.a.f 1 28.d even 2 1
5824.2.a.n 1 8.d odd 2 1
5824.2.a.o 1 8.b even 2 1
6552.2.a.q 1 12.b even 2 1
9464.2.a.d 1 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1456))$$:

 $$T_{3}$$ T3 $$T_{5} + 1$$ T5 + 1 $$T_{11} + 2$$ T11 + 2

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T - 1$$
$11$ $$T + 2$$
$13$ $$T - 1$$
$17$ $$T$$
$19$ $$T - 7$$
$23$ $$T - 3$$
$29$ $$T + 9$$
$31$ $$T + 5$$
$37$ $$T + 8$$
$41$ $$T + 10$$
$43$ $$T + 5$$
$47$ $$T + 7$$
$53$ $$T - 3$$
$59$ $$T$$
$61$ $$T - 6$$
$67$ $$T - 10$$
$71$ $$T + 4$$
$73$ $$T + 11$$
$79$ $$T - 11$$
$83$ $$T + 11$$
$89$ $$T + 3$$
$97$ $$T + 15$$