Properties

Label 1456.1.bs.a
Level $1456$
Weight $1$
Character orbit 1456.bs
Analytic conductor $0.727$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1456,1,Mod(191,1456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1456.191"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1456, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1456.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.132496.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12}^{3} q^{3} + \zeta_{12}^{2} q^{5} - \zeta_{12}^{5} q^{7} - \zeta_{12}^{3} q^{11} - q^{13} - \zeta_{12}^{5} q^{15} + \zeta_{12}^{3} q^{19} - \zeta_{12}^{2} q^{21} - \zeta_{12}^{3} q^{27} + \cdots + \zeta_{12}^{4} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} - 4 q^{13} - 2 q^{21} + 2 q^{29} - 4 q^{33} - 2 q^{41} + 2 q^{49} - 2 q^{53} + 4 q^{57} + 4 q^{61} - 2 q^{65} - 2 q^{73} - 2 q^{77} - 4 q^{81} + 2 q^{93} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(\zeta_{12}^{4}\) \(-1\) \(1\) \(-\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
−0.866025 + 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 1.00000i 0 0.500000 0.866025i 0 −0.866025 0.500000i 0 0 0
191.2 0 1.00000i 0 0.500000 0.866025i 0 0.866025 + 0.500000i 0 0 0
991.1 0 1.00000i 0 0.500000 + 0.866025i 0 0.866025 0.500000i 0 0 0
991.2 0 1.00000i 0 0.500000 + 0.866025i 0 −0.866025 + 0.500000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
91.g even 3 1 inner
364.q odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1456.1.bs.a 4
4.b odd 2 1 inner 1456.1.bs.a 4
7.c even 3 1 1456.1.dg.a yes 4
13.c even 3 1 1456.1.dg.a yes 4
28.g odd 6 1 1456.1.dg.a yes 4
52.j odd 6 1 1456.1.dg.a yes 4
91.g even 3 1 inner 1456.1.bs.a 4
364.q odd 6 1 inner 1456.1.bs.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1456.1.bs.a 4 1.a even 1 1 trivial
1456.1.bs.a 4 4.b odd 2 1 inner
1456.1.bs.a 4 91.g even 3 1 inner
1456.1.bs.a 4 364.q odd 6 1 inner
1456.1.dg.a yes 4 7.c even 3 1
1456.1.dg.a yes 4 13.c even 3 1
1456.1.dg.a yes 4 28.g odd 6 1
1456.1.dg.a yes 4 52.j odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1456, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$47$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$53$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T - 1)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$73$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$83$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
show more
show less