Properties

Label 1452.2.i.p.1213.1
Level $1452$
Weight $2$
Character 1452.1213
Analytic conductor $11.594$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(493,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,8,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 1213.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 1452.1213
Dual form 1452.2.i.p.565.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 - 0.951057i) q^{3} +(3.11803 + 2.26538i) q^{5} +(0.0729490 - 0.224514i) q^{7} +(-0.809017 + 0.587785i) q^{9} +(-5.04508 + 3.66547i) q^{13} +(1.19098 - 3.66547i) q^{15} +(1.92705 + 1.40008i) q^{17} +(1.57295 + 4.84104i) q^{19} -0.236068 q^{21} -0.236068 q^{23} +(3.04508 + 9.37181i) q^{25} +(0.809017 + 0.587785i) q^{27} +(-1.38197 + 4.25325i) q^{29} +(5.16312 - 3.75123i) q^{31} +(0.736068 - 0.534785i) q^{35} +(-1.16312 + 3.57971i) q^{37} +(5.04508 + 3.66547i) q^{39} +(-2.92705 - 9.00854i) q^{41} -9.47214 q^{43} -3.85410 q^{45} +(1.11803 + 3.44095i) q^{47} +(5.61803 + 4.08174i) q^{49} +(0.736068 - 2.26538i) q^{51} +(-5.30902 + 3.85723i) q^{53} +(4.11803 - 2.99193i) q^{57} +(0.663119 - 2.04087i) q^{59} +(-2.11803 - 1.53884i) q^{61} +(0.0729490 + 0.224514i) q^{63} -24.0344 q^{65} -0.145898 q^{67} +(0.0729490 + 0.224514i) q^{69} +(1.11803 + 0.812299i) q^{71} +(-1.00000 + 3.07768i) q^{73} +(7.97214 - 5.79210i) q^{75} +(11.5172 - 8.36775i) q^{79} +(0.309017 - 0.951057i) q^{81} +(12.5172 + 9.09429i) q^{83} +(2.83688 + 8.73102i) q^{85} +4.47214 q^{87} +1.00000 q^{89} +(0.454915 + 1.40008i) q^{91} +(-5.16312 - 3.75123i) q^{93} +(-6.06231 + 18.6579i) q^{95} +(4.11803 - 2.99193i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 8 q^{5} + 7 q^{7} - q^{9} - 9 q^{13} + 7 q^{15} + q^{17} + 13 q^{19} + 8 q^{21} + 8 q^{23} + q^{25} + q^{27} - 10 q^{29} + 5 q^{31} - 6 q^{35} + 11 q^{37} + 9 q^{39} - 5 q^{41} - 20 q^{43}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.309017 0.951057i −0.178411 0.549093i
\(4\) 0 0
\(5\) 3.11803 + 2.26538i 1.39443 + 1.01311i 0.995363 + 0.0961876i \(0.0306649\pi\)
0.399064 + 0.916923i \(0.369335\pi\)
\(6\) 0 0
\(7\) 0.0729490 0.224514i 0.0275721 0.0848583i −0.936324 0.351138i \(-0.885795\pi\)
0.963896 + 0.266280i \(0.0857946\pi\)
\(8\) 0 0
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −5.04508 + 3.66547i −1.39925 + 1.01662i −0.404478 + 0.914548i \(0.632547\pi\)
−0.994777 + 0.102070i \(0.967453\pi\)
\(14\) 0 0
\(15\) 1.19098 3.66547i 0.307510 0.946420i
\(16\) 0 0
\(17\) 1.92705 + 1.40008i 0.467379 + 0.339570i 0.796419 0.604746i \(-0.206725\pi\)
−0.329040 + 0.944316i \(0.606725\pi\)
\(18\) 0 0
\(19\) 1.57295 + 4.84104i 0.360859 + 1.11061i 0.952534 + 0.304434i \(0.0984671\pi\)
−0.591674 + 0.806177i \(0.701533\pi\)
\(20\) 0 0
\(21\) −0.236068 −0.0515143
\(22\) 0 0
\(23\) −0.236068 −0.0492236 −0.0246118 0.999697i \(-0.507835\pi\)
−0.0246118 + 0.999697i \(0.507835\pi\)
\(24\) 0 0
\(25\) 3.04508 + 9.37181i 0.609017 + 1.87436i
\(26\) 0 0
\(27\) 0.809017 + 0.587785i 0.155695 + 0.113119i
\(28\) 0 0
\(29\) −1.38197 + 4.25325i −0.256625 + 0.789809i 0.736881 + 0.676023i \(0.236298\pi\)
−0.993505 + 0.113787i \(0.963702\pi\)
\(30\) 0 0
\(31\) 5.16312 3.75123i 0.927324 0.673740i −0.0180125 0.999838i \(-0.505734\pi\)
0.945336 + 0.326098i \(0.105734\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.736068 0.534785i 0.124418 0.0903951i
\(36\) 0 0
\(37\) −1.16312 + 3.57971i −0.191216 + 0.588501i 0.808784 + 0.588105i \(0.200126\pi\)
−1.00000 0.000395703i \(0.999874\pi\)
\(38\) 0 0
\(39\) 5.04508 + 3.66547i 0.807860 + 0.586945i
\(40\) 0 0
\(41\) −2.92705 9.00854i −0.457129 1.40690i −0.868618 0.495482i \(-0.834991\pi\)
0.411489 0.911415i \(-0.365009\pi\)
\(42\) 0 0
\(43\) −9.47214 −1.44449 −0.722244 0.691639i \(-0.756889\pi\)
−0.722244 + 0.691639i \(0.756889\pi\)
\(44\) 0 0
\(45\) −3.85410 −0.574536
\(46\) 0 0
\(47\) 1.11803 + 3.44095i 0.163082 + 0.501915i 0.998890 0.0471073i \(-0.0150003\pi\)
−0.835808 + 0.549022i \(0.815000\pi\)
\(48\) 0 0
\(49\) 5.61803 + 4.08174i 0.802576 + 0.583106i
\(50\) 0 0
\(51\) 0.736068 2.26538i 0.103070 0.317217i
\(52\) 0 0
\(53\) −5.30902 + 3.85723i −0.729250 + 0.529831i −0.889326 0.457274i \(-0.848826\pi\)
0.160076 + 0.987105i \(0.448826\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.11803 2.99193i 0.545447 0.396290i
\(58\) 0 0
\(59\) 0.663119 2.04087i 0.0863307 0.265699i −0.898567 0.438837i \(-0.855391\pi\)
0.984898 + 0.173138i \(0.0553907\pi\)
\(60\) 0 0
\(61\) −2.11803 1.53884i −0.271186 0.197028i 0.443878 0.896087i \(-0.353602\pi\)
−0.715064 + 0.699059i \(0.753602\pi\)
\(62\) 0 0
\(63\) 0.0729490 + 0.224514i 0.00919071 + 0.0282861i
\(64\) 0 0
\(65\) −24.0344 −2.98111
\(66\) 0 0
\(67\) −0.145898 −0.0178243 −0.00891214 0.999960i \(-0.502837\pi\)
−0.00891214 + 0.999960i \(0.502837\pi\)
\(68\) 0 0
\(69\) 0.0729490 + 0.224514i 0.00878203 + 0.0270283i
\(70\) 0 0
\(71\) 1.11803 + 0.812299i 0.132686 + 0.0964022i 0.652149 0.758091i \(-0.273868\pi\)
−0.519462 + 0.854493i \(0.673868\pi\)
\(72\) 0 0
\(73\) −1.00000 + 3.07768i −0.117041 + 0.360216i −0.992367 0.123317i \(-0.960647\pi\)
0.875326 + 0.483533i \(0.160647\pi\)
\(74\) 0 0
\(75\) 7.97214 5.79210i 0.920543 0.668814i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 11.5172 8.36775i 1.29579 0.941446i 0.295884 0.955224i \(-0.404386\pi\)
0.999905 + 0.0137785i \(0.00438597\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 0 0
\(83\) 12.5172 + 9.09429i 1.37394 + 0.998228i 0.997417 + 0.0718223i \(0.0228815\pi\)
0.376526 + 0.926406i \(0.377119\pi\)
\(84\) 0 0
\(85\) 2.83688 + 8.73102i 0.307703 + 0.947012i
\(86\) 0 0
\(87\) 4.47214 0.479463
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 0.454915 + 1.40008i 0.0476881 + 0.146769i
\(92\) 0 0
\(93\) −5.16312 3.75123i −0.535390 0.388984i
\(94\) 0 0
\(95\) −6.06231 + 18.6579i −0.621979 + 1.91426i
\(96\) 0 0
\(97\) 4.11803 2.99193i 0.418123 0.303784i −0.358759 0.933430i \(-0.616800\pi\)
0.776882 + 0.629646i \(0.216800\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.80902 + 3.49396i −0.478515 + 0.347662i −0.800751 0.598998i \(-0.795566\pi\)
0.322235 + 0.946660i \(0.395566\pi\)
\(102\) 0 0
\(103\) 3.85410 11.8617i 0.379756 1.16877i −0.560458 0.828183i \(-0.689375\pi\)
0.940214 0.340586i \(-0.110625\pi\)
\(104\) 0 0
\(105\) −0.736068 0.534785i −0.0718329 0.0521896i
\(106\) 0 0
\(107\) −2.01722 6.20837i −0.195012 0.600186i −0.999976 0.00686237i \(-0.997816\pi\)
0.804964 0.593323i \(-0.202184\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) 3.76393 0.357257
\(112\) 0 0
\(113\) 3.78115 + 11.6372i 0.355701 + 1.09473i 0.955602 + 0.294661i \(0.0952066\pi\)
−0.599901 + 0.800074i \(0.704793\pi\)
\(114\) 0 0
\(115\) −0.736068 0.534785i −0.0686387 0.0498689i
\(116\) 0 0
\(117\) 1.92705 5.93085i 0.178156 0.548308i
\(118\) 0 0
\(119\) 0.454915 0.330515i 0.0417020 0.0302983i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −7.66312 + 5.56758i −0.690960 + 0.502012i
\(124\) 0 0
\(125\) −5.78115 + 17.7926i −0.517082 + 1.59141i
\(126\) 0 0
\(127\) 12.7082 + 9.23305i 1.12767 + 0.819301i 0.985354 0.170520i \(-0.0545449\pi\)
0.142317 + 0.989821i \(0.454545\pi\)
\(128\) 0 0
\(129\) 2.92705 + 9.00854i 0.257712 + 0.793157i
\(130\) 0 0
\(131\) 8.56231 0.748092 0.374046 0.927410i \(-0.377970\pi\)
0.374046 + 0.927410i \(0.377970\pi\)
\(132\) 0 0
\(133\) 1.20163 0.104194
\(134\) 0 0
\(135\) 1.19098 + 3.66547i 0.102503 + 0.315473i
\(136\) 0 0
\(137\) 16.9894 + 12.3435i 1.45150 + 1.05458i 0.985478 + 0.169802i \(0.0543127\pi\)
0.466020 + 0.884774i \(0.345687\pi\)
\(138\) 0 0
\(139\) −1.17376 + 3.61247i −0.0995572 + 0.306406i −0.988415 0.151779i \(-0.951500\pi\)
0.888857 + 0.458184i \(0.151500\pi\)
\(140\) 0 0
\(141\) 2.92705 2.12663i 0.246502 0.179094i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −13.9443 + 10.1311i −1.15801 + 0.841343i
\(146\) 0 0
\(147\) 2.14590 6.60440i 0.176991 0.544721i
\(148\) 0 0
\(149\) −13.6631 9.92684i −1.11933 0.813238i −0.135219 0.990816i \(-0.543174\pi\)
−0.984107 + 0.177577i \(0.943174\pi\)
\(150\) 0 0
\(151\) −1.38197 4.25325i −0.112463 0.346125i 0.878947 0.476920i \(-0.158247\pi\)
−0.991409 + 0.130795i \(0.958247\pi\)
\(152\) 0 0
\(153\) −2.38197 −0.192571
\(154\) 0 0
\(155\) 24.5967 1.97566
\(156\) 0 0
\(157\) −5.32624 16.3925i −0.425080 1.30826i −0.902918 0.429814i \(-0.858579\pi\)
0.477838 0.878448i \(-0.341421\pi\)
\(158\) 0 0
\(159\) 5.30902 + 3.85723i 0.421032 + 0.305898i
\(160\) 0 0
\(161\) −0.0172209 + 0.0530006i −0.00135720 + 0.00417703i
\(162\) 0 0
\(163\) 3.92705 2.85317i 0.307590 0.223477i −0.423271 0.906003i \(-0.639118\pi\)
0.730862 + 0.682525i \(0.239118\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.500000 + 0.363271i −0.0386912 + 0.0281108i −0.606963 0.794730i \(-0.707612\pi\)
0.568272 + 0.822841i \(0.307612\pi\)
\(168\) 0 0
\(169\) 8.00000 24.6215i 0.615385 1.89396i
\(170\) 0 0
\(171\) −4.11803 2.99193i −0.314914 0.228798i
\(172\) 0 0
\(173\) −1.71885 5.29007i −0.130682 0.402196i 0.864212 0.503128i \(-0.167818\pi\)
−0.994893 + 0.100932i \(0.967818\pi\)
\(174\) 0 0
\(175\) 2.32624 0.175847
\(176\) 0 0
\(177\) −2.14590 −0.161296
\(178\) 0 0
\(179\) −5.54508 17.0660i −0.414459 1.27557i −0.912734 0.408555i \(-0.866033\pi\)
0.498275 0.867019i \(-0.333967\pi\)
\(180\) 0 0
\(181\) −4.80902 3.49396i −0.357451 0.259704i 0.394537 0.918880i \(-0.370905\pi\)
−0.751988 + 0.659176i \(0.770905\pi\)
\(182\) 0 0
\(183\) −0.809017 + 2.48990i −0.0598043 + 0.184059i
\(184\) 0 0
\(185\) −11.7361 + 8.52675i −0.862853 + 0.626899i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.190983 0.138757i 0.0138920 0.0100931i
\(190\) 0 0
\(191\) −6.69098 + 20.5927i −0.484143 + 1.49004i 0.349076 + 0.937094i \(0.386495\pi\)
−0.833219 + 0.552943i \(0.813505\pi\)
\(192\) 0 0
\(193\) 12.3992 + 9.00854i 0.892513 + 0.648449i 0.936532 0.350582i \(-0.114016\pi\)
−0.0440190 + 0.999031i \(0.514016\pi\)
\(194\) 0 0
\(195\) 7.42705 + 22.8581i 0.531862 + 1.63690i
\(196\) 0 0
\(197\) 5.90983 0.421058 0.210529 0.977588i \(-0.432481\pi\)
0.210529 + 0.977588i \(0.432481\pi\)
\(198\) 0 0
\(199\) −10.4164 −0.738400 −0.369200 0.929350i \(-0.620368\pi\)
−0.369200 + 0.929350i \(0.620368\pi\)
\(200\) 0 0
\(201\) 0.0450850 + 0.138757i 0.00318005 + 0.00978718i
\(202\) 0 0
\(203\) 0.854102 + 0.620541i 0.0599462 + 0.0435535i
\(204\) 0 0
\(205\) 11.2812 34.7198i 0.787910 2.42494i
\(206\) 0 0
\(207\) 0.190983 0.138757i 0.0132742 0.00964430i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 15.1631 11.0167i 1.04387 0.758418i 0.0728345 0.997344i \(-0.476796\pi\)
0.971038 + 0.238927i \(0.0767955\pi\)
\(212\) 0 0
\(213\) 0.427051 1.31433i 0.0292611 0.0900563i
\(214\) 0 0
\(215\) −29.5344 21.4580i −2.01423 1.46343i
\(216\) 0 0
\(217\) −0.465558 1.43284i −0.0316041 0.0972676i
\(218\) 0 0
\(219\) 3.23607 0.218673
\(220\) 0 0
\(221\) −14.8541 −0.999195
\(222\) 0 0
\(223\) −2.30902 7.10642i −0.154623 0.475881i 0.843499 0.537130i \(-0.180492\pi\)
−0.998123 + 0.0612489i \(0.980492\pi\)
\(224\) 0 0
\(225\) −7.97214 5.79210i −0.531476 0.386140i
\(226\) 0 0
\(227\) −3.92705 + 12.0862i −0.260648 + 0.802191i 0.732017 + 0.681287i \(0.238579\pi\)
−0.992664 + 0.120904i \(0.961421\pi\)
\(228\) 0 0
\(229\) −8.85410 + 6.43288i −0.585096 + 0.425097i −0.840558 0.541722i \(-0.817772\pi\)
0.255462 + 0.966819i \(0.417772\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.972136 0.706298i 0.0636867 0.0462711i −0.555486 0.831526i \(-0.687468\pi\)
0.619173 + 0.785255i \(0.287468\pi\)
\(234\) 0 0
\(235\) −4.30902 + 13.2618i −0.281089 + 0.865104i
\(236\) 0 0
\(237\) −11.5172 8.36775i −0.748124 0.543544i
\(238\) 0 0
\(239\) −5.40983 16.6497i −0.349933 1.07698i −0.958890 0.283779i \(-0.908412\pi\)
0.608957 0.793203i \(-0.291588\pi\)
\(240\) 0 0
\(241\) 23.7082 1.52718 0.763590 0.645702i \(-0.223435\pi\)
0.763590 + 0.645702i \(0.223435\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 8.27051 + 25.4540i 0.528383 + 1.62620i
\(246\) 0 0
\(247\) −25.6803 18.6579i −1.63400 1.18717i
\(248\) 0 0
\(249\) 4.78115 14.7149i 0.302993 0.932517i
\(250\) 0 0
\(251\) −19.4894 + 14.1598i −1.23016 + 0.893762i −0.996902 0.0786539i \(-0.974938\pi\)
−0.233255 + 0.972416i \(0.574938\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 7.42705 5.39607i 0.465100 0.337915i
\(256\) 0 0
\(257\) −0.864745 + 2.66141i −0.0539413 + 0.166014i −0.974398 0.224831i \(-0.927817\pi\)
0.920457 + 0.390845i \(0.127817\pi\)
\(258\) 0 0
\(259\) 0.718847 + 0.522273i 0.0446670 + 0.0324525i
\(260\) 0 0
\(261\) −1.38197 4.25325i −0.0855415 0.263270i
\(262\) 0 0
\(263\) −23.8541 −1.47091 −0.735453 0.677575i \(-0.763031\pi\)
−0.735453 + 0.677575i \(0.763031\pi\)
\(264\) 0 0
\(265\) −25.2918 −1.55366
\(266\) 0 0
\(267\) −0.309017 0.951057i −0.0189115 0.0582037i
\(268\) 0 0
\(269\) −23.0344 16.7355i −1.40443 1.02038i −0.994102 0.108445i \(-0.965413\pi\)
−0.410332 0.911936i \(-0.634587\pi\)
\(270\) 0 0
\(271\) 0.753289 2.31838i 0.0457590 0.140832i −0.925567 0.378585i \(-0.876411\pi\)
0.971326 + 0.237753i \(0.0764109\pi\)
\(272\) 0 0
\(273\) 1.19098 0.865300i 0.0720816 0.0523703i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.07295 1.50609i 0.124551 0.0904919i −0.523765 0.851862i \(-0.675473\pi\)
0.648317 + 0.761371i \(0.275473\pi\)
\(278\) 0 0
\(279\) −1.97214 + 6.06961i −0.118069 + 0.363378i
\(280\) 0 0
\(281\) 13.8541 + 10.0656i 0.826466 + 0.600463i 0.918557 0.395288i \(-0.129355\pi\)
−0.0920910 + 0.995751i \(0.529355\pi\)
\(282\) 0 0
\(283\) −7.18034 22.0988i −0.426827 1.31364i −0.901234 0.433333i \(-0.857338\pi\)
0.474407 0.880306i \(-0.342662\pi\)
\(284\) 0 0
\(285\) 19.6180 1.16207
\(286\) 0 0
\(287\) −2.23607 −0.131991
\(288\) 0 0
\(289\) −3.50000 10.7719i −0.205882 0.633641i
\(290\) 0 0
\(291\) −4.11803 2.99193i −0.241403 0.175390i
\(292\) 0 0
\(293\) 1.54508 4.75528i 0.0902648 0.277807i −0.895726 0.444607i \(-0.853343\pi\)
0.985991 + 0.166800i \(0.0533435\pi\)
\(294\) 0 0
\(295\) 6.69098 4.86128i 0.389564 0.283035i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.19098 0.865300i 0.0688763 0.0500416i
\(300\) 0 0
\(301\) −0.690983 + 2.12663i −0.0398276 + 0.122577i
\(302\) 0 0
\(303\) 4.80902 + 3.49396i 0.276271 + 0.200722i
\(304\) 0 0
\(305\) −3.11803 9.59632i −0.178538 0.549484i
\(306\) 0 0
\(307\) 0.673762 0.0384536 0.0192268 0.999815i \(-0.493880\pi\)
0.0192268 + 0.999815i \(0.493880\pi\)
\(308\) 0 0
\(309\) −12.4721 −0.709515
\(310\) 0 0
\(311\) −9.01722 27.7522i −0.511320 1.57368i −0.789880 0.613261i \(-0.789857\pi\)
0.278560 0.960419i \(-0.410143\pi\)
\(312\) 0 0
\(313\) 0.809017 + 0.587785i 0.0457283 + 0.0332236i 0.610415 0.792082i \(-0.291003\pi\)
−0.564686 + 0.825306i \(0.691003\pi\)
\(314\) 0 0
\(315\) −0.281153 + 0.865300i −0.0158412 + 0.0487541i
\(316\) 0 0
\(317\) −6.89919 + 5.01255i −0.387497 + 0.281533i −0.764429 0.644708i \(-0.776979\pi\)
0.376932 + 0.926241i \(0.376979\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −5.28115 + 3.83698i −0.294765 + 0.214159i
\(322\) 0 0
\(323\) −3.74671 + 11.5312i −0.208473 + 0.641613i
\(324\) 0 0
\(325\) −49.7148 36.1199i −2.75768 2.00357i
\(326\) 0 0
\(327\) −2.47214 7.60845i −0.136709 0.420748i
\(328\) 0 0
\(329\) 0.854102 0.0470882
\(330\) 0 0
\(331\) 11.9443 0.656517 0.328258 0.944588i \(-0.393538\pi\)
0.328258 + 0.944588i \(0.393538\pi\)
\(332\) 0 0
\(333\) −1.16312 3.57971i −0.0637385 0.196167i
\(334\) 0 0
\(335\) −0.454915 0.330515i −0.0248547 0.0180580i
\(336\) 0 0
\(337\) 5.43769 16.7355i 0.296210 0.911641i −0.686602 0.727033i \(-0.740899\pi\)
0.982812 0.184608i \(-0.0591014\pi\)
\(338\) 0 0
\(339\) 9.89919 7.19218i 0.537650 0.390626i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 2.66312 1.93487i 0.143795 0.104473i
\(344\) 0 0
\(345\) −0.281153 + 0.865300i −0.0151368 + 0.0465862i
\(346\) 0 0
\(347\) −6.47214 4.70228i −0.347442 0.252432i 0.400353 0.916361i \(-0.368888\pi\)
−0.747795 + 0.663929i \(0.768888\pi\)
\(348\) 0 0
\(349\) 8.72542 + 26.8541i 0.467061 + 1.43747i 0.856372 + 0.516360i \(0.172713\pi\)
−0.389310 + 0.921107i \(0.627287\pi\)
\(350\) 0 0
\(351\) −6.23607 −0.332857
\(352\) 0 0
\(353\) −10.4721 −0.557376 −0.278688 0.960382i \(-0.589899\pi\)
−0.278688 + 0.960382i \(0.589899\pi\)
\(354\) 0 0
\(355\) 1.64590 + 5.06555i 0.0873552 + 0.268852i
\(356\) 0 0
\(357\) −0.454915 0.330515i −0.0240767 0.0174927i
\(358\) 0 0
\(359\) 7.18034 22.0988i 0.378964 1.16633i −0.561801 0.827272i \(-0.689891\pi\)
0.940765 0.339059i \(-0.110109\pi\)
\(360\) 0 0
\(361\) −5.59017 + 4.06150i −0.294219 + 0.213763i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.0902 + 7.33094i −0.528144 + 0.383719i
\(366\) 0 0
\(367\) −1.66312 + 5.11855i −0.0868141 + 0.267186i −0.985034 0.172360i \(-0.944861\pi\)
0.898220 + 0.439546i \(0.144861\pi\)
\(368\) 0 0
\(369\) 7.66312 + 5.56758i 0.398926 + 0.289837i
\(370\) 0 0
\(371\) 0.478714 + 1.47333i 0.0248536 + 0.0764915i
\(372\) 0 0
\(373\) 13.9443 0.722007 0.361004 0.932564i \(-0.382434\pi\)
0.361004 + 0.932564i \(0.382434\pi\)
\(374\) 0 0
\(375\) 18.7082 0.966087
\(376\) 0 0
\(377\) −8.61803 26.5236i −0.443851 1.36603i
\(378\) 0 0
\(379\) 10.2812 + 7.46969i 0.528107 + 0.383692i 0.819649 0.572866i \(-0.194168\pi\)
−0.291542 + 0.956558i \(0.594168\pi\)
\(380\) 0 0
\(381\) 4.85410 14.9394i 0.248683 0.765368i
\(382\) 0 0
\(383\) −8.28115 + 6.01661i −0.423147 + 0.307434i −0.778903 0.627145i \(-0.784224\pi\)
0.355756 + 0.934579i \(0.384224\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 7.66312 5.56758i 0.389538 0.283016i
\(388\) 0 0
\(389\) 4.97214 15.3027i 0.252097 0.775876i −0.742290 0.670078i \(-0.766261\pi\)
0.994388 0.105797i \(-0.0337395\pi\)
\(390\) 0 0
\(391\) −0.454915 0.330515i −0.0230060 0.0167149i
\(392\) 0 0
\(393\) −2.64590 8.14324i −0.133468 0.410772i
\(394\) 0 0
\(395\) 54.8673 2.76067
\(396\) 0 0
\(397\) 27.1803 1.36414 0.682071 0.731286i \(-0.261079\pi\)
0.682071 + 0.731286i \(0.261079\pi\)
\(398\) 0 0
\(399\) −0.371323 1.14281i −0.0185894 0.0572123i
\(400\) 0 0
\(401\) 2.30902 + 1.67760i 0.115307 + 0.0837753i 0.643944 0.765072i \(-0.277297\pi\)
−0.528637 + 0.848848i \(0.677297\pi\)
\(402\) 0 0
\(403\) −12.2984 + 37.8505i −0.612626 + 1.88547i
\(404\) 0 0
\(405\) 3.11803 2.26538i 0.154936 0.112568i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 8.00000 5.81234i 0.395575 0.287402i −0.372161 0.928168i \(-0.621383\pi\)
0.767736 + 0.640766i \(0.221383\pi\)
\(410\) 0 0
\(411\) 6.48936 19.9722i 0.320096 0.985155i
\(412\) 0 0
\(413\) −0.409830 0.297759i −0.0201664 0.0146518i
\(414\) 0 0
\(415\) 18.4271 + 56.7126i 0.904548 + 2.78391i
\(416\) 0 0
\(417\) 3.79837 0.186007
\(418\) 0 0
\(419\) 17.8541 0.872230 0.436115 0.899891i \(-0.356354\pi\)
0.436115 + 0.899891i \(0.356354\pi\)
\(420\) 0 0
\(421\) −2.86475 8.81678i −0.139619 0.429704i 0.856661 0.515880i \(-0.172535\pi\)
−0.996280 + 0.0861767i \(0.972535\pi\)
\(422\) 0 0
\(423\) −2.92705 2.12663i −0.142318 0.103400i
\(424\) 0 0
\(425\) −7.25329 + 22.3233i −0.351836 + 1.08284i
\(426\) 0 0
\(427\) −0.500000 + 0.363271i −0.0241967 + 0.0175799i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.7812 7.83297i 0.519310 0.377301i −0.297034 0.954867i \(-0.595997\pi\)
0.816344 + 0.577566i \(0.195997\pi\)
\(432\) 0 0
\(433\) −4.61803 + 14.2128i −0.221929 + 0.683026i 0.776660 + 0.629920i \(0.216912\pi\)
−0.998589 + 0.0531062i \(0.983088\pi\)
\(434\) 0 0
\(435\) 13.9443 + 10.1311i 0.668577 + 0.485749i
\(436\) 0 0
\(437\) −0.371323 1.14281i −0.0177628 0.0546682i
\(438\) 0 0
\(439\) 19.3607 0.924035 0.462017 0.886871i \(-0.347126\pi\)
0.462017 + 0.886871i \(0.347126\pi\)
\(440\) 0 0
\(441\) −6.94427 −0.330680
\(442\) 0 0
\(443\) 0.0557281 + 0.171513i 0.00264772 + 0.00814885i 0.952372 0.304940i \(-0.0986363\pi\)
−0.949724 + 0.313089i \(0.898636\pi\)
\(444\) 0 0
\(445\) 3.11803 + 2.26538i 0.147809 + 0.107390i
\(446\) 0 0
\(447\) −5.21885 + 16.0620i −0.246843 + 0.759705i
\(448\) 0 0
\(449\) 6.09017 4.42477i 0.287413 0.208818i −0.434731 0.900560i \(-0.643157\pi\)
0.722144 + 0.691742i \(0.243157\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −3.61803 + 2.62866i −0.169990 + 0.123505i
\(454\) 0 0
\(455\) −1.75329 + 5.39607i −0.0821955 + 0.252972i
\(456\) 0 0
\(457\) 0.927051 + 0.673542i 0.0433656 + 0.0315070i 0.609257 0.792973i \(-0.291468\pi\)
−0.565891 + 0.824480i \(0.691468\pi\)
\(458\) 0 0
\(459\) 0.736068 + 2.26538i 0.0343567 + 0.105739i
\(460\) 0 0
\(461\) −19.5623 −0.911107 −0.455554 0.890208i \(-0.650559\pi\)
−0.455554 + 0.890208i \(0.650559\pi\)
\(462\) 0 0
\(463\) 21.2148 0.985935 0.492967 0.870048i \(-0.335912\pi\)
0.492967 + 0.870048i \(0.335912\pi\)
\(464\) 0 0
\(465\) −7.60081 23.3929i −0.352479 1.08482i
\(466\) 0 0
\(467\) −16.0451 11.6574i −0.742478 0.539442i 0.151008 0.988533i \(-0.451748\pi\)
−0.893486 + 0.449091i \(0.851748\pi\)
\(468\) 0 0
\(469\) −0.0106431 + 0.0327561i −0.000491454 + 0.00151254i
\(470\) 0 0
\(471\) −13.9443 + 10.1311i −0.642518 + 0.466817i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −40.5795 + 29.4828i −1.86192 + 1.35276i
\(476\) 0 0
\(477\) 2.02786 6.24112i 0.0928495 0.285761i
\(478\) 0 0
\(479\) 10.7812 + 7.83297i 0.492603 + 0.357897i 0.806185 0.591664i \(-0.201529\pi\)
−0.313581 + 0.949561i \(0.601529\pi\)
\(480\) 0 0
\(481\) −7.25329 22.3233i −0.330722 1.01786i
\(482\) 0 0
\(483\) 0.0557281 0.00253572
\(484\) 0 0
\(485\) 19.6180 0.890809
\(486\) 0 0
\(487\) 11.0729 + 34.0790i 0.501763 + 1.54427i 0.806145 + 0.591718i \(0.201550\pi\)
−0.304382 + 0.952550i \(0.598450\pi\)
\(488\) 0 0
\(489\) −3.92705 2.85317i −0.177587 0.129025i
\(490\) 0 0
\(491\) 1.59017 4.89404i 0.0717634 0.220865i −0.908742 0.417359i \(-0.862956\pi\)
0.980505 + 0.196494i \(0.0629557\pi\)
\(492\) 0 0
\(493\) −8.61803 + 6.26137i −0.388137 + 0.281998i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.263932 0.191758i 0.0118390 0.00860151i
\(498\) 0 0
\(499\) 4.71885 14.5231i 0.211245 0.650144i −0.788154 0.615478i \(-0.788963\pi\)
0.999399 0.0346664i \(-0.0110369\pi\)
\(500\) 0 0
\(501\) 0.500000 + 0.363271i 0.0223384 + 0.0162298i
\(502\) 0 0
\(503\) −5.32624 16.3925i −0.237485 0.730904i −0.996782 0.0801599i \(-0.974457\pi\)
0.759297 0.650744i \(-0.225543\pi\)
\(504\) 0 0
\(505\) −22.9098 −1.01947
\(506\) 0 0
\(507\) −25.8885 −1.14975
\(508\) 0 0
\(509\) 3.93769 + 12.1190i 0.174535 + 0.537164i 0.999612 0.0278565i \(-0.00886816\pi\)
−0.825077 + 0.565021i \(0.808868\pi\)
\(510\) 0 0
\(511\) 0.618034 + 0.449028i 0.0273402 + 0.0198638i
\(512\) 0 0
\(513\) −1.57295 + 4.84104i −0.0694474 + 0.213737i
\(514\) 0 0
\(515\) 38.8885 28.2542i 1.71363 1.24503i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −4.50000 + 3.26944i −0.197528 + 0.143513i
\(520\) 0 0
\(521\) 4.58359 14.1068i 0.200811 0.618032i −0.799049 0.601266i \(-0.794663\pi\)
0.999859 0.0167657i \(-0.00533695\pi\)
\(522\) 0 0
\(523\) −17.6353 12.8128i −0.771136 0.560263i 0.131170 0.991360i \(-0.458127\pi\)
−0.902306 + 0.431097i \(0.858127\pi\)
\(524\) 0 0
\(525\) −0.718847 2.21238i −0.0313731 0.0965563i
\(526\) 0 0
\(527\) 15.2016 0.662193
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) 0 0
\(531\) 0.663119 + 2.04087i 0.0287769 + 0.0885662i
\(532\) 0 0
\(533\) 47.7877 + 34.7198i 2.06992 + 1.50388i
\(534\) 0 0
\(535\) 7.77458 23.9277i 0.336124 1.03448i
\(536\) 0 0
\(537\) −14.5172 + 10.5474i −0.626464 + 0.455153i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −5.11803 + 3.71847i −0.220041 + 0.159869i −0.692345 0.721566i \(-0.743423\pi\)
0.472304 + 0.881436i \(0.343423\pi\)
\(542\) 0 0
\(543\) −1.83688 + 5.65334i −0.0788281 + 0.242608i
\(544\) 0 0
\(545\) 24.9443 + 18.1231i 1.06850 + 0.776307i
\(546\) 0 0
\(547\) −4.11803 12.6740i −0.176074 0.541901i 0.823606 0.567162i \(-0.191959\pi\)
−0.999681 + 0.0252603i \(0.991959\pi\)
\(548\) 0 0
\(549\) 2.61803 0.111735
\(550\) 0 0
\(551\) −22.7639 −0.969776
\(552\) 0 0
\(553\) −1.03851 3.19620i −0.0441618 0.135916i
\(554\) 0 0
\(555\) 11.7361 + 8.52675i 0.498168 + 0.361940i
\(556\) 0 0
\(557\) −1.57295 + 4.84104i −0.0666480 + 0.205121i −0.978834 0.204654i \(-0.934393\pi\)
0.912186 + 0.409776i \(0.134393\pi\)
\(558\) 0 0
\(559\) 47.7877 34.7198i 2.02121 1.46849i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 32.9336 23.9277i 1.38799 1.00843i 0.391904 0.920006i \(-0.371816\pi\)
0.996083 0.0884255i \(-0.0281835\pi\)
\(564\) 0 0
\(565\) −14.5729 + 44.8509i −0.613089 + 1.88689i
\(566\) 0 0
\(567\) −0.190983 0.138757i −0.00802053 0.00582726i
\(568\) 0 0
\(569\) −1.50658 4.63677i −0.0631590 0.194383i 0.914498 0.404591i \(-0.132586\pi\)
−0.977657 + 0.210207i \(0.932586\pi\)
\(570\) 0 0
\(571\) −24.3262 −1.01802 −0.509011 0.860760i \(-0.669989\pi\)
−0.509011 + 0.860760i \(0.669989\pi\)
\(572\) 0 0
\(573\) 21.6525 0.904545
\(574\) 0 0
\(575\) −0.718847 2.21238i −0.0299780 0.0922628i
\(576\) 0 0
\(577\) −23.6525 17.1845i −0.984665 0.715401i −0.0259190 0.999664i \(-0.508251\pi\)
−0.958746 + 0.284263i \(0.908251\pi\)
\(578\) 0 0
\(579\) 4.73607 14.5761i 0.196824 0.605763i
\(580\) 0 0
\(581\) 2.95492 2.14687i 0.122591 0.0890672i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 19.4443 14.1271i 0.803922 0.584083i
\(586\) 0 0
\(587\) 7.96149 24.5030i 0.328606 1.01135i −0.641181 0.767390i \(-0.721555\pi\)
0.969787 0.243955i \(-0.0784450\pi\)
\(588\) 0 0
\(589\) 26.2812 + 19.0944i 1.08290 + 0.786770i
\(590\) 0 0
\(591\) −1.82624 5.62058i −0.0751214 0.231200i
\(592\) 0 0
\(593\) −19.4508 −0.798751 −0.399375 0.916788i \(-0.630773\pi\)
−0.399375 + 0.916788i \(0.630773\pi\)
\(594\) 0 0
\(595\) 2.16718 0.0888459
\(596\) 0 0
\(597\) 3.21885 + 9.90659i 0.131739 + 0.405450i
\(598\) 0 0
\(599\) −32.8885 23.8949i −1.34379 0.976320i −0.999295 0.0375317i \(-0.988050\pi\)
−0.344494 0.938789i \(-0.611950\pi\)
\(600\) 0 0
\(601\) −6.16312 + 18.9681i −0.251399 + 0.773726i 0.743119 + 0.669159i \(0.233346\pi\)
−0.994518 + 0.104567i \(0.966654\pi\)
\(602\) 0 0
\(603\) 0.118034 0.0857567i 0.00480672 0.00349228i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 7.01722 5.09831i 0.284820 0.206934i −0.436197 0.899851i \(-0.643675\pi\)
0.721017 + 0.692917i \(0.243675\pi\)
\(608\) 0 0
\(609\) 0.326238 1.00406i 0.0132198 0.0406864i
\(610\) 0 0
\(611\) −18.2533 13.2618i −0.738449 0.536515i
\(612\) 0 0
\(613\) −5.29180 16.2865i −0.213734 0.657804i −0.999241 0.0389523i \(-0.987598\pi\)
0.785507 0.618852i \(-0.212402\pi\)
\(614\) 0 0
\(615\) −36.5066 −1.47209
\(616\) 0 0
\(617\) −7.00000 −0.281809 −0.140905 0.990023i \(-0.545001\pi\)
−0.140905 + 0.990023i \(0.545001\pi\)
\(618\) 0 0
\(619\) −2.30902 7.10642i −0.0928072 0.285631i 0.893869 0.448329i \(-0.147981\pi\)
−0.986676 + 0.162697i \(0.947981\pi\)
\(620\) 0 0
\(621\) −0.190983 0.138757i −0.00766388 0.00556814i
\(622\) 0 0
\(623\) 0.0729490 0.224514i 0.00292264 0.00899496i
\(624\) 0 0
\(625\) −18.4721 + 13.4208i −0.738885 + 0.536832i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.25329 + 5.26982i −0.289208 + 0.210122i
\(630\) 0 0
\(631\) 2.38854 7.35118i 0.0950864 0.292646i −0.892190 0.451661i \(-0.850832\pi\)
0.987276 + 0.159015i \(0.0508318\pi\)
\(632\) 0 0
\(633\) −15.1631 11.0167i −0.602680 0.437873i
\(634\) 0 0
\(635\) 18.7082 + 57.5779i 0.742412 + 2.28491i
\(636\) 0 0
\(637\) −43.3050 −1.71580
\(638\) 0 0
\(639\) −1.38197 −0.0546697
\(640\) 0 0
\(641\) 7.71885 + 23.7562i 0.304876 + 0.938312i 0.979723 + 0.200355i \(0.0642095\pi\)
−0.674847 + 0.737957i \(0.735791\pi\)
\(642\) 0 0
\(643\) 32.4894 + 23.6049i 1.28126 + 0.930886i 0.999590 0.0286264i \(-0.00911333\pi\)
0.281665 + 0.959513i \(0.409113\pi\)
\(644\) 0 0
\(645\) −11.2812 + 34.7198i −0.444195 + 1.36709i
\(646\) 0 0
\(647\) −28.8713 + 20.9762i −1.13505 + 0.824661i −0.986422 0.164232i \(-0.947485\pi\)
−0.148627 + 0.988893i \(0.547485\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −1.21885 + 0.885544i −0.0477704 + 0.0347072i
\(652\) 0 0
\(653\) −6.53444 + 20.1109i −0.255712 + 0.787002i 0.737976 + 0.674827i \(0.235782\pi\)
−0.993688 + 0.112175i \(0.964218\pi\)
\(654\) 0 0
\(655\) 26.6976 + 19.3969i 1.04316 + 0.757900i
\(656\) 0 0
\(657\) −1.00000 3.07768i −0.0390137 0.120072i
\(658\) 0 0
\(659\) −9.70820 −0.378178 −0.189089 0.981960i \(-0.560553\pi\)
−0.189089 + 0.981960i \(0.560553\pi\)
\(660\) 0 0
\(661\) −13.3262 −0.518331 −0.259165 0.965833i \(-0.583447\pi\)
−0.259165 + 0.965833i \(0.583447\pi\)
\(662\) 0 0
\(663\) 4.59017 + 14.1271i 0.178267 + 0.548651i
\(664\) 0 0
\(665\) 3.74671 + 2.72214i 0.145291 + 0.105560i
\(666\) 0 0
\(667\) 0.326238 1.00406i 0.0126320 0.0388772i
\(668\) 0 0
\(669\) −6.04508 + 4.39201i −0.233716 + 0.169805i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 28.6976 20.8500i 1.10621 0.803708i 0.124147 0.992264i \(-0.460381\pi\)
0.982063 + 0.188555i \(0.0603805\pi\)
\(674\) 0 0
\(675\) −3.04508 + 9.37181i −0.117205 + 0.360721i
\(676\) 0 0
\(677\) 2.00000 + 1.45309i 0.0768662 + 0.0558466i 0.625555 0.780180i \(-0.284873\pi\)
−0.548688 + 0.836027i \(0.684873\pi\)
\(678\) 0 0
\(679\) −0.371323 1.14281i −0.0142501 0.0438572i
\(680\) 0 0
\(681\) 12.7082 0.486979
\(682\) 0 0
\(683\) −37.6525 −1.44073 −0.720366 0.693594i \(-0.756026\pi\)
−0.720366 + 0.693594i \(0.756026\pi\)
\(684\) 0 0
\(685\) 25.0106 + 76.9748i 0.955608 + 2.94106i
\(686\) 0 0
\(687\) 8.85410 + 6.43288i 0.337805 + 0.245430i
\(688\) 0 0
\(689\) 12.6459 38.9201i 0.481770 1.48274i
\(690\) 0 0
\(691\) −26.3262 + 19.1271i −1.00150 + 0.727630i −0.962409 0.271605i \(-0.912445\pi\)
−0.0390886 + 0.999236i \(0.512445\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.8435 + 8.60478i −0.449248 + 0.326398i
\(696\) 0 0
\(697\) 6.97214 21.4580i 0.264088 0.812781i
\(698\) 0 0
\(699\) −0.972136 0.706298i −0.0367696 0.0267146i
\(700\) 0 0
\(701\) 8.80902 + 27.1114i 0.332712 + 1.02398i 0.967838 + 0.251574i \(0.0809481\pi\)
−0.635126 + 0.772408i \(0.719052\pi\)
\(702\) 0 0
\(703\) −19.1591 −0.722597
\(704\) 0 0
\(705\) 13.9443 0.525172
\(706\) 0 0
\(707\) 0.433629 + 1.33457i 0.0163083 + 0.0501918i
\(708\) 0 0
\(709\) −13.5451 9.84108i −0.508696 0.369590i 0.303632 0.952789i \(-0.401801\pi\)
−0.812329 + 0.583200i \(0.801801\pi\)
\(710\) 0 0
\(711\) −4.39919 + 13.5393i −0.164982 + 0.507764i
\(712\) 0 0
\(713\) −1.21885 + 0.885544i −0.0456462 + 0.0331639i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −14.1631 + 10.2901i −0.528931 + 0.384291i
\(718\) 0 0
\(719\) 5.89261 18.1356i 0.219757 0.676343i −0.779024 0.626994i \(-0.784285\pi\)
0.998782 0.0493495i \(-0.0157148\pi\)
\(720\) 0 0
\(721\) −2.38197 1.73060i −0.0887090 0.0644509i
\(722\) 0 0
\(723\) −7.32624 22.5478i −0.272466 0.838563i
\(724\) 0 0
\(725\) −44.0689 −1.63668
\(726\) 0 0
\(727\) −8.85410 −0.328380 −0.164190 0.986429i \(-0.552501\pi\)
−0.164190 + 0.986429i \(0.552501\pi\)
\(728\) 0 0
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 0 0
\(731\) −18.2533 13.2618i −0.675122 0.490505i
\(732\) 0 0
\(733\) −13.7639 + 42.3610i −0.508382 + 1.56464i 0.286626 + 0.958042i \(0.407466\pi\)
−0.795009 + 0.606598i \(0.792534\pi\)
\(734\) 0 0
\(735\) 21.6525 15.7314i 0.798664 0.580263i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −10.3713 + 7.53521i −0.381515 + 0.277187i −0.761970 0.647613i \(-0.775768\pi\)
0.380455 + 0.924800i \(0.375768\pi\)
\(740\) 0 0
\(741\) −9.80902 + 30.1891i −0.360343 + 1.10902i
\(742\) 0 0
\(743\) 9.28115 + 6.74315i 0.340492 + 0.247382i 0.744870 0.667210i \(-0.232512\pi\)
−0.404377 + 0.914592i \(0.632512\pi\)
\(744\) 0 0
\(745\) −20.1140 61.9044i −0.736919 2.26800i
\(746\) 0 0
\(747\) −15.4721 −0.566096
\(748\) 0 0
\(749\) −1.54102 −0.0563076
\(750\) 0 0
\(751\) −12.8647 39.5936i −0.469441 1.44479i −0.853310 0.521404i \(-0.825409\pi\)
0.383869 0.923388i \(-0.374591\pi\)
\(752\) 0 0
\(753\) 19.4894 + 14.1598i 0.710232 + 0.516013i
\(754\) 0 0
\(755\) 5.32624 16.3925i 0.193842 0.596583i
\(756\) 0 0
\(757\) 8.42705 6.12261i 0.306286 0.222530i −0.424015 0.905655i \(-0.639380\pi\)
0.730301 + 0.683125i \(0.239380\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23.6631 + 17.1923i −0.857787 + 0.623219i −0.927282 0.374363i \(-0.877861\pi\)
0.0694947 + 0.997582i \(0.477861\pi\)
\(762\) 0 0
\(763\) 0.583592 1.79611i 0.0211275 0.0650236i
\(764\) 0 0
\(765\) −7.42705 5.39607i −0.268526 0.195095i
\(766\) 0 0
\(767\) 4.13525 + 12.7270i 0.149315 + 0.459546i
\(768\) 0 0
\(769\) 33.5623 1.21029 0.605144 0.796116i \(-0.293116\pi\)
0.605144 + 0.796116i \(0.293116\pi\)
\(770\) 0 0
\(771\) 2.79837 0.100781
\(772\) 0 0
\(773\) 9.07295 + 27.9237i 0.326331 + 1.00434i 0.970836 + 0.239744i \(0.0770636\pi\)
−0.644505 + 0.764600i \(0.722936\pi\)
\(774\) 0 0
\(775\) 50.8779 + 36.9650i 1.82759 + 1.32782i
\(776\) 0 0
\(777\) 0.274575 0.845055i 0.00985033 0.0303162i
\(778\) 0 0
\(779\) 39.0066 28.3399i 1.39756 1.01538i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −3.61803 + 2.62866i −0.129298 + 0.0939405i
\(784\) 0 0
\(785\) 20.5279 63.1783i 0.732671 2.25493i
\(786\) 0 0
\(787\) 36.2148 + 26.3116i 1.29092 + 0.937907i 0.999823 0.0187879i \(-0.00598074\pi\)
0.291094 + 0.956694i \(0.405981\pi\)
\(788\) 0 0
\(789\) 7.37132 + 22.6866i 0.262426 + 0.807664i
\(790\) 0 0
\(791\) 2.88854 0.102705
\(792\) 0 0
\(793\) 16.3262 0.579762
\(794\) 0 0
\(795\) 7.81559 + 24.0539i 0.277191 + 0.853105i
\(796\) 0 0
\(797\) 39.6525 + 28.8092i 1.40456 + 1.02047i 0.994085 + 0.108604i \(0.0346380\pi\)
0.410478 + 0.911871i \(0.365362\pi\)
\(798\) 0 0
\(799\) −2.66312 + 8.19624i −0.0942144 + 0.289962i
\(800\) 0 0
\(801\) −0.809017 + 0.587785i −0.0285852 + 0.0207684i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −0.173762 + 0.126246i −0.00612431 + 0.00444957i
\(806\) 0 0
\(807\) −8.79837 + 27.0786i −0.309717 + 0.953212i
\(808\) 0 0
\(809\) 28.5344 + 20.7315i 1.00322 + 0.728880i 0.962776 0.270302i \(-0.0871234\pi\)
0.0404419 + 0.999182i \(0.487123\pi\)
\(810\) 0 0
\(811\) 0.680340 + 2.09387i 0.0238900 + 0.0735258i 0.962291 0.272023i \(-0.0876927\pi\)
−0.938401 + 0.345549i \(0.887693\pi\)
\(812\) 0 0
\(813\) −2.43769 −0.0854937
\(814\) 0 0
\(815\) 18.7082 0.655320
\(816\) 0 0
\(817\) −14.8992 45.8550i −0.521257 1.60426i
\(818\) 0 0
\(819\) −1.19098 0.865300i −0.0416163 0.0302360i
\(820\) 0 0
\(821\) −8.45492 + 26.0216i −0.295079 + 0.908158i 0.688116 + 0.725600i \(0.258438\pi\)
−0.983195 + 0.182558i \(0.941562\pi\)
\(822\) 0 0
\(823\) −18.7533 + 13.6251i −0.653699 + 0.474940i −0.864529 0.502583i \(-0.832383\pi\)
0.210831 + 0.977523i \(0.432383\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −33.2705 + 24.1724i −1.15693 + 0.840558i −0.989387 0.145307i \(-0.953583\pi\)
−0.167542 + 0.985865i \(0.553583\pi\)
\(828\) 0 0
\(829\) 1.46556 4.51052i 0.0509009 0.156657i −0.922375 0.386296i \(-0.873754\pi\)
0.973276 + 0.229639i \(0.0737544\pi\)
\(830\) 0 0
\(831\) −2.07295 1.50609i −0.0719098 0.0522455i
\(832\) 0 0
\(833\) 5.11146 + 15.7314i 0.177101 + 0.545062i
\(834\) 0 0
\(835\) −2.38197 −0.0824313
\(836\) 0 0
\(837\) 6.38197 0.220593
\(838\) 0 0
\(839\) 11.6910 + 35.9811i 0.403618 + 1.24221i 0.922044 + 0.387085i \(0.126518\pi\)
−0.518427 + 0.855122i \(0.673482\pi\)
\(840\) 0 0
\(841\) 7.28115 + 5.29007i 0.251074 + 0.182416i
\(842\) 0 0
\(843\) 5.29180 16.2865i 0.182259 0.560936i
\(844\) 0 0
\(845\) 80.7214 58.6475i 2.77690 2.01754i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −18.7984 + 13.6578i −0.645159 + 0.468735i
\(850\) 0 0
\(851\) 0.274575 0.845055i 0.00941231 0.0289681i
\(852\) 0 0
\(853\) 8.60739 + 6.25364i 0.294711 + 0.214120i 0.725309 0.688424i \(-0.241697\pi\)
−0.430597 + 0.902544i \(0.641697\pi\)
\(854\) 0 0
\(855\) −6.06231 18.6579i −0.207326 0.638085i
\(856\) 0 0
\(857\) 50.1935 1.71458 0.857289 0.514836i \(-0.172147\pi\)
0.857289 + 0.514836i \(0.172147\pi\)
\(858\) 0 0
\(859\) 8.81966 0.300923 0.150461 0.988616i \(-0.451924\pi\)
0.150461 + 0.988616i \(0.451924\pi\)
\(860\) 0 0
\(861\) 0.690983 + 2.12663i 0.0235486 + 0.0724753i
\(862\) 0 0
\(863\) 11.6180 + 8.44100i 0.395482 + 0.287335i 0.767698 0.640811i \(-0.221402\pi\)
−0.372216 + 0.928146i \(0.621402\pi\)
\(864\) 0 0
\(865\) 6.62461 20.3885i 0.225244 0.693228i
\(866\) 0 0
\(867\) −9.16312 + 6.65740i −0.311196 + 0.226097i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0.736068 0.534785i 0.0249407 0.0181205i
\(872\) 0 0
\(873\) −1.57295 + 4.84104i −0.0532363 + 0.163844i
\(874\) 0 0
\(875\) 3.57295 + 2.59590i 0.120788 + 0.0877574i
\(876\) 0 0
\(877\) −0.274575 0.845055i −0.00927174 0.0285355i 0.946314 0.323250i \(-0.104775\pi\)
−0.955585 + 0.294714i \(0.904775\pi\)
\(878\) 0 0
\(879\) −5.00000 −0.168646
\(880\) 0 0
\(881\) 40.5623 1.36658 0.683289 0.730148i \(-0.260549\pi\)
0.683289 + 0.730148i \(0.260549\pi\)
\(882\) 0 0
\(883\) 4.61803 + 14.2128i 0.155409 + 0.478300i 0.998202 0.0599376i \(-0.0190902\pi\)
−0.842793 + 0.538238i \(0.819090\pi\)
\(884\) 0 0
\(885\) −6.69098 4.86128i −0.224915 0.163410i
\(886\) 0 0
\(887\) 10.2877 31.6624i 0.345428 1.06312i −0.615926 0.787804i \(-0.711218\pi\)
0.961354 0.275315i \(-0.0887820\pi\)
\(888\) 0 0
\(889\) 3.00000 2.17963i 0.100617 0.0731024i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14.8992 + 10.8249i −0.498582 + 0.362241i
\(894\) 0 0
\(895\) 21.3713 65.7742i 0.714365 2.19859i
\(896\) 0 0
\(897\) −1.19098 0.865300i −0.0397658 0.0288915i
\(898\) 0 0
\(899\) 8.81966 + 27.1441i 0.294152 + 0.905307i
\(900\) 0 0
\(901\) −15.6312 −0.520750
\(902\) 0 0
\(903\) 2.23607 0.0744117
\(904\) 0 0
\(905\) −7.07953 21.7885i −0.235331 0.724276i
\(906\) 0 0
\(907\) 34.6803 + 25.1967i 1.15154 + 0.836644i 0.988685 0.150006i \(-0.0479292\pi\)
0.162857 + 0.986650i \(0.447929\pi\)
\(908\) 0 0
\(909\) 1.83688 5.65334i 0.0609255 0.187509i
\(910\) 0 0
\(911\) −20.6631 + 15.0126i −0.684600 + 0.497391i −0.874880 0.484339i \(-0.839060\pi\)
0.190281 + 0.981730i \(0.439060\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −8.16312 + 5.93085i −0.269864 + 0.196068i
\(916\) 0 0
\(917\) 0.624612 1.92236i 0.0206265 0.0634818i
\(918\) 0 0
\(919\) −12.8090 9.30630i −0.422530 0.306986i 0.356125 0.934438i \(-0.384098\pi\)
−0.778655 + 0.627452i \(0.784098\pi\)
\(920\) 0 0
\(921\) −0.208204 0.640786i −0.00686055 0.0211146i
\(922\) 0 0
\(923\) −8.61803 −0.283666
\(924\) 0 0
\(925\) −37.0902 −1.21952
\(926\) 0 0
\(927\) 3.85410 + 11.8617i 0.126585 + 0.389590i
\(928\) 0 0
\(929\) −15.8435 11.5109i −0.519807 0.377662i 0.296724 0.954963i \(-0.404106\pi\)
−0.816531 + 0.577301i \(0.804106\pi\)
\(930\) 0 0
\(931\) −10.9230 + 33.6175i −0.357986 + 1.10177i
\(932\) 0 0
\(933\) −23.6074 + 17.1518i −0.772871 + 0.561524i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 15.9894 11.6169i 0.522350 0.379509i −0.295139 0.955454i \(-0.595366\pi\)
0.817488 + 0.575945i \(0.195366\pi\)
\(938\) 0 0
\(939\) 0.309017 0.951057i 0.0100844 0.0310366i
\(940\) 0 0
\(941\) −2.07295 1.50609i −0.0675762 0.0490970i 0.553484 0.832860i \(-0.313298\pi\)
−0.621061 + 0.783763i \(0.713298\pi\)
\(942\) 0 0
\(943\) 0.690983 + 2.12663i 0.0225015 + 0.0692525i
\(944\) 0 0
\(945\) 0.909830 0.0295968
\(946\) 0 0
\(947\) −2.79837 −0.0909349 −0.0454675 0.998966i \(-0.514478\pi\)
−0.0454675 + 0.998966i \(0.514478\pi\)
\(948\) 0 0
\(949\) −6.23607 19.1926i −0.202431 0.623020i
\(950\) 0 0
\(951\) 6.89919 + 5.01255i 0.223721 + 0.162543i
\(952\) 0 0
\(953\) −10.7426 + 33.0625i −0.347988 + 1.07100i 0.611976 + 0.790876i \(0.290375\pi\)
−0.959964 + 0.280122i \(0.909625\pi\)
\(954\) 0 0
\(955\) −67.5132 + 49.0512i −2.18467 + 1.58726i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.01064 2.91390i 0.129510 0.0940948i
\(960\) 0 0
\(961\) 3.00658 9.25330i 0.0969864 0.298493i
\(962\) 0 0
\(963\) 5.28115 + 3.83698i 0.170183 + 0.123645i
\(964\) 0 0
\(965\) 18.2533 + 56.1778i 0.587594 + 1.80843i
\(966\) 0 0
\(967\) −14.7295 −0.473668 −0.236834 0.971550i \(-0.576110\pi\)
−0.236834 + 0.971550i \(0.576110\pi\)
\(968\) 0 0
\(969\) 12.1246 0.389499
\(970\) 0 0
\(971\) 0.729490 + 2.24514i 0.0234105 + 0.0720500i 0.962079 0.272770i \(-0.0879399\pi\)
−0.938669 + 0.344820i \(0.887940\pi\)
\(972\) 0 0
\(973\) 0.725425 + 0.527052i 0.0232561 + 0.0168965i
\(974\) 0 0
\(975\) −18.9894 + 58.4432i −0.608146 + 1.87168i
\(976\) 0 0
\(977\) 26.6074 19.3314i 0.851246 0.618466i −0.0742434 0.997240i \(-0.523654\pi\)
0.925489 + 0.378774i \(0.123654\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −6.47214 + 4.70228i −0.206639 + 0.150132i
\(982\) 0 0
\(983\) −11.3820 + 35.0301i −0.363028 + 1.11729i 0.588178 + 0.808731i \(0.299845\pi\)
−0.951207 + 0.308555i \(0.900155\pi\)
\(984\) 0 0
\(985\) 18.4271 + 13.3880i 0.587135 + 0.426578i
\(986\) 0 0
\(987\) −0.263932 0.812299i −0.00840105 0.0258558i
\(988\) 0 0
\(989\) 2.23607 0.0711028
\(990\) 0 0
\(991\) 43.2705 1.37453 0.687267 0.726405i \(-0.258810\pi\)
0.687267 + 0.726405i \(0.258810\pi\)
\(992\) 0 0
\(993\) −3.69098 11.3597i −0.117130 0.360488i
\(994\) 0 0
\(995\) −32.4787 23.5972i −1.02964 0.748080i
\(996\) 0 0
\(997\) −9.04508 + 27.8379i −0.286461 + 0.881635i 0.699496 + 0.714636i \(0.253408\pi\)
−0.985957 + 0.166999i \(0.946592\pi\)
\(998\) 0 0
\(999\) −3.04508 + 2.21238i −0.0963422 + 0.0699967i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.2.i.p.1213.1 4
11.2 odd 10 1452.2.a.j.1.1 2
11.3 even 5 1452.2.i.j.1237.1 4
11.4 even 5 inner 1452.2.i.p.565.1 4
11.5 even 5 1452.2.i.j.493.1 4
11.6 odd 10 132.2.i.b.97.1 yes 4
11.7 odd 10 1452.2.i.o.565.1 4
11.8 odd 10 132.2.i.b.49.1 4
11.9 even 5 1452.2.a.i.1.1 2
11.10 odd 2 1452.2.i.o.1213.1 4
33.2 even 10 4356.2.a.v.1.2 2
33.8 even 10 396.2.j.c.181.1 4
33.17 even 10 396.2.j.c.361.1 4
33.20 odd 10 4356.2.a.s.1.2 2
44.19 even 10 528.2.y.a.49.1 4
44.31 odd 10 5808.2.a.cf.1.1 2
44.35 even 10 5808.2.a.cc.1.1 2
44.39 even 10 528.2.y.a.97.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.b.49.1 4 11.8 odd 10
132.2.i.b.97.1 yes 4 11.6 odd 10
396.2.j.c.181.1 4 33.8 even 10
396.2.j.c.361.1 4 33.17 even 10
528.2.y.a.49.1 4 44.19 even 10
528.2.y.a.97.1 4 44.39 even 10
1452.2.a.i.1.1 2 11.9 even 5
1452.2.a.j.1.1 2 11.2 odd 10
1452.2.i.j.493.1 4 11.5 even 5
1452.2.i.j.1237.1 4 11.3 even 5
1452.2.i.o.565.1 4 11.7 odd 10
1452.2.i.o.1213.1 4 11.10 odd 2
1452.2.i.p.565.1 4 11.4 even 5 inner
1452.2.i.p.1213.1 4 1.1 even 1 trivial
4356.2.a.s.1.2 2 33.20 odd 10
4356.2.a.v.1.2 2 33.2 even 10
5808.2.a.cc.1.1 2 44.35 even 10
5808.2.a.cf.1.1 2 44.31 odd 10