Properties

Label 1452.2.i.p
Level $1452$
Weight $2$
Character orbit 1452.i
Analytic conductor $11.594$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(493,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,8,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{10}^{2} q^{3} + (3 \zeta_{10}^{2} - \zeta_{10} + 3) q^{5} + (\zeta_{10}^{3} - 2 \zeta_{10} + 2) q^{7} + (\zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{9} + (5 \zeta_{10}^{3} - 3 \zeta_{10}^{2} + \cdots - 5) q^{13} + \cdots + ( - 2 \zeta_{10}^{3} - 3 \zeta_{10}^{2} + \cdots + 2) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 8 q^{5} + 7 q^{7} - q^{9} - 9 q^{13} + 7 q^{15} + q^{17} + 13 q^{19} + 8 q^{21} + 8 q^{23} + q^{25} + q^{27} - 10 q^{29} + 5 q^{31} - 6 q^{35} + 11 q^{37} + 9 q^{39} - 5 q^{41} - 20 q^{43}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
493.1
−0.309017 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 + 0.951057i
0 0.809017 0.587785i 0 0.881966 + 2.71441i 0 3.42705 + 2.48990i 0 0.309017 0.951057i 0
565.1 0 −0.309017 + 0.951057i 0 3.11803 2.26538i 0 0.0729490 + 0.224514i 0 −0.809017 0.587785i 0
1213.1 0 −0.309017 0.951057i 0 3.11803 + 2.26538i 0 0.0729490 0.224514i 0 −0.809017 + 0.587785i 0
1237.1 0 0.809017 + 0.587785i 0 0.881966 2.71441i 0 3.42705 2.48990i 0 0.309017 + 0.951057i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.2.i.p 4
11.b odd 2 1 1452.2.i.o 4
11.c even 5 1 1452.2.a.i 2
11.c even 5 2 1452.2.i.j 4
11.c even 5 1 inner 1452.2.i.p 4
11.d odd 10 2 132.2.i.b 4
11.d odd 10 1 1452.2.a.j 2
11.d odd 10 1 1452.2.i.o 4
33.f even 10 2 396.2.j.c 4
33.f even 10 1 4356.2.a.v 2
33.h odd 10 1 4356.2.a.s 2
44.g even 10 2 528.2.y.a 4
44.g even 10 1 5808.2.a.cc 2
44.h odd 10 1 5808.2.a.cf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.2.i.b 4 11.d odd 10 2
396.2.j.c 4 33.f even 10 2
528.2.y.a 4 44.g even 10 2
1452.2.a.i 2 11.c even 5 1
1452.2.a.j 2 11.d odd 10 1
1452.2.i.j 4 11.c even 5 2
1452.2.i.o 4 11.b odd 2 1
1452.2.i.o 4 11.d odd 10 1
1452.2.i.p 4 1.a even 1 1 trivial
1452.2.i.p 4 11.c even 5 1 inner
4356.2.a.s 2 33.h odd 10 1
4356.2.a.v 2 33.f even 10 1
5808.2.a.cc 2 44.g even 10 1
5808.2.a.cf 2 44.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1452, [\chi])\):

\( T_{5}^{4} - 8T_{5}^{3} + 34T_{5}^{2} - 77T_{5} + 121 \) Copy content Toggle raw display
\( T_{7}^{4} - 7T_{7}^{3} + 19T_{7}^{2} - 3T_{7} + 1 \) Copy content Toggle raw display
\( T_{13}^{4} + 9T_{13}^{3} + 31T_{13}^{2} - 11T_{13} + 121 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - 8 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$7$ \( T^{4} - 7 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 9 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$17$ \( T^{4} - T^{3} + \cdots + 121 \) Copy content Toggle raw display
$19$ \( T^{4} - 13 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$23$ \( (T^{2} - 4 T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$31$ \( T^{4} - 5 T^{3} + \cdots + 3025 \) Copy content Toggle raw display
$37$ \( T^{4} - 11 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$41$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$43$ \( (T^{2} + 10 T + 5)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 10 T^{2} + \cdots + 25 \) Copy content Toggle raw display
$53$ \( T^{4} + 19 T^{3} + \cdots + 7921 \) Copy content Toggle raw display
$59$ \( T^{4} + 13 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$61$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( (T^{2} + 7 T + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 10 T^{2} + \cdots + 25 \) Copy content Toggle raw display
$73$ \( T^{4} + 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$79$ \( T^{4} - 17 T^{3} + \cdots + 19321 \) Copy content Toggle raw display
$83$ \( T^{4} - 21 T^{3} + \cdots + 10201 \) Copy content Toggle raw display
$89$ \( (T - 1)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - 12 T^{3} + \cdots + 961 \) Copy content Toggle raw display
show more
show less