Properties

Label 1452.2.i.j.493.1
Level $1452$
Weight $2$
Character 1452.493
Analytic conductor $11.594$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(493,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,-7,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 493.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 1452.493
Dual form 1452.2.i.j.1237.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 - 0.587785i) q^{3} +(-1.19098 - 3.66547i) q^{5} +(-0.190983 - 0.138757i) q^{7} +(0.309017 - 0.951057i) q^{9} +(1.92705 - 5.93085i) q^{13} +(-3.11803 - 2.26538i) q^{15} +(-0.736068 - 2.26538i) q^{17} +(-4.11803 + 2.99193i) q^{19} -0.236068 q^{21} -0.236068 q^{23} +(-7.97214 + 5.79210i) q^{25} +(-0.309017 - 0.951057i) q^{27} +(3.61803 + 2.62866i) q^{29} +(-1.97214 + 6.06961i) q^{31} +(-0.281153 + 0.865300i) q^{35} +(3.04508 + 2.21238i) q^{37} +(-1.92705 - 5.93085i) q^{39} +(7.66312 - 5.56758i) q^{41} -9.47214 q^{43} -3.85410 q^{45} +(-2.92705 + 2.12663i) q^{47} +(-2.14590 - 6.60440i) q^{49} +(-1.92705 - 1.40008i) q^{51} +(2.02786 - 6.24112i) q^{53} +(-1.57295 + 4.84104i) q^{57} +(-1.73607 - 1.26133i) q^{59} +(0.809017 + 2.48990i) q^{61} +(-0.190983 + 0.138757i) q^{63} -24.0344 q^{65} -0.145898 q^{67} +(-0.190983 + 0.138757i) q^{69} +(-0.427051 - 1.31433i) q^{71} +(2.61803 + 1.90211i) q^{73} +(-3.04508 + 9.37181i) q^{75} +(-4.39919 + 13.5393i) q^{79} +(-0.809017 - 0.587785i) q^{81} +(-4.78115 - 14.7149i) q^{83} +(-7.42705 + 5.39607i) q^{85} +4.47214 q^{87} +1.00000 q^{89} +(-1.19098 + 0.865300i) q^{91} +(1.97214 + 6.06961i) q^{93} +(15.8713 + 11.5312i) q^{95} +(-1.57295 + 4.84104i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 7 q^{5} - 3 q^{7} - q^{9} + q^{13} - 8 q^{15} + 6 q^{17} - 12 q^{19} + 8 q^{21} + 8 q^{23} - 14 q^{25} + q^{27} + 10 q^{29} + 10 q^{31} + 19 q^{35} + q^{37} - q^{39} + 15 q^{41} - 20 q^{43}+ \cdots - 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.809017 0.587785i 0.467086 0.339358i
\(4\) 0 0
\(5\) −1.19098 3.66547i −0.532624 1.63925i −0.748728 0.662877i \(-0.769335\pi\)
0.216104 0.976370i \(-0.430665\pi\)
\(6\) 0 0
\(7\) −0.190983 0.138757i −0.0721848 0.0524453i 0.551108 0.834434i \(-0.314205\pi\)
−0.623292 + 0.781989i \(0.714205\pi\)
\(8\) 0 0
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1.92705 5.93085i 0.534468 1.64492i −0.210329 0.977631i \(-0.567453\pi\)
0.744796 0.667292i \(-0.232547\pi\)
\(14\) 0 0
\(15\) −3.11803 2.26538i −0.805073 0.584920i
\(16\) 0 0
\(17\) −0.736068 2.26538i −0.178523 0.549436i 0.821254 0.570563i \(-0.193275\pi\)
−0.999777 + 0.0211262i \(0.993275\pi\)
\(18\) 0 0
\(19\) −4.11803 + 2.99193i −0.944742 + 0.686395i −0.949557 0.313593i \(-0.898467\pi\)
0.00481560 + 0.999988i \(0.498467\pi\)
\(20\) 0 0
\(21\) −0.236068 −0.0515143
\(22\) 0 0
\(23\) −0.236068 −0.0492236 −0.0246118 0.999697i \(-0.507835\pi\)
−0.0246118 + 0.999697i \(0.507835\pi\)
\(24\) 0 0
\(25\) −7.97214 + 5.79210i −1.59443 + 1.15842i
\(26\) 0 0
\(27\) −0.309017 0.951057i −0.0594703 0.183031i
\(28\) 0 0
\(29\) 3.61803 + 2.62866i 0.671852 + 0.488129i 0.870645 0.491912i \(-0.163702\pi\)
−0.198793 + 0.980042i \(0.563702\pi\)
\(30\) 0 0
\(31\) −1.97214 + 6.06961i −0.354206 + 1.09013i 0.602262 + 0.798298i \(0.294266\pi\)
−0.956468 + 0.291836i \(0.905734\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.281153 + 0.865300i −0.0475235 + 0.146262i
\(36\) 0 0
\(37\) 3.04508 + 2.21238i 0.500609 + 0.363714i 0.809250 0.587465i \(-0.199874\pi\)
−0.308641 + 0.951179i \(0.599874\pi\)
\(38\) 0 0
\(39\) −1.92705 5.93085i −0.308575 0.949697i
\(40\) 0 0
\(41\) 7.66312 5.56758i 1.19678 0.869510i 0.202814 0.979217i \(-0.434991\pi\)
0.993964 + 0.109707i \(0.0349913\pi\)
\(42\) 0 0
\(43\) −9.47214 −1.44449 −0.722244 0.691639i \(-0.756889\pi\)
−0.722244 + 0.691639i \(0.756889\pi\)
\(44\) 0 0
\(45\) −3.85410 −0.574536
\(46\) 0 0
\(47\) −2.92705 + 2.12663i −0.426954 + 0.310200i −0.780430 0.625243i \(-0.785000\pi\)
0.353476 + 0.935444i \(0.385000\pi\)
\(48\) 0 0
\(49\) −2.14590 6.60440i −0.306557 0.943485i
\(50\) 0 0
\(51\) −1.92705 1.40008i −0.269841 0.196051i
\(52\) 0 0
\(53\) 2.02786 6.24112i 0.278549 0.857284i −0.709710 0.704494i \(-0.751174\pi\)
0.988259 0.152790i \(-0.0488259\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.57295 + 4.84104i −0.208342 + 0.641211i
\(58\) 0 0
\(59\) −1.73607 1.26133i −0.226017 0.164211i 0.469014 0.883191i \(-0.344609\pi\)
−0.695031 + 0.718980i \(0.744609\pi\)
\(60\) 0 0
\(61\) 0.809017 + 2.48990i 0.103584 + 0.318799i 0.989396 0.145246i \(-0.0463975\pi\)
−0.885811 + 0.464045i \(0.846398\pi\)
\(62\) 0 0
\(63\) −0.190983 + 0.138757i −0.0240616 + 0.0174818i
\(64\) 0 0
\(65\) −24.0344 −2.98111
\(66\) 0 0
\(67\) −0.145898 −0.0178243 −0.00891214 0.999960i \(-0.502837\pi\)
−0.00891214 + 0.999960i \(0.502837\pi\)
\(68\) 0 0
\(69\) −0.190983 + 0.138757i −0.0229917 + 0.0167044i
\(70\) 0 0
\(71\) −0.427051 1.31433i −0.0506816 0.155982i 0.922512 0.385967i \(-0.126132\pi\)
−0.973194 + 0.229985i \(0.926132\pi\)
\(72\) 0 0
\(73\) 2.61803 + 1.90211i 0.306418 + 0.222625i 0.730358 0.683065i \(-0.239353\pi\)
−0.423940 + 0.905690i \(0.639353\pi\)
\(74\) 0 0
\(75\) −3.04508 + 9.37181i −0.351616 + 1.08216i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4.39919 + 13.5393i −0.494947 + 1.52329i 0.322092 + 0.946708i \(0.395614\pi\)
−0.817039 + 0.576582i \(0.804386\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 0 0
\(83\) −4.78115 14.7149i −0.524800 1.61517i −0.764712 0.644373i \(-0.777119\pi\)
0.239912 0.970795i \(-0.422881\pi\)
\(84\) 0 0
\(85\) −7.42705 + 5.39607i −0.805577 + 0.585286i
\(86\) 0 0
\(87\) 4.47214 0.479463
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) −1.19098 + 0.865300i −0.124849 + 0.0907081i
\(92\) 0 0
\(93\) 1.97214 + 6.06961i 0.204501 + 0.629389i
\(94\) 0 0
\(95\) 15.8713 + 11.5312i 1.62836 + 1.18308i
\(96\) 0 0
\(97\) −1.57295 + 4.84104i −0.159709 + 0.491533i −0.998608 0.0527545i \(-0.983200\pi\)
0.838899 + 0.544288i \(0.183200\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.83688 5.65334i 0.182776 0.562528i −0.817126 0.576458i \(-0.804434\pi\)
0.999903 + 0.0139302i \(0.00443427\pi\)
\(102\) 0 0
\(103\) −10.0902 7.33094i −0.994214 0.722339i −0.0333741 0.999443i \(-0.510625\pi\)
−0.960840 + 0.277104i \(0.910625\pi\)
\(104\) 0 0
\(105\) 0.281153 + 0.865300i 0.0274377 + 0.0844446i
\(106\) 0 0
\(107\) 5.28115 3.83698i 0.510548 0.370935i −0.302483 0.953155i \(-0.597816\pi\)
0.813032 + 0.582220i \(0.197816\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) 3.76393 0.357257
\(112\) 0 0
\(113\) −9.89919 + 7.19218i −0.931237 + 0.676583i −0.946295 0.323303i \(-0.895207\pi\)
0.0150583 + 0.999887i \(0.495207\pi\)
\(114\) 0 0
\(115\) 0.281153 + 0.865300i 0.0262176 + 0.0806896i
\(116\) 0 0
\(117\) −5.04508 3.66547i −0.466418 0.338873i
\(118\) 0 0
\(119\) −0.173762 + 0.534785i −0.0159287 + 0.0490236i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 2.92705 9.00854i 0.263923 0.812272i
\(124\) 0 0
\(125\) 15.1353 + 10.9964i 1.35374 + 0.983548i
\(126\) 0 0
\(127\) −4.85410 14.9394i −0.430732 1.32566i −0.897398 0.441223i \(-0.854545\pi\)
0.466666 0.884434i \(-0.345455\pi\)
\(128\) 0 0
\(129\) −7.66312 + 5.56758i −0.674700 + 0.490198i
\(130\) 0 0
\(131\) 8.56231 0.748092 0.374046 0.927410i \(-0.377970\pi\)
0.374046 + 0.927410i \(0.377970\pi\)
\(132\) 0 0
\(133\) 1.20163 0.104194
\(134\) 0 0
\(135\) −3.11803 + 2.26538i −0.268358 + 0.194973i
\(136\) 0 0
\(137\) −6.48936 19.9722i −0.554423 1.70634i −0.697462 0.716622i \(-0.745687\pi\)
0.143039 0.989717i \(-0.454313\pi\)
\(138\) 0 0
\(139\) 3.07295 + 2.23263i 0.260644 + 0.189369i 0.710431 0.703767i \(-0.248500\pi\)
−0.449787 + 0.893136i \(0.648500\pi\)
\(140\) 0 0
\(141\) −1.11803 + 3.44095i −0.0941554 + 0.289781i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 5.32624 16.3925i 0.442320 1.36132i
\(146\) 0 0
\(147\) −5.61803 4.08174i −0.463368 0.336656i
\(148\) 0 0
\(149\) 5.21885 + 16.0620i 0.427545 + 1.31585i 0.900537 + 0.434780i \(0.143174\pi\)
−0.472992 + 0.881067i \(0.656826\pi\)
\(150\) 0 0
\(151\) 3.61803 2.62866i 0.294431 0.213917i −0.430756 0.902468i \(-0.641753\pi\)
0.725188 + 0.688551i \(0.241753\pi\)
\(152\) 0 0
\(153\) −2.38197 −0.192571
\(154\) 0 0
\(155\) 24.5967 1.97566
\(156\) 0 0
\(157\) 13.9443 10.1311i 1.11287 0.808550i 0.129760 0.991545i \(-0.458579\pi\)
0.983114 + 0.182995i \(0.0585792\pi\)
\(158\) 0 0
\(159\) −2.02786 6.24112i −0.160820 0.494953i
\(160\) 0 0
\(161\) 0.0450850 + 0.0327561i 0.00355319 + 0.00258155i
\(162\) 0 0
\(163\) −1.50000 + 4.61653i −0.117489 + 0.361594i −0.992458 0.122585i \(-0.960882\pi\)
0.874969 + 0.484179i \(0.160882\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.190983 0.587785i 0.0147787 0.0454842i −0.943395 0.331671i \(-0.892388\pi\)
0.958174 + 0.286187i \(0.0923877\pi\)
\(168\) 0 0
\(169\) −20.9443 15.2169i −1.61110 1.17053i
\(170\) 0 0
\(171\) 1.57295 + 4.84104i 0.120286 + 0.370204i
\(172\) 0 0
\(173\) 4.50000 3.26944i 0.342129 0.248571i −0.403431 0.915010i \(-0.632182\pi\)
0.745559 + 0.666439i \(0.232182\pi\)
\(174\) 0 0
\(175\) 2.32624 0.175847
\(176\) 0 0
\(177\) −2.14590 −0.161296
\(178\) 0 0
\(179\) 14.5172 10.5474i 1.08507 0.788348i 0.106508 0.994312i \(-0.466033\pi\)
0.978560 + 0.205964i \(0.0660329\pi\)
\(180\) 0 0
\(181\) 1.83688 + 5.65334i 0.136534 + 0.420209i 0.995826 0.0912773i \(-0.0290950\pi\)
−0.859291 + 0.511487i \(0.829095\pi\)
\(182\) 0 0
\(183\) 2.11803 + 1.53884i 0.156570 + 0.113754i
\(184\) 0 0
\(185\) 4.48278 13.7966i 0.329580 1.01434i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.0729490 + 0.224514i −0.00530626 + 0.0163310i
\(190\) 0 0
\(191\) 17.5172 + 12.7270i 1.26750 + 0.920894i 0.999100 0.0424133i \(-0.0135046\pi\)
0.268401 + 0.963307i \(0.413505\pi\)
\(192\) 0 0
\(193\) −4.73607 14.5761i −0.340910 1.04921i −0.963737 0.266853i \(-0.914016\pi\)
0.622828 0.782359i \(-0.285984\pi\)
\(194\) 0 0
\(195\) −19.4443 + 14.1271i −1.39243 + 1.01166i
\(196\) 0 0
\(197\) 5.90983 0.421058 0.210529 0.977588i \(-0.432481\pi\)
0.210529 + 0.977588i \(0.432481\pi\)
\(198\) 0 0
\(199\) −10.4164 −0.738400 −0.369200 0.929350i \(-0.620368\pi\)
−0.369200 + 0.929350i \(0.620368\pi\)
\(200\) 0 0
\(201\) −0.118034 + 0.0857567i −0.00832548 + 0.00604881i
\(202\) 0 0
\(203\) −0.326238 1.00406i −0.0228974 0.0704710i
\(204\) 0 0
\(205\) −29.5344 21.4580i −2.06277 1.49869i
\(206\) 0 0
\(207\) −0.0729490 + 0.224514i −0.00507031 + 0.0156048i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −5.79180 + 17.8253i −0.398724 + 1.22715i 0.527300 + 0.849679i \(0.323204\pi\)
−0.926023 + 0.377466i \(0.876796\pi\)
\(212\) 0 0
\(213\) −1.11803 0.812299i −0.0766064 0.0556578i
\(214\) 0 0
\(215\) 11.2812 + 34.7198i 0.769368 + 2.36787i
\(216\) 0 0
\(217\) 1.21885 0.885544i 0.0827407 0.0601147i
\(218\) 0 0
\(219\) 3.23607 0.218673
\(220\) 0 0
\(221\) −14.8541 −0.999195
\(222\) 0 0
\(223\) 6.04508 4.39201i 0.404809 0.294111i −0.366688 0.930344i \(-0.619508\pi\)
0.771497 + 0.636233i \(0.219508\pi\)
\(224\) 0 0
\(225\) 3.04508 + 9.37181i 0.203006 + 0.624787i
\(226\) 0 0
\(227\) 10.2812 + 7.46969i 0.682384 + 0.495781i 0.874148 0.485660i \(-0.161421\pi\)
−0.191764 + 0.981441i \(0.561421\pi\)
\(228\) 0 0
\(229\) 3.38197 10.4086i 0.223487 0.687821i −0.774955 0.632016i \(-0.782228\pi\)
0.998442 0.0558047i \(-0.0177724\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.371323 + 1.14281i −0.0243262 + 0.0748683i −0.962483 0.271343i \(-0.912532\pi\)
0.938156 + 0.346212i \(0.112532\pi\)
\(234\) 0 0
\(235\) 11.2812 + 8.19624i 0.735901 + 0.534664i
\(236\) 0 0
\(237\) 4.39919 + 13.5393i 0.285758 + 0.879472i
\(238\) 0 0
\(239\) 14.1631 10.2901i 0.916136 0.665612i −0.0264232 0.999651i \(-0.508412\pi\)
0.942559 + 0.334039i \(0.108412\pi\)
\(240\) 0 0
\(241\) 23.7082 1.52718 0.763590 0.645702i \(-0.223435\pi\)
0.763590 + 0.645702i \(0.223435\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −21.6525 + 15.7314i −1.38333 + 1.00505i
\(246\) 0 0
\(247\) 9.80902 + 30.1891i 0.624133 + 1.92088i
\(248\) 0 0
\(249\) −12.5172 9.09429i −0.793247 0.576327i
\(250\) 0 0
\(251\) 7.44427 22.9111i 0.469878 1.44614i −0.382864 0.923805i \(-0.625062\pi\)
0.852742 0.522332i \(-0.174938\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −2.83688 + 8.73102i −0.177652 + 0.546758i
\(256\) 0 0
\(257\) 2.26393 + 1.64484i 0.141220 + 0.102602i 0.656152 0.754628i \(-0.272183\pi\)
−0.514932 + 0.857231i \(0.672183\pi\)
\(258\) 0 0
\(259\) −0.274575 0.845055i −0.0170613 0.0525092i
\(260\) 0 0
\(261\) 3.61803 2.62866i 0.223951 0.162710i
\(262\) 0 0
\(263\) −23.8541 −1.47091 −0.735453 0.677575i \(-0.763031\pi\)
−0.735453 + 0.677575i \(0.763031\pi\)
\(264\) 0 0
\(265\) −25.2918 −1.55366
\(266\) 0 0
\(267\) 0.809017 0.587785i 0.0495110 0.0359719i
\(268\) 0 0
\(269\) 8.79837 + 27.0786i 0.536446 + 1.65101i 0.740503 + 0.672053i \(0.234587\pi\)
−0.204057 + 0.978959i \(0.565413\pi\)
\(270\) 0 0
\(271\) −1.97214 1.43284i −0.119799 0.0870389i 0.526273 0.850316i \(-0.323589\pi\)
−0.646071 + 0.763277i \(0.723589\pi\)
\(272\) 0 0
\(273\) −0.454915 + 1.40008i −0.0275327 + 0.0847370i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.791796 + 2.43690i −0.0475744 + 0.146419i −0.972022 0.234891i \(-0.924527\pi\)
0.924447 + 0.381310i \(0.124527\pi\)
\(278\) 0 0
\(279\) 5.16312 + 3.75123i 0.309108 + 0.224580i
\(280\) 0 0
\(281\) −5.29180 16.2865i −0.315682 0.971570i −0.975473 0.220120i \(-0.929355\pi\)
0.659791 0.751449i \(-0.270645\pi\)
\(282\) 0 0
\(283\) 18.7984 13.6578i 1.11745 0.811873i 0.133627 0.991032i \(-0.457338\pi\)
0.983820 + 0.179159i \(0.0573375\pi\)
\(284\) 0 0
\(285\) 19.6180 1.16207
\(286\) 0 0
\(287\) −2.23607 −0.131991
\(288\) 0 0
\(289\) 9.16312 6.65740i 0.539007 0.391612i
\(290\) 0 0
\(291\) 1.57295 + 4.84104i 0.0922079 + 0.283787i
\(292\) 0 0
\(293\) −4.04508 2.93893i −0.236316 0.171694i 0.463324 0.886189i \(-0.346657\pi\)
−0.699641 + 0.714495i \(0.746657\pi\)
\(294\) 0 0
\(295\) −2.55573 + 7.86572i −0.148800 + 0.457960i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.454915 + 1.40008i −0.0263084 + 0.0809690i
\(300\) 0 0
\(301\) 1.80902 + 1.31433i 0.104270 + 0.0757566i
\(302\) 0 0
\(303\) −1.83688 5.65334i −0.105526 0.324776i
\(304\) 0 0
\(305\) 8.16312 5.93085i 0.467419 0.339600i
\(306\) 0 0
\(307\) 0.673762 0.0384536 0.0192268 0.999815i \(-0.493880\pi\)
0.0192268 + 0.999815i \(0.493880\pi\)
\(308\) 0 0
\(309\) −12.4721 −0.709515
\(310\) 0 0
\(311\) 23.6074 17.1518i 1.33865 0.972588i 0.339160 0.940729i \(-0.389857\pi\)
0.999492 0.0318591i \(-0.0101428\pi\)
\(312\) 0 0
\(313\) −0.309017 0.951057i −0.0174667 0.0537569i 0.941943 0.335772i \(-0.108997\pi\)
−0.959410 + 0.282015i \(0.908997\pi\)
\(314\) 0 0
\(315\) 0.736068 + 0.534785i 0.0414727 + 0.0301317i
\(316\) 0 0
\(317\) 2.63525 8.11048i 0.148011 0.455530i −0.849375 0.527790i \(-0.823021\pi\)
0.997386 + 0.0722595i \(0.0230210\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 2.01722 6.20837i 0.112590 0.346517i
\(322\) 0 0
\(323\) 9.80902 + 7.12667i 0.545788 + 0.396538i
\(324\) 0 0
\(325\) 18.9894 + 58.4432i 1.05334 + 3.24185i
\(326\) 0 0
\(327\) 6.47214 4.70228i 0.357910 0.260037i
\(328\) 0 0
\(329\) 0.854102 0.0470882
\(330\) 0 0
\(331\) 11.9443 0.656517 0.328258 0.944588i \(-0.393538\pi\)
0.328258 + 0.944588i \(0.393538\pi\)
\(332\) 0 0
\(333\) 3.04508 2.21238i 0.166870 0.121238i
\(334\) 0 0
\(335\) 0.173762 + 0.534785i 0.00949364 + 0.0292184i
\(336\) 0 0
\(337\) −14.2361 10.3431i −0.775488 0.563425i 0.128133 0.991757i \(-0.459101\pi\)
−0.903621 + 0.428332i \(0.859101\pi\)
\(338\) 0 0
\(339\) −3.78115 + 11.6372i −0.205364 + 0.632046i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.01722 + 3.13068i −0.0549248 + 0.169041i
\(344\) 0 0
\(345\) 0.736068 + 0.534785i 0.0396286 + 0.0287918i
\(346\) 0 0
\(347\) 2.47214 + 7.60845i 0.132711 + 0.408443i 0.995227 0.0975871i \(-0.0311124\pi\)
−0.862516 + 0.506030i \(0.831112\pi\)
\(348\) 0 0
\(349\) −22.8435 + 16.5967i −1.22278 + 0.888403i −0.996328 0.0856184i \(-0.972713\pi\)
−0.226454 + 0.974022i \(0.572713\pi\)
\(350\) 0 0
\(351\) −6.23607 −0.332857
\(352\) 0 0
\(353\) −10.4721 −0.557376 −0.278688 0.960382i \(-0.589899\pi\)
−0.278688 + 0.960382i \(0.589899\pi\)
\(354\) 0 0
\(355\) −4.30902 + 3.13068i −0.228699 + 0.166159i
\(356\) 0 0
\(357\) 0.173762 + 0.534785i 0.00919646 + 0.0283038i
\(358\) 0 0
\(359\) −18.7984 13.6578i −0.992140 0.720832i −0.0317515 0.999496i \(-0.510109\pi\)
−0.960389 + 0.278664i \(0.910109\pi\)
\(360\) 0 0
\(361\) 2.13525 6.57164i 0.112382 0.345876i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.85410 11.8617i 0.201733 0.620870i
\(366\) 0 0
\(367\) 4.35410 + 3.16344i 0.227282 + 0.165130i 0.695599 0.718431i \(-0.255139\pi\)
−0.468316 + 0.883561i \(0.655139\pi\)
\(368\) 0 0
\(369\) −2.92705 9.00854i −0.152376 0.468966i
\(370\) 0 0
\(371\) −1.25329 + 0.910568i −0.0650675 + 0.0472743i
\(372\) 0 0
\(373\) 13.9443 0.722007 0.361004 0.932564i \(-0.382434\pi\)
0.361004 + 0.932564i \(0.382434\pi\)
\(374\) 0 0
\(375\) 18.7082 0.966087
\(376\) 0 0
\(377\) 22.5623 16.3925i 1.16202 0.844255i
\(378\) 0 0
\(379\) −3.92705 12.0862i −0.201719 0.620827i −0.999832 0.0183198i \(-0.994168\pi\)
0.798113 0.602508i \(-0.205832\pi\)
\(380\) 0 0
\(381\) −12.7082 9.23305i −0.651061 0.473024i
\(382\) 0 0
\(383\) 3.16312 9.73508i 0.161628 0.497439i −0.837144 0.546982i \(-0.815776\pi\)
0.998772 + 0.0495430i \(0.0157765\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.92705 + 9.00854i −0.148790 + 0.457930i
\(388\) 0 0
\(389\) −13.0172 9.45756i −0.659999 0.479518i 0.206663 0.978412i \(-0.433739\pi\)
−0.866663 + 0.498895i \(0.833739\pi\)
\(390\) 0 0
\(391\) 0.173762 + 0.534785i 0.00878753 + 0.0270452i
\(392\) 0 0
\(393\) 6.92705 5.03280i 0.349423 0.253871i
\(394\) 0 0
\(395\) 54.8673 2.76067
\(396\) 0 0
\(397\) 27.1803 1.36414 0.682071 0.731286i \(-0.261079\pi\)
0.682071 + 0.731286i \(0.261079\pi\)
\(398\) 0 0
\(399\) 0.972136 0.706298i 0.0486677 0.0353591i
\(400\) 0 0
\(401\) −0.881966 2.71441i −0.0440433 0.135551i 0.926617 0.376007i \(-0.122703\pi\)
−0.970660 + 0.240456i \(0.922703\pi\)
\(402\) 0 0
\(403\) 32.1976 + 23.3929i 1.60387 + 1.16528i
\(404\) 0 0
\(405\) −1.19098 + 3.66547i −0.0591804 + 0.182139i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −3.05573 + 9.40456i −0.151096 + 0.465026i −0.997744 0.0671269i \(-0.978617\pi\)
0.846648 + 0.532153i \(0.178617\pi\)
\(410\) 0 0
\(411\) −16.9894 12.3435i −0.838023 0.608859i
\(412\) 0 0
\(413\) 0.156541 + 0.481784i 0.00770289 + 0.0237070i
\(414\) 0 0
\(415\) −48.2426 + 35.0503i −2.36814 + 1.72055i
\(416\) 0 0
\(417\) 3.79837 0.186007
\(418\) 0 0
\(419\) 17.8541 0.872230 0.436115 0.899891i \(-0.356354\pi\)
0.436115 + 0.899891i \(0.356354\pi\)
\(420\) 0 0
\(421\) 7.50000 5.44907i 0.365528 0.265571i −0.389826 0.920888i \(-0.627465\pi\)
0.755354 + 0.655317i \(0.227465\pi\)
\(422\) 0 0
\(423\) 1.11803 + 3.44095i 0.0543607 + 0.167305i
\(424\) 0 0
\(425\) 18.9894 + 13.7966i 0.921119 + 0.669232i
\(426\) 0 0
\(427\) 0.190983 0.587785i 0.00924232 0.0284449i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.11803 + 12.6740i −0.198359 + 0.610485i 0.801562 + 0.597911i \(0.204003\pi\)
−0.999921 + 0.0125740i \(0.995997\pi\)
\(432\) 0 0
\(433\) 12.0902 + 8.78402i 0.581016 + 0.422133i 0.839090 0.543992i \(-0.183088\pi\)
−0.258074 + 0.966125i \(0.583088\pi\)
\(434\) 0 0
\(435\) −5.32624 16.3925i −0.255374 0.785959i
\(436\) 0 0
\(437\) 0.972136 0.706298i 0.0465036 0.0337868i
\(438\) 0 0
\(439\) 19.3607 0.924035 0.462017 0.886871i \(-0.347126\pi\)
0.462017 + 0.886871i \(0.347126\pi\)
\(440\) 0 0
\(441\) −6.94427 −0.330680
\(442\) 0 0
\(443\) −0.145898 + 0.106001i −0.00693182 + 0.00503627i −0.591246 0.806491i \(-0.701364\pi\)
0.584314 + 0.811528i \(0.301364\pi\)
\(444\) 0 0
\(445\) −1.19098 3.66547i −0.0564580 0.173760i
\(446\) 0 0
\(447\) 13.6631 + 9.92684i 0.646243 + 0.469523i
\(448\) 0 0
\(449\) −2.32624 + 7.15942i −0.109782 + 0.337874i −0.990823 0.135166i \(-0.956843\pi\)
0.881041 + 0.473040i \(0.156843\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 1.38197 4.25325i 0.0649304 0.199835i
\(454\) 0 0
\(455\) 4.59017 + 3.33495i 0.215190 + 0.156345i
\(456\) 0 0
\(457\) −0.354102 1.08981i −0.0165642 0.0509793i 0.942433 0.334396i \(-0.108532\pi\)
−0.958997 + 0.283416i \(0.908532\pi\)
\(458\) 0 0
\(459\) −1.92705 + 1.40008i −0.0899470 + 0.0653503i
\(460\) 0 0
\(461\) −19.5623 −0.911107 −0.455554 0.890208i \(-0.650559\pi\)
−0.455554 + 0.890208i \(0.650559\pi\)
\(462\) 0 0
\(463\) 21.2148 0.985935 0.492967 0.870048i \(-0.335912\pi\)
0.492967 + 0.870048i \(0.335912\pi\)
\(464\) 0 0
\(465\) 19.8992 14.4576i 0.922803 0.670455i
\(466\) 0 0
\(467\) 6.12868 + 18.8621i 0.283601 + 0.872835i 0.986814 + 0.161856i \(0.0517480\pi\)
−0.703213 + 0.710979i \(0.748252\pi\)
\(468\) 0 0
\(469\) 0.0278640 + 0.0202444i 0.00128664 + 0.000934800i
\(470\) 0 0
\(471\) 5.32624 16.3925i 0.245420 0.755325i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 15.5000 47.7041i 0.711189 2.18881i
\(476\) 0 0
\(477\) −5.30902 3.85723i −0.243083 0.176610i
\(478\) 0 0
\(479\) −4.11803 12.6740i −0.188158 0.579090i 0.811831 0.583893i \(-0.198471\pi\)
−0.999988 + 0.00480282i \(0.998471\pi\)
\(480\) 0 0
\(481\) 18.9894 13.7966i 0.865840 0.629070i
\(482\) 0 0
\(483\) 0.0557281 0.00253572
\(484\) 0 0
\(485\) 19.6180 0.890809
\(486\) 0 0
\(487\) −28.9894 + 21.0620i −1.31363 + 0.954410i −0.313645 + 0.949540i \(0.601550\pi\)
−0.999988 + 0.00487004i \(0.998450\pi\)
\(488\) 0 0
\(489\) 1.50000 + 4.61653i 0.0678323 + 0.208766i
\(490\) 0 0
\(491\) −4.16312 3.02468i −0.187879 0.136502i 0.489870 0.871796i \(-0.337044\pi\)
−0.677749 + 0.735294i \(0.737044\pi\)
\(492\) 0 0
\(493\) 3.29180 10.1311i 0.148255 0.456282i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.100813 + 0.310271i −0.00452208 + 0.0139175i
\(498\) 0 0
\(499\) −12.3541 8.97578i −0.553046 0.401811i 0.275862 0.961197i \(-0.411037\pi\)
−0.828907 + 0.559386i \(0.811037\pi\)
\(500\) 0 0
\(501\) −0.190983 0.587785i −0.00853249 0.0262603i
\(502\) 0 0
\(503\) 13.9443 10.1311i 0.621744 0.451724i −0.231786 0.972767i \(-0.574457\pi\)
0.853530 + 0.521043i \(0.174457\pi\)
\(504\) 0 0
\(505\) −22.9098 −1.01947
\(506\) 0 0
\(507\) −25.8885 −1.14975
\(508\) 0 0
\(509\) −10.3090 + 7.48994i −0.456939 + 0.331986i −0.792329 0.610094i \(-0.791132\pi\)
0.335390 + 0.942079i \(0.391132\pi\)
\(510\) 0 0
\(511\) −0.236068 0.726543i −0.0104430 0.0321403i
\(512\) 0 0
\(513\) 4.11803 + 2.99193i 0.181816 + 0.132097i
\(514\) 0 0
\(515\) −14.8541 + 45.7162i −0.654550 + 2.01450i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1.71885 5.29007i 0.0754490 0.232208i
\(520\) 0 0
\(521\) −12.0000 8.71851i −0.525730 0.381965i 0.293028 0.956104i \(-0.405337\pi\)
−0.818758 + 0.574139i \(0.805337\pi\)
\(522\) 0 0
\(523\) 6.73607 + 20.7315i 0.294548 + 0.906525i 0.983373 + 0.181597i \(0.0581267\pi\)
−0.688825 + 0.724927i \(0.741873\pi\)
\(524\) 0 0
\(525\) 1.88197 1.36733i 0.0821357 0.0596751i
\(526\) 0 0
\(527\) 15.2016 0.662193
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) 0 0
\(531\) −1.73607 + 1.26133i −0.0753389 + 0.0547369i
\(532\) 0 0
\(533\) −18.2533 56.1778i −0.790638 2.43333i
\(534\) 0 0
\(535\) −20.3541 14.7881i −0.879985 0.639346i
\(536\) 0 0
\(537\) 5.54508 17.0660i 0.239288 0.736453i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.95492 6.01661i 0.0840484 0.258674i −0.900197 0.435483i \(-0.856577\pi\)
0.984245 + 0.176809i \(0.0565775\pi\)
\(542\) 0 0
\(543\) 4.80902 + 3.49396i 0.206375 + 0.149940i
\(544\) 0 0
\(545\) −9.52786 29.3238i −0.408129 1.25609i
\(546\) 0 0
\(547\) 10.7812 7.83297i 0.460969 0.334913i −0.332942 0.942947i \(-0.608041\pi\)
0.793911 + 0.608034i \(0.208041\pi\)
\(548\) 0 0
\(549\) 2.61803 0.111735
\(550\) 0 0
\(551\) −22.7639 −0.969776
\(552\) 0 0
\(553\) 2.71885 1.97536i 0.115617 0.0840008i
\(554\) 0 0
\(555\) −4.48278 13.7966i −0.190283 0.585632i
\(556\) 0 0
\(557\) 4.11803 + 2.99193i 0.174487 + 0.126772i 0.671601 0.740913i \(-0.265607\pi\)
−0.497114 + 0.867685i \(0.665607\pi\)
\(558\) 0 0
\(559\) −18.2533 + 56.1778i −0.772032 + 2.37607i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.5795 + 38.7158i −0.530164 + 1.63168i 0.223709 + 0.974656i \(0.428184\pi\)
−0.753873 + 0.657021i \(0.771816\pi\)
\(564\) 0 0
\(565\) 38.1525 + 27.7194i 1.60509 + 1.16616i
\(566\) 0 0
\(567\) 0.0729490 + 0.224514i 0.00306357 + 0.00942870i
\(568\) 0 0
\(569\) 3.94427 2.86568i 0.165352 0.120136i −0.502032 0.864849i \(-0.667414\pi\)
0.667384 + 0.744714i \(0.267414\pi\)
\(570\) 0 0
\(571\) −24.3262 −1.01802 −0.509011 0.860760i \(-0.669989\pi\)
−0.509011 + 0.860760i \(0.669989\pi\)
\(572\) 0 0
\(573\) 21.6525 0.904545
\(574\) 0 0
\(575\) 1.88197 1.36733i 0.0784834 0.0570215i
\(576\) 0 0
\(577\) 9.03444 + 27.8052i 0.376109 + 1.15754i 0.942728 + 0.333564i \(0.108251\pi\)
−0.566619 + 0.823980i \(0.691749\pi\)
\(578\) 0 0
\(579\) −12.3992 9.00854i −0.515293 0.374382i
\(580\) 0 0
\(581\) −1.12868 + 3.47371i −0.0468254 + 0.144114i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −7.42705 + 22.8581i −0.307071 + 0.945067i
\(586\) 0 0
\(587\) −20.8435 15.1437i −0.860302 0.625046i 0.0676654 0.997708i \(-0.478445\pi\)
−0.927967 + 0.372662i \(0.878445\pi\)
\(588\) 0 0
\(589\) −10.0385 30.8953i −0.413629 1.27302i
\(590\) 0 0
\(591\) 4.78115 3.47371i 0.196670 0.142889i
\(592\) 0 0
\(593\) −19.4508 −0.798751 −0.399375 0.916788i \(-0.630773\pi\)
−0.399375 + 0.916788i \(0.630773\pi\)
\(594\) 0 0
\(595\) 2.16718 0.0888459
\(596\) 0 0
\(597\) −8.42705 + 6.12261i −0.344896 + 0.250582i
\(598\) 0 0
\(599\) 12.5623 + 38.6628i 0.513282 + 1.57972i 0.786386 + 0.617735i \(0.211950\pi\)
−0.273105 + 0.961984i \(0.588050\pi\)
\(600\) 0 0
\(601\) 16.1353 + 11.7229i 0.658171 + 0.478189i 0.866045 0.499967i \(-0.166654\pi\)
−0.207874 + 0.978156i \(0.566654\pi\)
\(602\) 0 0
\(603\) −0.0450850 + 0.138757i −0.00183600 + 0.00565063i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −2.68034 + 8.24924i −0.108792 + 0.334826i −0.990602 0.136779i \(-0.956325\pi\)
0.881810 + 0.471605i \(0.156325\pi\)
\(608\) 0 0
\(609\) −0.854102 0.620541i −0.0346100 0.0251456i
\(610\) 0 0
\(611\) 6.97214 + 21.4580i 0.282062 + 0.868099i
\(612\) 0 0
\(613\) 13.8541 10.0656i 0.559562 0.406546i −0.271737 0.962372i \(-0.587598\pi\)
0.831299 + 0.555826i \(0.187598\pi\)
\(614\) 0 0
\(615\) −36.5066 −1.47209
\(616\) 0 0
\(617\) −7.00000 −0.281809 −0.140905 0.990023i \(-0.545001\pi\)
−0.140905 + 0.990023i \(0.545001\pi\)
\(618\) 0 0
\(619\) 6.04508 4.39201i 0.242972 0.176530i −0.459634 0.888108i \(-0.652019\pi\)
0.702607 + 0.711579i \(0.252019\pi\)
\(620\) 0 0
\(621\) 0.0729490 + 0.224514i 0.00292734 + 0.00900944i
\(622\) 0 0
\(623\) −0.190983 0.138757i −0.00765157 0.00555919i
\(624\) 0 0
\(625\) 7.05573 21.7153i 0.282229 0.868612i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.77051 8.52675i 0.110467 0.339984i
\(630\) 0 0
\(631\) −6.25329 4.54328i −0.248940 0.180865i 0.456317 0.889817i \(-0.349168\pi\)
−0.705257 + 0.708952i \(0.749168\pi\)
\(632\) 0 0
\(633\) 5.79180 + 17.8253i 0.230203 + 0.708493i
\(634\) 0 0
\(635\) −48.9787 + 35.5851i −1.94366 + 1.41215i
\(636\) 0 0
\(637\) −43.3050 −1.71580
\(638\) 0 0
\(639\) −1.38197 −0.0546697
\(640\) 0 0
\(641\) −20.2082 + 14.6821i −0.798176 + 0.579909i −0.910378 0.413777i \(-0.864209\pi\)
0.112202 + 0.993685i \(0.464209\pi\)
\(642\) 0 0
\(643\) −12.4098 38.1935i −0.489396 1.50621i −0.825512 0.564385i \(-0.809113\pi\)
0.336116 0.941821i \(-0.390887\pi\)
\(644\) 0 0
\(645\) 29.5344 + 21.4580i 1.16292 + 0.844909i
\(646\) 0 0
\(647\) 11.0279 33.9403i 0.433550 1.33433i −0.461015 0.887392i \(-0.652515\pi\)
0.894565 0.446938i \(-0.147485\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0.465558 1.43284i 0.0182467 0.0561575i
\(652\) 0 0
\(653\) 17.1074 + 12.4292i 0.669464 + 0.486394i 0.869846 0.493324i \(-0.164218\pi\)
−0.200382 + 0.979718i \(0.564218\pi\)
\(654\) 0 0
\(655\) −10.1976 31.3849i −0.398452 1.22631i
\(656\) 0 0
\(657\) 2.61803 1.90211i 0.102139 0.0742085i
\(658\) 0 0
\(659\) −9.70820 −0.378178 −0.189089 0.981960i \(-0.560553\pi\)
−0.189089 + 0.981960i \(0.560553\pi\)
\(660\) 0 0
\(661\) −13.3262 −0.518331 −0.259165 0.965833i \(-0.583447\pi\)
−0.259165 + 0.965833i \(0.583447\pi\)
\(662\) 0 0
\(663\) −12.0172 + 8.73102i −0.466710 + 0.339085i
\(664\) 0 0
\(665\) −1.43112 4.40452i −0.0554963 0.170800i
\(666\) 0 0
\(667\) −0.854102 0.620541i −0.0330710 0.0240275i
\(668\) 0 0
\(669\) 2.30902 7.10642i 0.0892718 0.274750i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −10.9615 + 33.7360i −0.422534 + 1.30043i 0.482801 + 0.875730i \(0.339619\pi\)
−0.905335 + 0.424697i \(0.860381\pi\)
\(674\) 0 0
\(675\) 7.97214 + 5.79210i 0.306848 + 0.222938i
\(676\) 0 0
\(677\) −0.763932 2.35114i −0.0293603 0.0903617i 0.935303 0.353849i \(-0.115127\pi\)
−0.964663 + 0.263487i \(0.915127\pi\)
\(678\) 0 0
\(679\) 0.972136 0.706298i 0.0373072 0.0271052i
\(680\) 0 0
\(681\) 12.7082 0.486979
\(682\) 0 0
\(683\) −37.6525 −1.44073 −0.720366 0.693594i \(-0.756026\pi\)
−0.720366 + 0.693594i \(0.756026\pi\)
\(684\) 0 0
\(685\) −65.4787 + 47.5731i −2.50181 + 1.81767i
\(686\) 0 0
\(687\) −3.38197 10.4086i −0.129030 0.397114i
\(688\) 0 0
\(689\) −33.1074 24.0539i −1.26129 0.916382i
\(690\) 0 0
\(691\) 10.0557 30.9483i 0.382538 1.17733i −0.555713 0.831374i \(-0.687555\pi\)
0.938251 0.345956i \(-0.112445\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.52380 13.9228i 0.171597 0.528123i
\(696\) 0 0
\(697\) −18.2533 13.2618i −0.691393 0.502326i
\(698\) 0 0
\(699\) 0.371323 + 1.14281i 0.0140447 + 0.0432252i
\(700\) 0 0
\(701\) −23.0623 + 16.7557i −0.871051 + 0.632856i −0.930869 0.365354i \(-0.880948\pi\)
0.0598176 + 0.998209i \(0.480948\pi\)
\(702\) 0 0
\(703\) −19.1591 −0.722597
\(704\) 0 0
\(705\) 13.9443 0.525172
\(706\) 0 0
\(707\) −1.13525 + 0.824811i −0.0426957 + 0.0310202i
\(708\) 0 0
\(709\) 5.17376 + 15.9232i 0.194305 + 0.598008i 0.999984 + 0.00565642i \(0.00180051\pi\)
−0.805679 + 0.592352i \(0.798199\pi\)
\(710\) 0 0
\(711\) 11.5172 + 8.36775i 0.431930 + 0.313815i
\(712\) 0 0
\(713\) 0.465558 1.43284i 0.0174353 0.0536603i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 5.40983 16.6497i 0.202034 0.621796i
\(718\) 0 0
\(719\) −15.4271 11.2084i −0.575332 0.418003i 0.261706 0.965148i \(-0.415715\pi\)
−0.837038 + 0.547144i \(0.815715\pi\)
\(720\) 0 0
\(721\) 0.909830 + 2.80017i 0.0338838 + 0.104284i
\(722\) 0 0
\(723\) 19.1803 13.9353i 0.713325 0.518261i
\(724\) 0 0
\(725\) −44.0689 −1.63668
\(726\) 0 0
\(727\) −8.85410 −0.328380 −0.164190 0.986429i \(-0.552501\pi\)
−0.164190 + 0.986429i \(0.552501\pi\)
\(728\) 0 0
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) 6.97214 + 21.4580i 0.257874 + 0.793654i
\(732\) 0 0
\(733\) 36.0344 + 26.1806i 1.33096 + 0.967001i 0.999725 + 0.0234534i \(0.00746615\pi\)
0.331238 + 0.943547i \(0.392534\pi\)
\(734\) 0 0
\(735\) −8.27051 + 25.4540i −0.305062 + 0.938885i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 3.96149 12.1922i 0.145726 0.448498i −0.851378 0.524553i \(-0.824232\pi\)
0.997104 + 0.0760550i \(0.0242324\pi\)
\(740\) 0 0
\(741\) 25.6803 + 18.6579i 0.943391 + 0.685414i
\(742\) 0 0
\(743\) −3.54508 10.9106i −0.130057 0.400273i 0.864732 0.502234i \(-0.167488\pi\)
−0.994788 + 0.101961i \(0.967488\pi\)
\(744\) 0 0
\(745\) 52.6591 38.2590i 1.92928 1.40170i
\(746\) 0 0
\(747\) −15.4721 −0.566096
\(748\) 0 0
\(749\) −1.54102 −0.0563076
\(750\) 0 0
\(751\) 33.6803 24.4702i 1.22901 0.892930i 0.232197 0.972669i \(-0.425409\pi\)
0.996816 + 0.0797385i \(0.0254085\pi\)
\(752\) 0 0
\(753\) −7.44427 22.9111i −0.271284 0.834927i
\(754\) 0 0
\(755\) −13.9443 10.1311i −0.507484 0.368709i
\(756\) 0 0
\(757\) −3.21885 + 9.90659i −0.116991 + 0.360061i −0.992357 0.123399i \(-0.960620\pi\)
0.875366 + 0.483461i \(0.160620\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9.03851 27.8177i 0.327646 1.00839i −0.642587 0.766213i \(-0.722139\pi\)
0.970232 0.242176i \(-0.0778613\pi\)
\(762\) 0 0
\(763\) −1.52786 1.11006i −0.0553124 0.0401868i
\(764\) 0 0
\(765\) 2.83688 + 8.73102i 0.102568 + 0.315671i
\(766\) 0 0
\(767\) −10.8262 + 7.86572i −0.390913 + 0.284015i
\(768\) 0 0
\(769\) 33.5623 1.21029 0.605144 0.796116i \(-0.293116\pi\)
0.605144 + 0.796116i \(0.293116\pi\)
\(770\) 0 0
\(771\) 2.79837 0.100781
\(772\) 0 0
\(773\) −23.7533 + 17.2578i −0.854346 + 0.620719i −0.926341 0.376686i \(-0.877064\pi\)
0.0719946 + 0.997405i \(0.477064\pi\)
\(774\) 0 0
\(775\) −19.4336 59.8106i −0.698077 2.14846i
\(776\) 0 0
\(777\) −0.718847 0.522273i −0.0257885 0.0187364i
\(778\) 0 0
\(779\) −14.8992 + 45.8550i −0.533819 + 1.64293i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1.38197 4.25325i 0.0493874 0.151999i
\(784\) 0 0
\(785\) −53.7426 39.0463i −1.91816 1.39362i
\(786\) 0 0
\(787\) −13.8328 42.5730i −0.493087 1.51756i −0.819917 0.572482i \(-0.805981\pi\)
0.326831 0.945083i \(-0.394019\pi\)
\(788\) 0 0
\(789\) −19.2984 + 14.0211i −0.687040 + 0.499164i
\(790\) 0 0
\(791\) 2.88854 0.102705
\(792\) 0 0
\(793\) 16.3262 0.579762
\(794\) 0 0
\(795\) −20.4615 + 14.8661i −0.725694 + 0.527248i
\(796\) 0 0
\(797\) −15.1459 46.6143i −0.536495 1.65116i −0.740396 0.672171i \(-0.765362\pi\)
0.203901 0.978992i \(-0.434638\pi\)
\(798\) 0 0
\(799\) 6.97214 + 5.06555i 0.246656 + 0.179206i
\(800\) 0 0
\(801\) 0.309017 0.951057i 0.0109186 0.0336039i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0.0663712 0.204270i 0.00233928 0.00719956i
\(806\) 0 0
\(807\) 23.0344 + 16.7355i 0.810851 + 0.589118i
\(808\) 0 0
\(809\) −10.8992 33.5442i −0.383195 1.17935i −0.937781 0.347227i \(-0.887123\pi\)
0.554586 0.832126i \(-0.312877\pi\)
\(810\) 0 0
\(811\) −1.78115 + 1.29408i −0.0625447 + 0.0454414i −0.618618 0.785692i \(-0.712307\pi\)
0.556074 + 0.831133i \(0.312307\pi\)
\(812\) 0 0
\(813\) −2.43769 −0.0854937
\(814\) 0 0
\(815\) 18.7082 0.655320
\(816\) 0 0
\(817\) 39.0066 28.3399i 1.36467 0.991489i
\(818\) 0 0
\(819\) 0.454915 + 1.40008i 0.0158960 + 0.0489229i
\(820\) 0 0
\(821\) 22.1353 + 16.0822i 0.772526 + 0.561273i 0.902727 0.430215i \(-0.141562\pi\)
−0.130201 + 0.991488i \(0.541562\pi\)
\(822\) 0 0
\(823\) 7.16312 22.0458i 0.249691 0.768469i −0.745139 0.666909i \(-0.767617\pi\)
0.994829 0.101559i \(-0.0323832\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.7082 39.1118i 0.441908 1.36005i −0.443932 0.896060i \(-0.646417\pi\)
0.885840 0.463991i \(-0.153583\pi\)
\(828\) 0 0
\(829\) −3.83688 2.78766i −0.133260 0.0968193i 0.519158 0.854678i \(-0.326246\pi\)
−0.652419 + 0.757859i \(0.726246\pi\)
\(830\) 0 0
\(831\) 0.791796 + 2.43690i 0.0274671 + 0.0845350i
\(832\) 0 0
\(833\) −13.3820 + 9.72257i −0.463658 + 0.336867i
\(834\) 0 0
\(835\) −2.38197 −0.0824313
\(836\) 0 0
\(837\) 6.38197 0.220593
\(838\) 0 0
\(839\) −30.6074 + 22.2376i −1.05668 + 0.767726i −0.973472 0.228806i \(-0.926518\pi\)
−0.0832124 + 0.996532i \(0.526518\pi\)
\(840\) 0 0
\(841\) −2.78115 8.55951i −0.0959018 0.295155i
\(842\) 0 0
\(843\) −13.8541 10.0656i −0.477161 0.346677i
\(844\) 0 0
\(845\) −30.8328 + 94.8936i −1.06068 + 3.26444i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 7.18034 22.0988i 0.246429 0.758429i
\(850\) 0 0
\(851\) −0.718847 0.522273i −0.0246418 0.0179033i
\(852\) 0 0
\(853\) −3.28773 10.1186i −0.112570 0.346454i 0.878863 0.477075i \(-0.158303\pi\)
−0.991432 + 0.130621i \(0.958303\pi\)
\(854\) 0 0
\(855\) 15.8713 11.5312i 0.542788 0.394358i
\(856\) 0 0
\(857\) 50.1935 1.71458 0.857289 0.514836i \(-0.172147\pi\)
0.857289 + 0.514836i \(0.172147\pi\)
\(858\) 0 0
\(859\) 8.81966 0.300923 0.150461 0.988616i \(-0.451924\pi\)
0.150461 + 0.988616i \(0.451924\pi\)
\(860\) 0 0
\(861\) −1.80902 + 1.31433i −0.0616511 + 0.0447922i
\(862\) 0 0
\(863\) −4.43769 13.6578i −0.151061 0.464918i 0.846680 0.532103i \(-0.178598\pi\)
−0.997741 + 0.0671854i \(0.978598\pi\)
\(864\) 0 0
\(865\) −17.3435 12.6008i −0.589695 0.428439i
\(866\) 0 0
\(867\) 3.50000 10.7719i 0.118866 0.365833i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −0.281153 + 0.865300i −0.00952650 + 0.0293196i
\(872\) 0 0
\(873\) 4.11803 + 2.99193i 0.139374 + 0.101261i
\(874\) 0 0
\(875\) −1.36475 4.20025i −0.0461368 0.141994i
\(876\) 0 0
\(877\) 0.718847 0.522273i 0.0242737 0.0176359i −0.575582 0.817744i \(-0.695225\pi\)
0.599856 + 0.800108i \(0.295225\pi\)
\(878\) 0 0
\(879\) −5.00000 −0.168646
\(880\) 0 0
\(881\) 40.5623 1.36658 0.683289 0.730148i \(-0.260549\pi\)
0.683289 + 0.730148i \(0.260549\pi\)
\(882\) 0 0
\(883\) −12.0902 + 8.78402i −0.406867 + 0.295606i −0.772332 0.635219i \(-0.780910\pi\)
0.365465 + 0.930825i \(0.380910\pi\)
\(884\) 0 0
\(885\) 2.55573 + 7.86572i 0.0859099 + 0.264403i
\(886\) 0 0
\(887\) −26.9336 19.5684i −0.904343 0.657043i 0.0352350 0.999379i \(-0.488782\pi\)
−0.939578 + 0.342336i \(0.888782\pi\)
\(888\) 0 0
\(889\) −1.14590 + 3.52671i −0.0384322 + 0.118282i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.69098 17.5150i 0.190441 0.586119i
\(894\) 0 0
\(895\) −55.9508 40.6507i −1.87023 1.35880i
\(896\) 0 0
\(897\) 0.454915 + 1.40008i 0.0151892 + 0.0467475i
\(898\) 0 0
\(899\) −23.0902 + 16.7760i −0.770100 + 0.559511i
\(900\) 0 0
\(901\) −15.6312 −0.520750
\(902\) 0 0
\(903\) 2.23607 0.0744117
\(904\) 0 0
\(905\) 18.5344 13.4661i 0.616106 0.447627i
\(906\) 0 0
\(907\) −13.2467 40.7692i −0.439850 1.35372i −0.888034 0.459777i \(-0.847929\pi\)
0.448184 0.893941i \(-0.352071\pi\)
\(908\) 0 0
\(909\) −4.80902 3.49396i −0.159505 0.115887i
\(910\) 0 0
\(911\) 7.89261 24.2910i 0.261494 0.804795i −0.730987 0.682392i \(-0.760940\pi\)
0.992480 0.122403i \(-0.0390602\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 3.11803 9.59632i 0.103079 0.317245i
\(916\) 0 0
\(917\) −1.63525 1.18808i −0.0540009 0.0392339i
\(918\) 0 0
\(919\) 4.89261 + 15.0579i 0.161392 + 0.496714i 0.998752 0.0499374i \(-0.0159022\pi\)
−0.837360 + 0.546652i \(0.815902\pi\)
\(920\) 0 0
\(921\) 0.545085 0.396027i 0.0179612 0.0130495i
\(922\) 0 0
\(923\) −8.61803 −0.283666
\(924\) 0 0
\(925\) −37.0902 −1.21952
\(926\) 0 0
\(927\) −10.0902 + 7.33094i −0.331405 + 0.240780i
\(928\) 0 0
\(929\) 6.05166 + 18.6251i 0.198549 + 0.611070i 0.999917 + 0.0128984i \(0.00410581\pi\)
−0.801368 + 0.598171i \(0.795894\pi\)
\(930\) 0 0
\(931\) 28.5967 + 20.7768i 0.937221 + 0.680931i
\(932\) 0 0
\(933\) 9.01722 27.7522i 0.295211 0.908565i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −6.10739 + 18.7966i −0.199520 + 0.614059i 0.800374 + 0.599501i \(0.204634\pi\)
−0.999894 + 0.0145580i \(0.995366\pi\)
\(938\) 0 0
\(939\) −0.809017 0.587785i −0.0264013 0.0191816i
\(940\) 0 0
\(941\) 0.791796 + 2.43690i 0.0258118 + 0.0794406i 0.963133 0.269027i \(-0.0867021\pi\)
−0.937321 + 0.348468i \(0.886702\pi\)
\(942\) 0 0
\(943\) −1.80902 + 1.31433i −0.0589097 + 0.0428004i
\(944\) 0 0
\(945\) 0.909830 0.0295968
\(946\) 0 0
\(947\) −2.79837 −0.0909349 −0.0454675 0.998966i \(-0.514478\pi\)
−0.0454675 + 0.998966i \(0.514478\pi\)
\(948\) 0 0
\(949\) 16.3262 11.8617i 0.529972 0.385047i
\(950\) 0 0
\(951\) −2.63525 8.11048i −0.0854540 0.263000i
\(952\) 0 0
\(953\) 28.1246 + 20.4337i 0.911046 + 0.661913i 0.941279 0.337630i \(-0.109625\pi\)
−0.0302335 + 0.999543i \(0.509625\pi\)
\(954\) 0 0
\(955\) 25.7877 79.3665i 0.834471 2.56824i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.53193 + 4.71479i −0.0494686 + 0.152249i
\(960\) 0 0
\(961\) −7.87132 5.71885i −0.253914 0.184479i
\(962\) 0 0
\(963\) −2.01722 6.20837i −0.0650040 0.200062i
\(964\) 0 0
\(965\) −47.7877 + 34.7198i −1.53834 + 1.11767i
\(966\) 0 0
\(967\) −14.7295 −0.473668 −0.236834 0.971550i \(-0.576110\pi\)
−0.236834 + 0.971550i \(0.576110\pi\)
\(968\) 0 0
\(969\) 12.1246 0.389499
\(970\) 0 0
\(971\) −1.90983 + 1.38757i −0.0612894 + 0.0445293i −0.618008 0.786172i \(-0.712060\pi\)
0.556719 + 0.830701i \(0.312060\pi\)
\(972\) 0 0
\(973\) −0.277088 0.852788i −0.00888302 0.0273391i
\(974\) 0 0
\(975\) 49.7148 + 36.1199i 1.59215 + 1.15676i
\(976\) 0 0
\(977\) −10.1631 + 31.2789i −0.325147 + 1.00070i 0.646227 + 0.763145i \(0.276346\pi\)
−0.971374 + 0.237554i \(0.923654\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 2.47214 7.60845i 0.0789292 0.242919i
\(982\) 0 0
\(983\) 29.7984 + 21.6498i 0.950421 + 0.690521i 0.950906 0.309479i \(-0.100155\pi\)
−0.000485770 1.00000i \(0.500155\pi\)
\(984\) 0 0
\(985\) −7.03851 21.6623i −0.224265 0.690218i
\(986\) 0 0
\(987\) 0.690983 0.502029i 0.0219942 0.0159797i
\(988\) 0 0
\(989\) 2.23607 0.0711028
\(990\) 0 0
\(991\) 43.2705 1.37453 0.687267 0.726405i \(-0.258810\pi\)
0.687267 + 0.726405i \(0.258810\pi\)
\(992\) 0 0
\(993\) 9.66312 7.02067i 0.306650 0.222794i
\(994\) 0 0
\(995\) 12.4058 + 38.1810i 0.393289 + 1.21042i
\(996\) 0 0
\(997\) 23.6803 + 17.2048i 0.749964 + 0.544881i 0.895816 0.444426i \(-0.146592\pi\)
−0.145852 + 0.989306i \(0.546592\pi\)
\(998\) 0 0
\(999\) 1.16312 3.57971i 0.0367995 0.113257i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.2.i.j.493.1 4
11.2 odd 10 1452.2.i.o.1213.1 4
11.3 even 5 1452.2.i.p.565.1 4
11.4 even 5 1452.2.a.i.1.1 2
11.5 even 5 inner 1452.2.i.j.1237.1 4
11.6 odd 10 132.2.i.b.49.1 4
11.7 odd 10 1452.2.a.j.1.1 2
11.8 odd 10 1452.2.i.o.565.1 4
11.9 even 5 1452.2.i.p.1213.1 4
11.10 odd 2 132.2.i.b.97.1 yes 4
33.17 even 10 396.2.j.c.181.1 4
33.26 odd 10 4356.2.a.s.1.2 2
33.29 even 10 4356.2.a.v.1.2 2
33.32 even 2 396.2.j.c.361.1 4
44.7 even 10 5808.2.a.cc.1.1 2
44.15 odd 10 5808.2.a.cf.1.1 2
44.39 even 10 528.2.y.a.49.1 4
44.43 even 2 528.2.y.a.97.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.b.49.1 4 11.6 odd 10
132.2.i.b.97.1 yes 4 11.10 odd 2
396.2.j.c.181.1 4 33.17 even 10
396.2.j.c.361.1 4 33.32 even 2
528.2.y.a.49.1 4 44.39 even 10
528.2.y.a.97.1 4 44.43 even 2
1452.2.a.i.1.1 2 11.4 even 5
1452.2.a.j.1.1 2 11.7 odd 10
1452.2.i.j.493.1 4 1.1 even 1 trivial
1452.2.i.j.1237.1 4 11.5 even 5 inner
1452.2.i.o.565.1 4 11.8 odd 10
1452.2.i.o.1213.1 4 11.2 odd 10
1452.2.i.p.565.1 4 11.3 even 5
1452.2.i.p.1213.1 4 11.9 even 5
4356.2.a.s.1.2 2 33.26 odd 10
4356.2.a.v.1.2 2 33.29 even 10
5808.2.a.cc.1.1 2 44.7 even 10
5808.2.a.cf.1.1 2 44.15 odd 10