Properties

Label 1452.2.i.g.493.1
Level $1452$
Weight $2$
Character 1452.493
Analytic conductor $11.594$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(493,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,3,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 493.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 1452.493
Dual form 1452.2.i.g.1237.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{3} +(0.190983 + 0.587785i) q^{5} +(-3.42705 - 2.48990i) q^{7} +(0.309017 - 0.951057i) q^{9} +(-0.0729490 + 0.224514i) q^{13} +(-0.500000 - 0.363271i) q^{15} +(2.11803 + 6.51864i) q^{17} +(-0.118034 + 0.0857567i) q^{19} +4.23607 q^{21} -5.00000 q^{23} +(3.73607 - 2.71441i) q^{25} +(0.309017 + 0.951057i) q^{27} +(1.61803 + 1.17557i) q^{29} +(1.73607 - 5.34307i) q^{31} +(0.809017 - 2.48990i) q^{35} +(1.80902 + 1.31433i) q^{37} +(-0.0729490 - 0.224514i) q^{39} +(3.80902 - 2.76741i) q^{41} +11.4721 q^{43} +0.618034 q^{45} +(8.54508 - 6.20837i) q^{47} +(3.38197 + 10.4086i) q^{49} +(-5.54508 - 4.02874i) q^{51} +(1.35410 - 4.16750i) q^{53} +(0.0450850 - 0.138757i) q^{57} +(10.3541 + 7.52270i) q^{59} +(1.28115 + 3.94298i) q^{61} +(-3.42705 + 2.48990i) q^{63} -0.145898 q^{65} -6.61803 q^{67} +(4.04508 - 2.93893i) q^{69} +(1.71885 + 5.29007i) q^{71} +(-1.85410 - 1.34708i) q^{73} +(-1.42705 + 4.39201i) q^{75} +(-1.45492 + 4.47777i) q^{79} +(-0.809017 - 0.587785i) q^{81} +(1.92705 + 5.93085i) q^{83} +(-3.42705 + 2.48990i) q^{85} -2.00000 q^{87} +17.1803 q^{89} +(0.809017 - 0.587785i) q^{91} +(1.73607 + 5.34307i) q^{93} +(-0.0729490 - 0.0530006i) q^{95} +(-4.33688 + 13.3475i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 3 q^{5} - 7 q^{7} - q^{9} - 7 q^{13} - 2 q^{15} + 4 q^{17} + 4 q^{19} + 8 q^{21} - 20 q^{23} + 6 q^{25} - q^{27} + 2 q^{29} - 2 q^{31} + q^{35} + 5 q^{37} - 7 q^{39} + 13 q^{41} + 28 q^{43}+ \cdots - 33 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i
\(4\) 0 0
\(5\) 0.190983 + 0.587785i 0.0854102 + 0.262866i 0.984636 0.174619i \(-0.0558694\pi\)
−0.899226 + 0.437485i \(0.855869\pi\)
\(6\) 0 0
\(7\) −3.42705 2.48990i −1.29530 0.941093i −0.295405 0.955372i \(-0.595455\pi\)
−0.999898 + 0.0142789i \(0.995455\pi\)
\(8\) 0 0
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −0.0729490 + 0.224514i −0.0202324 + 0.0622690i −0.960663 0.277717i \(-0.910422\pi\)
0.940431 + 0.339986i \(0.110422\pi\)
\(14\) 0 0
\(15\) −0.500000 0.363271i −0.129099 0.0937962i
\(16\) 0 0
\(17\) 2.11803 + 6.51864i 0.513699 + 1.58100i 0.785637 + 0.618687i \(0.212335\pi\)
−0.271939 + 0.962315i \(0.587665\pi\)
\(18\) 0 0
\(19\) −0.118034 + 0.0857567i −0.0270789 + 0.0196739i −0.601242 0.799067i \(-0.705327\pi\)
0.574164 + 0.818741i \(0.305327\pi\)
\(20\) 0 0
\(21\) 4.23607 0.924386
\(22\) 0 0
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) 0 0
\(25\) 3.73607 2.71441i 0.747214 0.542882i
\(26\) 0 0
\(27\) 0.309017 + 0.951057i 0.0594703 + 0.183031i
\(28\) 0 0
\(29\) 1.61803 + 1.17557i 0.300461 + 0.218298i 0.727793 0.685797i \(-0.240546\pi\)
−0.427331 + 0.904095i \(0.640546\pi\)
\(30\) 0 0
\(31\) 1.73607 5.34307i 0.311807 0.959643i −0.665242 0.746628i \(-0.731672\pi\)
0.977049 0.213015i \(-0.0683284\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.809017 2.48990i 0.136749 0.420870i
\(36\) 0 0
\(37\) 1.80902 + 1.31433i 0.297401 + 0.216074i 0.726471 0.687197i \(-0.241159\pi\)
−0.429071 + 0.903271i \(0.641159\pi\)
\(38\) 0 0
\(39\) −0.0729490 0.224514i −0.0116812 0.0359510i
\(40\) 0 0
\(41\) 3.80902 2.76741i 0.594869 0.432197i −0.249185 0.968456i \(-0.580163\pi\)
0.844054 + 0.536259i \(0.180163\pi\)
\(42\) 0 0
\(43\) 11.4721 1.74948 0.874742 0.484589i \(-0.161031\pi\)
0.874742 + 0.484589i \(0.161031\pi\)
\(44\) 0 0
\(45\) 0.618034 0.0921311
\(46\) 0 0
\(47\) 8.54508 6.20837i 1.24643 0.905583i 0.248420 0.968653i \(-0.420089\pi\)
0.998009 + 0.0630690i \(0.0200888\pi\)
\(48\) 0 0
\(49\) 3.38197 + 10.4086i 0.483138 + 1.48695i
\(50\) 0 0
\(51\) −5.54508 4.02874i −0.776467 0.564136i
\(52\) 0 0
\(53\) 1.35410 4.16750i 0.186000 0.572450i −0.813964 0.580915i \(-0.802695\pi\)
0.999964 + 0.00846560i \(0.00269471\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.0450850 0.138757i 0.00597165 0.0183789i
\(58\) 0 0
\(59\) 10.3541 + 7.52270i 1.34799 + 0.979372i 0.999109 + 0.0422042i \(0.0134380\pi\)
0.348880 + 0.937167i \(0.386562\pi\)
\(60\) 0 0
\(61\) 1.28115 + 3.94298i 0.164035 + 0.504847i 0.998964 0.0455103i \(-0.0144914\pi\)
−0.834929 + 0.550358i \(0.814491\pi\)
\(62\) 0 0
\(63\) −3.42705 + 2.48990i −0.431768 + 0.313698i
\(64\) 0 0
\(65\) −0.145898 −0.0180964
\(66\) 0 0
\(67\) −6.61803 −0.808522 −0.404261 0.914644i \(-0.632471\pi\)
−0.404261 + 0.914644i \(0.632471\pi\)
\(68\) 0 0
\(69\) 4.04508 2.93893i 0.486971 0.353805i
\(70\) 0 0
\(71\) 1.71885 + 5.29007i 0.203990 + 0.627815i 0.999753 + 0.0222083i \(0.00706970\pi\)
−0.795764 + 0.605607i \(0.792930\pi\)
\(72\) 0 0
\(73\) −1.85410 1.34708i −0.217006 0.157664i 0.473972 0.880540i \(-0.342820\pi\)
−0.690978 + 0.722876i \(0.742820\pi\)
\(74\) 0 0
\(75\) −1.42705 + 4.39201i −0.164782 + 0.507146i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.45492 + 4.47777i −0.163691 + 0.503788i −0.998937 0.0460871i \(-0.985325\pi\)
0.835247 + 0.549875i \(0.185325\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 0 0
\(83\) 1.92705 + 5.93085i 0.211521 + 0.650996i 0.999382 + 0.0351426i \(0.0111885\pi\)
−0.787861 + 0.615853i \(0.788811\pi\)
\(84\) 0 0
\(85\) −3.42705 + 2.48990i −0.371716 + 0.270067i
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) 17.1803 1.82111 0.910556 0.413385i \(-0.135654\pi\)
0.910556 + 0.413385i \(0.135654\pi\)
\(90\) 0 0
\(91\) 0.809017 0.587785i 0.0848080 0.0616166i
\(92\) 0 0
\(93\) 1.73607 + 5.34307i 0.180022 + 0.554050i
\(94\) 0 0
\(95\) −0.0729490 0.0530006i −0.00748441 0.00543774i
\(96\) 0 0
\(97\) −4.33688 + 13.3475i −0.440344 + 1.35524i 0.447167 + 0.894451i \(0.352433\pi\)
−0.887510 + 0.460788i \(0.847567\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.63525 + 11.1882i −0.361721 + 1.11326i 0.590287 + 0.807193i \(0.299014\pi\)
−0.952009 + 0.306071i \(0.900986\pi\)
\(102\) 0 0
\(103\) −14.0902 10.2371i −1.38835 1.00869i −0.996045 0.0888554i \(-0.971679\pi\)
−0.392301 0.919837i \(-0.628321\pi\)
\(104\) 0 0
\(105\) 0.809017 + 2.48990i 0.0789520 + 0.242989i
\(106\) 0 0
\(107\) 12.6631 9.20029i 1.22419 0.889426i 0.227749 0.973720i \(-0.426863\pi\)
0.996441 + 0.0842938i \(0.0268634\pi\)
\(108\) 0 0
\(109\) 8.94427 0.856706 0.428353 0.903612i \(-0.359094\pi\)
0.428353 + 0.903612i \(0.359094\pi\)
\(110\) 0 0
\(111\) −2.23607 −0.212238
\(112\) 0 0
\(113\) −8.04508 + 5.84510i −0.756818 + 0.549860i −0.897933 0.440133i \(-0.854931\pi\)
0.141115 + 0.989993i \(0.454931\pi\)
\(114\) 0 0
\(115\) −0.954915 2.93893i −0.0890463 0.274056i
\(116\) 0 0
\(117\) 0.190983 + 0.138757i 0.0176564 + 0.0128281i
\(118\) 0 0
\(119\) 8.97214 27.6134i 0.822474 2.53132i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −1.45492 + 4.47777i −0.131185 + 0.403747i
\(124\) 0 0
\(125\) 4.80902 + 3.49396i 0.430132 + 0.312509i
\(126\) 0 0
\(127\) 3.61803 + 11.1352i 0.321049 + 0.988086i 0.973193 + 0.229991i \(0.0738697\pi\)
−0.652144 + 0.758095i \(0.726130\pi\)
\(128\) 0 0
\(129\) −9.28115 + 6.74315i −0.817160 + 0.593701i
\(130\) 0 0
\(131\) 8.85410 0.773586 0.386793 0.922166i \(-0.373583\pi\)
0.386793 + 0.922166i \(0.373583\pi\)
\(132\) 0 0
\(133\) 0.618034 0.0535903
\(134\) 0 0
\(135\) −0.500000 + 0.363271i −0.0430331 + 0.0312654i
\(136\) 0 0
\(137\) −3.01722 9.28605i −0.257779 0.793361i −0.993269 0.115826i \(-0.963048\pi\)
0.735491 0.677535i \(-0.236952\pi\)
\(138\) 0 0
\(139\) −6.92705 5.03280i −0.587545 0.426876i 0.253891 0.967233i \(-0.418289\pi\)
−0.841436 + 0.540356i \(0.818289\pi\)
\(140\) 0 0
\(141\) −3.26393 + 10.0453i −0.274873 + 0.845971i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.381966 + 1.17557i −0.0317206 + 0.0976258i
\(146\) 0 0
\(147\) −8.85410 6.43288i −0.730274 0.530575i
\(148\) 0 0
\(149\) −5.48936 16.8945i −0.449706 1.38405i −0.877240 0.480052i \(-0.840618\pi\)
0.427534 0.903999i \(-0.359382\pi\)
\(150\) 0 0
\(151\) −3.61803 + 2.62866i −0.294431 + 0.213917i −0.725188 0.688551i \(-0.758247\pi\)
0.430756 + 0.902468i \(0.358247\pi\)
\(152\) 0 0
\(153\) 6.85410 0.554121
\(154\) 0 0
\(155\) 3.47214 0.278889
\(156\) 0 0
\(157\) 12.7082 9.23305i 1.01423 0.736878i 0.0491340 0.998792i \(-0.484354\pi\)
0.965091 + 0.261915i \(0.0843539\pi\)
\(158\) 0 0
\(159\) 1.35410 + 4.16750i 0.107387 + 0.330504i
\(160\) 0 0
\(161\) 17.1353 + 12.4495i 1.35045 + 0.981157i
\(162\) 0 0
\(163\) −3.20820 + 9.87384i −0.251286 + 0.773379i 0.743253 + 0.669011i \(0.233282\pi\)
−0.994539 + 0.104368i \(0.966718\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.80902 14.8006i 0.372133 1.14531i −0.573260 0.819374i \(-0.694321\pi\)
0.945393 0.325934i \(-0.105679\pi\)
\(168\) 0 0
\(169\) 10.4721 + 7.60845i 0.805549 + 0.585266i
\(170\) 0 0
\(171\) 0.0450850 + 0.138757i 0.00344773 + 0.0106110i
\(172\) 0 0
\(173\) 7.82624 5.68609i 0.595018 0.432306i −0.249089 0.968481i \(-0.580131\pi\)
0.844107 + 0.536175i \(0.180131\pi\)
\(174\) 0 0
\(175\) −19.5623 −1.47877
\(176\) 0 0
\(177\) −12.7984 −0.961985
\(178\) 0 0
\(179\) −1.04508 + 0.759299i −0.0781133 + 0.0567526i −0.626157 0.779697i \(-0.715373\pi\)
0.548043 + 0.836450i \(0.315373\pi\)
\(180\) 0 0
\(181\) 1.54508 + 4.75528i 0.114845 + 0.353457i 0.991915 0.126906i \(-0.0405047\pi\)
−0.877069 + 0.480364i \(0.840505\pi\)
\(182\) 0 0
\(183\) −3.35410 2.43690i −0.247942 0.180141i
\(184\) 0 0
\(185\) −0.427051 + 1.31433i −0.0313974 + 0.0966313i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.30902 4.02874i 0.0952170 0.293048i
\(190\) 0 0
\(191\) 10.8992 + 7.91872i 0.788637 + 0.572979i 0.907559 0.419925i \(-0.137944\pi\)
−0.118921 + 0.992904i \(0.537944\pi\)
\(192\) 0 0
\(193\) −5.50000 16.9273i −0.395899 1.21845i −0.928259 0.371933i \(-0.878695\pi\)
0.532361 0.846518i \(-0.321305\pi\)
\(194\) 0 0
\(195\) 0.118034 0.0857567i 0.00845259 0.00614117i
\(196\) 0 0
\(197\) −19.3262 −1.37694 −0.688469 0.725266i \(-0.741717\pi\)
−0.688469 + 0.725266i \(0.741717\pi\)
\(198\) 0 0
\(199\) 0.0557281 0.00395046 0.00197523 0.999998i \(-0.499371\pi\)
0.00197523 + 0.999998i \(0.499371\pi\)
\(200\) 0 0
\(201\) 5.35410 3.88998i 0.377649 0.274378i
\(202\) 0 0
\(203\) −2.61803 8.05748i −0.183750 0.565524i
\(204\) 0 0
\(205\) 2.35410 + 1.71036i 0.164418 + 0.119456i
\(206\) 0 0
\(207\) −1.54508 + 4.75528i −0.107391 + 0.330515i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 6.20820 19.1069i 0.427390 1.31537i −0.473296 0.880903i \(-0.656936\pi\)
0.900687 0.434469i \(-0.143064\pi\)
\(212\) 0 0
\(213\) −4.50000 3.26944i −0.308335 0.224018i
\(214\) 0 0
\(215\) 2.19098 + 6.74315i 0.149424 + 0.459879i
\(216\) 0 0
\(217\) −19.2533 + 13.9883i −1.30700 + 0.949590i
\(218\) 0 0
\(219\) 2.29180 0.154865
\(220\) 0 0
\(221\) −1.61803 −0.108841
\(222\) 0 0
\(223\) −16.1353 + 11.7229i −1.08050 + 0.785027i −0.977769 0.209683i \(-0.932757\pi\)
−0.102727 + 0.994710i \(0.532757\pi\)
\(224\) 0 0
\(225\) −1.42705 4.39201i −0.0951367 0.292801i
\(226\) 0 0
\(227\) 4.42705 + 3.21644i 0.293834 + 0.213483i 0.724929 0.688824i \(-0.241873\pi\)
−0.431095 + 0.902307i \(0.641873\pi\)
\(228\) 0 0
\(229\) 2.90983 8.95554i 0.192287 0.591798i −0.807711 0.589579i \(-0.799294\pi\)
0.999998 0.00221926i \(-0.000706412\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.246711 0.759299i 0.0161626 0.0497433i −0.942650 0.333783i \(-0.891675\pi\)
0.958813 + 0.284040i \(0.0916747\pi\)
\(234\) 0 0
\(235\) 5.28115 + 3.83698i 0.344504 + 0.250297i
\(236\) 0 0
\(237\) −1.45492 4.47777i −0.0945069 0.290862i
\(238\) 0 0
\(239\) 18.3992 13.3678i 1.19014 0.864691i 0.196865 0.980431i \(-0.436924\pi\)
0.993280 + 0.115740i \(0.0369240\pi\)
\(240\) 0 0
\(241\) 5.23607 0.337285 0.168642 0.985677i \(-0.446062\pi\)
0.168642 + 0.985677i \(0.446062\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −5.47214 + 3.97574i −0.349602 + 0.254001i
\(246\) 0 0
\(247\) −0.0106431 0.0327561i −0.000677205 0.00208422i
\(248\) 0 0
\(249\) −5.04508 3.66547i −0.319719 0.232290i
\(250\) 0 0
\(251\) 2.88197 8.86978i 0.181908 0.559856i −0.817973 0.575256i \(-0.804902\pi\)
0.999881 + 0.0154006i \(0.00490237\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.30902 4.02874i 0.0819738 0.252289i
\(256\) 0 0
\(257\) −3.35410 2.43690i −0.209223 0.152010i 0.478239 0.878230i \(-0.341275\pi\)
−0.687462 + 0.726220i \(0.741275\pi\)
\(258\) 0 0
\(259\) −2.92705 9.00854i −0.181878 0.559763i
\(260\) 0 0
\(261\) 1.61803 1.17557i 0.100154 0.0727660i
\(262\) 0 0
\(263\) −19.7426 −1.21738 −0.608692 0.793407i \(-0.708305\pi\)
−0.608692 + 0.793407i \(0.708305\pi\)
\(264\) 0 0
\(265\) 2.70820 0.166364
\(266\) 0 0
\(267\) −13.8992 + 10.0984i −0.850616 + 0.618009i
\(268\) 0 0
\(269\) −7.85410 24.1724i −0.478873 1.47382i −0.840662 0.541560i \(-0.817834\pi\)
0.361789 0.932260i \(-0.382166\pi\)
\(270\) 0 0
\(271\) −9.20820 6.69015i −0.559359 0.406398i 0.271866 0.962335i \(-0.412359\pi\)
−0.831224 + 0.555937i \(0.812359\pi\)
\(272\) 0 0
\(273\) −0.309017 + 0.951057i −0.0187026 + 0.0575606i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −8.20820 + 25.2623i −0.493183 + 1.51786i 0.326586 + 0.945168i \(0.394102\pi\)
−0.819769 + 0.572694i \(0.805898\pi\)
\(278\) 0 0
\(279\) −4.54508 3.30220i −0.272107 0.197697i
\(280\) 0 0
\(281\) 1.29180 + 3.97574i 0.0770621 + 0.237173i 0.982165 0.188019i \(-0.0602067\pi\)
−0.905103 + 0.425192i \(0.860207\pi\)
\(282\) 0 0
\(283\) −5.38197 + 3.91023i −0.319925 + 0.232439i −0.736143 0.676826i \(-0.763355\pi\)
0.416219 + 0.909265i \(0.363355\pi\)
\(284\) 0 0
\(285\) 0.0901699 0.00534121
\(286\) 0 0
\(287\) −19.9443 −1.17727
\(288\) 0 0
\(289\) −24.2533 + 17.6210i −1.42666 + 1.03653i
\(290\) 0 0
\(291\) −4.33688 13.3475i −0.254232 0.782447i
\(292\) 0 0
\(293\) 17.9894 + 13.0700i 1.05095 + 0.763559i 0.972393 0.233350i \(-0.0749688\pi\)
0.0785567 + 0.996910i \(0.474969\pi\)
\(294\) 0 0
\(295\) −2.44427 + 7.52270i −0.142311 + 0.437988i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.364745 1.12257i 0.0210938 0.0649199i
\(300\) 0 0
\(301\) −39.3156 28.5645i −2.26611 1.64643i
\(302\) 0 0
\(303\) −3.63525 11.1882i −0.208840 0.642743i
\(304\) 0 0
\(305\) −2.07295 + 1.50609i −0.118697 + 0.0862382i
\(306\) 0 0
\(307\) −10.7426 −0.613115 −0.306558 0.951852i \(-0.599177\pi\)
−0.306558 + 0.951852i \(0.599177\pi\)
\(308\) 0 0
\(309\) 17.4164 0.990785
\(310\) 0 0
\(311\) −10.8992 + 7.91872i −0.618036 + 0.449030i −0.852235 0.523159i \(-0.824753\pi\)
0.234199 + 0.972189i \(0.424753\pi\)
\(312\) 0 0
\(313\) −5.07295 15.6129i −0.286740 0.882495i −0.985872 0.167502i \(-0.946430\pi\)
0.699132 0.714993i \(-0.253570\pi\)
\(314\) 0 0
\(315\) −2.11803 1.53884i −0.119338 0.0867039i
\(316\) 0 0
\(317\) −6.72542 + 20.6987i −0.377737 + 1.16256i 0.563876 + 0.825860i \(0.309310\pi\)
−0.941613 + 0.336697i \(0.890690\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −4.83688 + 14.8864i −0.269968 + 0.830877i
\(322\) 0 0
\(323\) −0.809017 0.587785i −0.0450149 0.0327052i
\(324\) 0 0
\(325\) 0.336881 + 1.03681i 0.0186868 + 0.0575121i
\(326\) 0 0
\(327\) −7.23607 + 5.25731i −0.400155 + 0.290730i
\(328\) 0 0
\(329\) −44.7426 −2.46674
\(330\) 0 0
\(331\) −5.94427 −0.326727 −0.163363 0.986566i \(-0.552234\pi\)
−0.163363 + 0.986566i \(0.552234\pi\)
\(332\) 0 0
\(333\) 1.80902 1.31433i 0.0991335 0.0720247i
\(334\) 0 0
\(335\) −1.26393 3.88998i −0.0690560 0.212532i
\(336\) 0 0
\(337\) 8.23607 + 5.98385i 0.448647 + 0.325961i 0.789061 0.614314i \(-0.210567\pi\)
−0.340414 + 0.940276i \(0.610567\pi\)
\(338\) 0 0
\(339\) 3.07295 9.45756i 0.166900 0.513664i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 5.16312 15.8904i 0.278782 0.858003i
\(344\) 0 0
\(345\) 2.50000 + 1.81636i 0.134595 + 0.0977893i
\(346\) 0 0
\(347\) 4.47214 + 13.7638i 0.240077 + 0.738881i 0.996407 + 0.0846908i \(0.0269902\pi\)
−0.756330 + 0.654190i \(0.773010\pi\)
\(348\) 0 0
\(349\) 26.4615 19.2254i 1.41645 1.02911i 0.424107 0.905612i \(-0.360588\pi\)
0.992345 0.123500i \(-0.0394118\pi\)
\(350\) 0 0
\(351\) −0.236068 −0.0126004
\(352\) 0 0
\(353\) 15.0557 0.801336 0.400668 0.916223i \(-0.368778\pi\)
0.400668 + 0.916223i \(0.368778\pi\)
\(354\) 0 0
\(355\) −2.78115 + 2.02063i −0.147608 + 0.107244i
\(356\) 0 0
\(357\) 8.97214 + 27.6134i 0.474856 + 1.46146i
\(358\) 0 0
\(359\) −3.38197 2.45714i −0.178493 0.129683i 0.494951 0.868921i \(-0.335186\pi\)
−0.673444 + 0.739238i \(0.735186\pi\)
\(360\) 0 0
\(361\) −5.86475 + 18.0498i −0.308671 + 0.949991i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.437694 1.34708i 0.0229100 0.0705096i
\(366\) 0 0
\(367\) 8.82624 + 6.41264i 0.460726 + 0.334737i 0.793816 0.608158i \(-0.208091\pi\)
−0.333090 + 0.942895i \(0.608091\pi\)
\(368\) 0 0
\(369\) −1.45492 4.47777i −0.0757399 0.233103i
\(370\) 0 0
\(371\) −15.0172 + 10.9106i −0.779655 + 0.566453i
\(372\) 0 0
\(373\) 4.41641 0.228673 0.114336 0.993442i \(-0.463526\pi\)
0.114336 + 0.993442i \(0.463526\pi\)
\(374\) 0 0
\(375\) −5.94427 −0.306961
\(376\) 0 0
\(377\) −0.381966 + 0.277515i −0.0196723 + 0.0142927i
\(378\) 0 0
\(379\) −8.10739 24.9520i −0.416449 1.28170i −0.910949 0.412520i \(-0.864649\pi\)
0.494500 0.869178i \(-0.335351\pi\)
\(380\) 0 0
\(381\) −9.47214 6.88191i −0.485272 0.352571i
\(382\) 0 0
\(383\) −1.54508 + 4.75528i −0.0789502 + 0.242984i −0.982740 0.184993i \(-0.940774\pi\)
0.903790 + 0.427977i \(0.140774\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.54508 10.9106i 0.180207 0.554619i
\(388\) 0 0
\(389\) 6.16312 + 4.47777i 0.312483 + 0.227032i 0.732961 0.680271i \(-0.238138\pi\)
−0.420478 + 0.907303i \(0.638138\pi\)
\(390\) 0 0
\(391\) −10.5902 32.5932i −0.535568 1.64831i
\(392\) 0 0
\(393\) −7.16312 + 5.20431i −0.361332 + 0.262523i
\(394\) 0 0
\(395\) −2.90983 −0.146409
\(396\) 0 0
\(397\) 10.2361 0.513734 0.256867 0.966447i \(-0.417310\pi\)
0.256867 + 0.966447i \(0.417310\pi\)
\(398\) 0 0
\(399\) −0.500000 + 0.363271i −0.0250313 + 0.0181863i
\(400\) 0 0
\(401\) 3.97214 + 12.2250i 0.198359 + 0.610486i 0.999921 + 0.0125745i \(0.00400269\pi\)
−0.801562 + 0.597912i \(0.795997\pi\)
\(402\) 0 0
\(403\) 1.07295 + 0.779543i 0.0534474 + 0.0388318i
\(404\) 0 0
\(405\) 0.190983 0.587785i 0.00949002 0.0292073i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.05573 3.24920i 0.0522024 0.160662i −0.921557 0.388244i \(-0.873082\pi\)
0.973759 + 0.227581i \(0.0730818\pi\)
\(410\) 0 0
\(411\) 7.89919 + 5.73910i 0.389638 + 0.283089i
\(412\) 0 0
\(413\) −16.7533 51.5613i −0.824375 2.53717i
\(414\) 0 0
\(415\) −3.11803 + 2.26538i −0.153058 + 0.111203i
\(416\) 0 0
\(417\) 8.56231 0.419298
\(418\) 0 0
\(419\) 12.7984 0.625241 0.312621 0.949878i \(-0.398793\pi\)
0.312621 + 0.949878i \(0.398793\pi\)
\(420\) 0 0
\(421\) 19.6803 14.2986i 0.959161 0.696871i 0.00620532 0.999981i \(-0.498025\pi\)
0.952956 + 0.303109i \(0.0980248\pi\)
\(422\) 0 0
\(423\) −3.26393 10.0453i −0.158698 0.488422i
\(424\) 0 0
\(425\) 25.6074 + 18.6049i 1.24214 + 0.902468i
\(426\) 0 0
\(427\) 5.42705 16.7027i 0.262633 0.808303i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.31966 + 7.13918i −0.111734 + 0.343882i −0.991252 0.131984i \(-0.957865\pi\)
0.879518 + 0.475866i \(0.157865\pi\)
\(432\) 0 0
\(433\) 10.0902 + 7.33094i 0.484903 + 0.352302i 0.803221 0.595682i \(-0.203118\pi\)
−0.318318 + 0.947984i \(0.603118\pi\)
\(434\) 0 0
\(435\) −0.381966 1.17557i −0.0183139 0.0563643i
\(436\) 0 0
\(437\) 0.590170 0.428784i 0.0282317 0.0205115i
\(438\) 0 0
\(439\) 5.47214 0.261171 0.130585 0.991437i \(-0.458314\pi\)
0.130585 + 0.991437i \(0.458314\pi\)
\(440\) 0 0
\(441\) 10.9443 0.521156
\(442\) 0 0
\(443\) 5.09017 3.69822i 0.241841 0.175708i −0.460262 0.887783i \(-0.652245\pi\)
0.702103 + 0.712075i \(0.252245\pi\)
\(444\) 0 0
\(445\) 3.28115 + 10.0984i 0.155542 + 0.478708i
\(446\) 0 0
\(447\) 14.3713 + 10.4414i 0.679740 + 0.493860i
\(448\) 0 0
\(449\) −2.14590 + 6.60440i −0.101271 + 0.311681i −0.988837 0.149000i \(-0.952395\pi\)
0.887566 + 0.460681i \(0.152395\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 1.38197 4.25325i 0.0649304 0.199835i
\(454\) 0 0
\(455\) 0.500000 + 0.363271i 0.0234404 + 0.0170304i
\(456\) 0 0
\(457\) 2.40983 + 7.41669i 0.112727 + 0.346938i 0.991466 0.130364i \(-0.0416146\pi\)
−0.878739 + 0.477302i \(0.841615\pi\)
\(458\) 0 0
\(459\) −5.54508 + 4.02874i −0.258822 + 0.188045i
\(460\) 0 0
\(461\) 17.2705 0.804368 0.402184 0.915559i \(-0.368251\pi\)
0.402184 + 0.915559i \(0.368251\pi\)
\(462\) 0 0
\(463\) −13.0344 −0.605762 −0.302881 0.953028i \(-0.597948\pi\)
−0.302881 + 0.953028i \(0.597948\pi\)
\(464\) 0 0
\(465\) −2.80902 + 2.04087i −0.130265 + 0.0946431i
\(466\) 0 0
\(467\) −2.39919 7.38394i −0.111021 0.341688i 0.880075 0.474834i \(-0.157492\pi\)
−0.991096 + 0.133146i \(0.957492\pi\)
\(468\) 0 0
\(469\) 22.6803 + 16.4782i 1.04728 + 0.760894i
\(470\) 0 0
\(471\) −4.85410 + 14.9394i −0.223665 + 0.688371i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.208204 + 0.640786i −0.00955305 + 0.0294013i
\(476\) 0 0
\(477\) −3.54508 2.57565i −0.162318 0.117931i
\(478\) 0 0
\(479\) 7.79180 + 23.9807i 0.356016 + 1.09571i 0.955418 + 0.295257i \(0.0954052\pi\)
−0.599402 + 0.800448i \(0.704595\pi\)
\(480\) 0 0
\(481\) −0.427051 + 0.310271i −0.0194718 + 0.0141471i
\(482\) 0 0
\(483\) −21.1803 −0.963739
\(484\) 0 0
\(485\) −8.67376 −0.393855
\(486\) 0 0
\(487\) −7.57295 + 5.50207i −0.343163 + 0.249323i −0.745995 0.665951i \(-0.768026\pi\)
0.402832 + 0.915274i \(0.368026\pi\)
\(488\) 0 0
\(489\) −3.20820 9.87384i −0.145080 0.446510i
\(490\) 0 0
\(491\) −9.63525 7.00042i −0.434833 0.315925i 0.348746 0.937217i \(-0.386608\pi\)
−0.783578 + 0.621293i \(0.786608\pi\)
\(492\) 0 0
\(493\) −4.23607 + 13.0373i −0.190783 + 0.587169i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.28115 22.4091i 0.326604 1.00518i
\(498\) 0 0
\(499\) −8.82624 6.41264i −0.395117 0.287069i 0.372432 0.928059i \(-0.378524\pi\)
−0.767549 + 0.640990i \(0.778524\pi\)
\(500\) 0 0
\(501\) 4.80902 + 14.8006i 0.214851 + 0.661243i
\(502\) 0 0
\(503\) −6.70820 + 4.87380i −0.299104 + 0.217312i −0.727207 0.686418i \(-0.759182\pi\)
0.428103 + 0.903730i \(0.359182\pi\)
\(504\) 0 0
\(505\) −7.27051 −0.323533
\(506\) 0 0
\(507\) −12.9443 −0.574875
\(508\) 0 0
\(509\) 13.1631 9.56357i 0.583445 0.423898i −0.256519 0.966539i \(-0.582576\pi\)
0.839964 + 0.542641i \(0.182576\pi\)
\(510\) 0 0
\(511\) 3.00000 + 9.23305i 0.132712 + 0.408446i
\(512\) 0 0
\(513\) −0.118034 0.0857567i −0.00521133 0.00378625i
\(514\) 0 0
\(515\) 3.32624 10.2371i 0.146572 0.451101i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −2.98936 + 9.20029i −0.131218 + 0.403848i
\(520\) 0 0
\(521\) 3.23607 + 2.35114i 0.141775 + 0.103005i 0.656412 0.754403i \(-0.272073\pi\)
−0.514637 + 0.857408i \(0.672073\pi\)
\(522\) 0 0
\(523\) 5.97214 + 18.3803i 0.261143 + 0.803716i 0.992557 + 0.121782i \(0.0388609\pi\)
−0.731414 + 0.681934i \(0.761139\pi\)
\(524\) 0 0
\(525\) 15.8262 11.4984i 0.690714 0.501833i
\(526\) 0 0
\(527\) 38.5066 1.67737
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) 10.3541 7.52270i 0.449330 0.326457i
\(532\) 0 0
\(533\) 0.343459 + 1.05706i 0.0148769 + 0.0457862i
\(534\) 0 0
\(535\) 7.82624 + 5.68609i 0.338358 + 0.245831i
\(536\) 0 0
\(537\) 0.399187 1.22857i 0.0172262 0.0530168i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.62868 + 8.09024i −0.113016 + 0.347826i −0.991528 0.129893i \(-0.958537\pi\)
0.878512 + 0.477720i \(0.158537\pi\)
\(542\) 0 0
\(543\) −4.04508 2.93893i −0.173591 0.126121i
\(544\) 0 0
\(545\) 1.70820 + 5.25731i 0.0731714 + 0.225198i
\(546\) 0 0
\(547\) −17.1074 + 12.4292i −0.731459 + 0.531436i −0.890025 0.455912i \(-0.849313\pi\)
0.158566 + 0.987348i \(0.449313\pi\)
\(548\) 0 0
\(549\) 4.14590 0.176943
\(550\) 0 0
\(551\) −0.291796 −0.0124309
\(552\) 0 0
\(553\) 16.1353 11.7229i 0.686141 0.498510i
\(554\) 0 0
\(555\) −0.427051 1.31433i −0.0181273 0.0557901i
\(556\) 0 0
\(557\) −16.4443 11.9475i −0.696766 0.506230i 0.182111 0.983278i \(-0.441707\pi\)
−0.878877 + 0.477048i \(0.841707\pi\)
\(558\) 0 0
\(559\) −0.836881 + 2.57565i −0.0353963 + 0.108939i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.98278 + 24.5685i −0.336434 + 1.03544i 0.629577 + 0.776938i \(0.283228\pi\)
−0.966011 + 0.258500i \(0.916772\pi\)
\(564\) 0 0
\(565\) −4.97214 3.61247i −0.209179 0.151978i
\(566\) 0 0
\(567\) 1.30902 + 4.02874i 0.0549735 + 0.169191i
\(568\) 0 0
\(569\) 21.1803 15.3884i 0.887926 0.645116i −0.0474104 0.998875i \(-0.515097\pi\)
0.935336 + 0.353759i \(0.115097\pi\)
\(570\) 0 0
\(571\) −11.3820 −0.476320 −0.238160 0.971226i \(-0.576544\pi\)
−0.238160 + 0.971226i \(0.576544\pi\)
\(572\) 0 0
\(573\) −13.4721 −0.562807
\(574\) 0 0
\(575\) −18.6803 + 13.5721i −0.779024 + 0.565994i
\(576\) 0 0
\(577\) 8.67376 + 26.6951i 0.361093 + 1.11133i 0.952391 + 0.304878i \(0.0986157\pi\)
−0.591298 + 0.806453i \(0.701384\pi\)
\(578\) 0 0
\(579\) 14.3992 + 10.4616i 0.598410 + 0.434770i
\(580\) 0 0
\(581\) 8.16312 25.1235i 0.338663 1.04230i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.0450850 + 0.138757i −0.00186403 + 0.00573691i
\(586\) 0 0
\(587\) −18.9894 13.7966i −0.783775 0.569446i 0.122335 0.992489i \(-0.460962\pi\)
−0.906109 + 0.423043i \(0.860962\pi\)
\(588\) 0 0
\(589\) 0.253289 + 0.779543i 0.0104366 + 0.0321205i
\(590\) 0 0
\(591\) 15.6353 11.3597i 0.643148 0.467275i
\(592\) 0 0
\(593\) 17.3820 0.713792 0.356896 0.934144i \(-0.383835\pi\)
0.356896 + 0.934144i \(0.383835\pi\)
\(594\) 0 0
\(595\) 17.9443 0.735643
\(596\) 0 0
\(597\) −0.0450850 + 0.0327561i −0.00184521 + 0.00134062i
\(598\) 0 0
\(599\) 4.20163 + 12.9313i 0.171674 + 0.528358i 0.999466 0.0326773i \(-0.0104034\pi\)
−0.827792 + 0.561035i \(0.810403\pi\)
\(600\) 0 0
\(601\) −34.6976 25.2093i −1.41534 1.02831i −0.992518 0.122095i \(-0.961039\pi\)
−0.422825 0.906212i \(-0.638961\pi\)
\(602\) 0 0
\(603\) −2.04508 + 6.29412i −0.0832823 + 0.256317i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −10.9721 + 33.7688i −0.445345 + 1.37063i 0.436759 + 0.899578i \(0.356126\pi\)
−0.882105 + 0.471053i \(0.843874\pi\)
\(608\) 0 0
\(609\) 6.85410 + 4.97980i 0.277742 + 0.201792i
\(610\) 0 0
\(611\) 0.770510 + 2.37139i 0.0311715 + 0.0959360i
\(612\) 0 0
\(613\) −16.7984 + 12.2047i −0.678480 + 0.492945i −0.872853 0.487983i \(-0.837733\pi\)
0.194373 + 0.980928i \(0.437733\pi\)
\(614\) 0 0
\(615\) −2.90983 −0.117336
\(616\) 0 0
\(617\) 26.7082 1.07523 0.537616 0.843190i \(-0.319325\pi\)
0.537616 + 0.843190i \(0.319325\pi\)
\(618\) 0 0
\(619\) 0.336881 0.244758i 0.0135404 0.00983767i −0.580994 0.813908i \(-0.697336\pi\)
0.594535 + 0.804070i \(0.297336\pi\)
\(620\) 0 0
\(621\) −1.54508 4.75528i −0.0620021 0.190823i
\(622\) 0 0
\(623\) −58.8779 42.7773i −2.35889 1.71384i
\(624\) 0 0
\(625\) 6.00000 18.4661i 0.240000 0.738644i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.73607 + 14.5761i −0.188839 + 0.581188i
\(630\) 0 0
\(631\) 34.1074 + 24.7805i 1.35779 + 0.986495i 0.998582 + 0.0532389i \(0.0169545\pi\)
0.359212 + 0.933256i \(0.383046\pi\)
\(632\) 0 0
\(633\) 6.20820 + 19.1069i 0.246754 + 0.759431i
\(634\) 0 0
\(635\) −5.85410 + 4.25325i −0.232313 + 0.168785i
\(636\) 0 0
\(637\) −2.58359 −0.102366
\(638\) 0 0
\(639\) 5.56231 0.220041
\(640\) 0 0
\(641\) −23.8262 + 17.3108i −0.941080 + 0.683735i −0.948680 0.316237i \(-0.897581\pi\)
0.00760053 + 0.999971i \(0.497581\pi\)
\(642\) 0 0
\(643\) 4.06231 + 12.5025i 0.160202 + 0.493050i 0.998651 0.0519299i \(-0.0165372\pi\)
−0.838449 + 0.544980i \(0.816537\pi\)
\(644\) 0 0
\(645\) −5.73607 4.16750i −0.225857 0.164095i
\(646\) 0 0
\(647\) −0.409830 + 1.26133i −0.0161121 + 0.0495879i −0.958789 0.284118i \(-0.908299\pi\)
0.942677 + 0.333706i \(0.108299\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 7.35410 22.6336i 0.288230 0.887081i
\(652\) 0 0
\(653\) −20.5451 14.9269i −0.803991 0.584134i 0.108091 0.994141i \(-0.465526\pi\)
−0.912082 + 0.410007i \(0.865526\pi\)
\(654\) 0 0
\(655\) 1.69098 + 5.20431i 0.0660722 + 0.203349i
\(656\) 0 0
\(657\) −1.85410 + 1.34708i −0.0723354 + 0.0525547i
\(658\) 0 0
\(659\) 30.6525 1.19405 0.597025 0.802222i \(-0.296349\pi\)
0.597025 + 0.802222i \(0.296349\pi\)
\(660\) 0 0
\(661\) −12.9656 −0.504302 −0.252151 0.967688i \(-0.581138\pi\)
−0.252151 + 0.967688i \(0.581138\pi\)
\(662\) 0 0
\(663\) 1.30902 0.951057i 0.0508380 0.0369360i
\(664\) 0 0
\(665\) 0.118034 + 0.363271i 0.00457716 + 0.0140871i
\(666\) 0 0
\(667\) −8.09017 5.87785i −0.313253 0.227591i
\(668\) 0 0
\(669\) 6.16312 18.9681i 0.238280 0.733350i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 5.57953 17.1720i 0.215075 0.661933i −0.784073 0.620668i \(-0.786861\pi\)
0.999148 0.0412644i \(-0.0131386\pi\)
\(674\) 0 0
\(675\) 3.73607 + 2.71441i 0.143801 + 0.104478i
\(676\) 0 0
\(677\) −11.8197 36.3772i −0.454266 1.39809i −0.871994 0.489516i \(-0.837173\pi\)
0.417728 0.908572i \(-0.362827\pi\)
\(678\) 0 0
\(679\) 48.0967 34.9443i 1.84578 1.34104i
\(680\) 0 0
\(681\) −5.47214 −0.209693
\(682\) 0 0
\(683\) 0.0557281 0.00213238 0.00106619 0.999999i \(-0.499661\pi\)
0.00106619 + 0.999999i \(0.499661\pi\)
\(684\) 0 0
\(685\) 4.88197 3.54696i 0.186530 0.135522i
\(686\) 0 0
\(687\) 2.90983 + 8.95554i 0.111017 + 0.341675i
\(688\) 0 0
\(689\) 0.836881 + 0.608030i 0.0318826 + 0.0231641i
\(690\) 0 0
\(691\) 5.29180 16.2865i 0.201309 0.619567i −0.798535 0.601948i \(-0.794391\pi\)
0.999845 0.0176188i \(-0.00560852\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.63525 5.03280i 0.0620288 0.190905i
\(696\) 0 0
\(697\) 26.1074 + 18.9681i 0.988888 + 0.718469i
\(698\) 0 0
\(699\) 0.246711 + 0.759299i 0.00933147 + 0.0287193i
\(700\) 0 0
\(701\) −31.6246 + 22.9766i −1.19445 + 0.867815i −0.993727 0.111834i \(-0.964328\pi\)
−0.200718 + 0.979649i \(0.564328\pi\)
\(702\) 0 0
\(703\) −0.326238 −0.0123043
\(704\) 0 0
\(705\) −6.52786 −0.245854
\(706\) 0 0
\(707\) 40.3156 29.2910i 1.51622 1.10160i
\(708\) 0 0
\(709\) −0.534442 1.64484i −0.0200714 0.0617734i 0.940519 0.339741i \(-0.110339\pi\)
−0.960591 + 0.277967i \(0.910339\pi\)
\(710\) 0 0
\(711\) 3.80902 + 2.76741i 0.142849 + 0.103786i
\(712\) 0 0
\(713\) −8.68034 + 26.7153i −0.325081 + 1.00050i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −7.02786 + 21.6295i −0.262460 + 0.807770i
\(718\) 0 0
\(719\) 7.66312 + 5.56758i 0.285786 + 0.207636i 0.721437 0.692480i \(-0.243482\pi\)
−0.435651 + 0.900116i \(0.643482\pi\)
\(720\) 0 0
\(721\) 22.7984 + 70.1662i 0.849056 + 2.61313i
\(722\) 0 0
\(723\) −4.23607 + 3.07768i −0.157541 + 0.114460i
\(724\) 0 0
\(725\) 9.23607 0.343019
\(726\) 0 0
\(727\) −2.02129 −0.0749654 −0.0374827 0.999297i \(-0.511934\pi\)
−0.0374827 + 0.999297i \(0.511934\pi\)
\(728\) 0 0
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) 24.2984 + 74.7827i 0.898708 + 2.76594i
\(732\) 0 0
\(733\) −27.0902 19.6822i −1.00060 0.726977i −0.0383819 0.999263i \(-0.512220\pi\)
−0.962216 + 0.272286i \(0.912220\pi\)
\(734\) 0 0
\(735\) 2.09017 6.43288i 0.0770971 0.237280i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 14.3647 44.2101i 0.528416 1.62630i −0.229045 0.973416i \(-0.573560\pi\)
0.757461 0.652880i \(-0.226440\pi\)
\(740\) 0 0
\(741\) 0.0278640 + 0.0202444i 0.00102361 + 0.000743697i
\(742\) 0 0
\(743\) 13.0517 + 40.1689i 0.478819 + 1.47365i 0.840737 + 0.541444i \(0.182122\pi\)
−0.361918 + 0.932210i \(0.617878\pi\)
\(744\) 0 0
\(745\) 8.88197 6.45313i 0.325410 0.236424i
\(746\) 0 0
\(747\) 6.23607 0.228166
\(748\) 0 0
\(749\) −66.3050 −2.42273
\(750\) 0 0
\(751\) 36.1525 26.2663i 1.31922 0.958471i 0.319281 0.947660i \(-0.396559\pi\)
0.999942 0.0108112i \(-0.00344139\pi\)
\(752\) 0 0
\(753\) 2.88197 + 8.86978i 0.105025 + 0.323233i
\(754\) 0 0
\(755\) −2.23607 1.62460i −0.0813788 0.0591252i
\(756\) 0 0
\(757\) 10.6697 32.8380i 0.387797 1.19352i −0.546634 0.837371i \(-0.684091\pi\)
0.934431 0.356144i \(-0.115909\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.34346 4.13474i 0.0487003 0.149884i −0.923749 0.382998i \(-0.874892\pi\)
0.972449 + 0.233114i \(0.0748915\pi\)
\(762\) 0 0
\(763\) −30.6525 22.2703i −1.10969 0.806240i
\(764\) 0 0
\(765\) 1.30902 + 4.02874i 0.0473276 + 0.145659i
\(766\) 0 0
\(767\) −2.44427 + 1.77587i −0.0882575 + 0.0641229i
\(768\) 0 0
\(769\) 36.9787 1.33349 0.666743 0.745287i \(-0.267688\pi\)
0.666743 + 0.745287i \(0.267688\pi\)
\(770\) 0 0
\(771\) 4.14590 0.149311
\(772\) 0 0
\(773\) 15.9894 11.6169i 0.575097 0.417833i −0.261856 0.965107i \(-0.584335\pi\)
0.836953 + 0.547274i \(0.184335\pi\)
\(774\) 0 0
\(775\) −8.01722 24.6745i −0.287987 0.886333i
\(776\) 0 0
\(777\) 7.66312 + 5.56758i 0.274913 + 0.199736i
\(778\) 0 0
\(779\) −0.212269 + 0.653298i −0.00760533 + 0.0234068i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −0.618034 + 1.90211i −0.0220867 + 0.0679760i
\(784\) 0 0
\(785\) 7.85410 + 5.70634i 0.280325 + 0.203668i
\(786\) 0 0
\(787\) −0.708204 2.17963i −0.0252447 0.0776953i 0.937640 0.347607i \(-0.113006\pi\)
−0.962885 + 0.269911i \(0.913006\pi\)
\(788\) 0 0
\(789\) 15.9721 11.6044i 0.568623 0.413129i
\(790\) 0 0
\(791\) 42.1246 1.49778
\(792\) 0 0
\(793\) −0.978714 −0.0347551
\(794\) 0 0
\(795\) −2.19098 + 1.59184i −0.0777062 + 0.0564568i
\(796\) 0 0
\(797\) −9.90983 30.4993i −0.351024 1.08034i −0.958279 0.285834i \(-0.907729\pi\)
0.607255 0.794507i \(-0.292271\pi\)
\(798\) 0 0
\(799\) 58.5689 + 42.5528i 2.07202 + 1.50541i
\(800\) 0 0
\(801\) 5.30902 16.3395i 0.187585 0.577327i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −4.04508 + 12.4495i −0.142571 + 0.438787i
\(806\) 0 0
\(807\) 20.5623 + 14.9394i 0.723827 + 0.525891i
\(808\) 0 0
\(809\) 16.4828 + 50.7288i 0.579504 + 1.78353i 0.620304 + 0.784362i \(0.287009\pi\)
−0.0408003 + 0.999167i \(0.512991\pi\)
\(810\) 0 0
\(811\) 2.69098 1.95511i 0.0944932 0.0686533i −0.539535 0.841963i \(-0.681400\pi\)
0.634029 + 0.773310i \(0.281400\pi\)
\(812\) 0 0
\(813\) 11.3820 0.399183
\(814\) 0 0
\(815\) −6.41641 −0.224757
\(816\) 0 0
\(817\) −1.35410 + 0.983813i −0.0473740 + 0.0344192i
\(818\) 0 0
\(819\) −0.309017 0.951057i −0.0107979 0.0332326i
\(820\) 0 0
\(821\) −11.4271 8.30224i −0.398807 0.289750i 0.370248 0.928933i \(-0.379273\pi\)
−0.769055 + 0.639183i \(0.779273\pi\)
\(822\) 0 0
\(823\) −6.83688 + 21.0418i −0.238319 + 0.733470i 0.758345 + 0.651853i \(0.226008\pi\)
−0.996664 + 0.0816163i \(0.973992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.36068 16.4985i 0.186409 0.573708i −0.813561 0.581480i \(-0.802474\pi\)
0.999970 + 0.00777178i \(0.00247386\pi\)
\(828\) 0 0
\(829\) 34.3435 + 24.9520i 1.19280 + 0.866618i 0.993557 0.113332i \(-0.0361525\pi\)
0.199241 + 0.979951i \(0.436153\pi\)
\(830\) 0 0
\(831\) −8.20820 25.2623i −0.284739 0.876338i
\(832\) 0 0
\(833\) −60.6869 + 44.0916i −2.10268 + 1.52768i
\(834\) 0 0
\(835\) 9.61803 0.332846
\(836\) 0 0
\(837\) 5.61803 0.194188
\(838\) 0 0
\(839\) 36.0795 26.2133i 1.24560 0.904984i 0.247645 0.968851i \(-0.420343\pi\)
0.997958 + 0.0638668i \(0.0203433\pi\)
\(840\) 0 0
\(841\) −7.72542 23.7764i −0.266394 0.819876i
\(842\) 0 0
\(843\) −3.38197 2.45714i −0.116481 0.0846285i
\(844\) 0 0
\(845\) −2.47214 + 7.60845i −0.0850441 + 0.261739i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 2.05573 6.32688i 0.0705524 0.217138i
\(850\) 0 0
\(851\) −9.04508 6.57164i −0.310062 0.225273i
\(852\) 0 0
\(853\) −9.69098 29.8258i −0.331813 1.02122i −0.968271 0.249904i \(-0.919601\pi\)
0.636458 0.771312i \(-0.280399\pi\)
\(854\) 0 0
\(855\) −0.0729490 + 0.0530006i −0.00249480 + 0.00181258i
\(856\) 0 0
\(857\) 6.81966 0.232955 0.116478 0.993193i \(-0.462840\pi\)
0.116478 + 0.993193i \(0.462840\pi\)
\(858\) 0 0
\(859\) −17.8754 −0.609900 −0.304950 0.952368i \(-0.598640\pi\)
−0.304950 + 0.952368i \(0.598640\pi\)
\(860\) 0 0
\(861\) 16.1353 11.7229i 0.549888 0.399517i
\(862\) 0 0
\(863\) 14.0344 + 43.1936i 0.477738 + 1.47033i 0.842229 + 0.539119i \(0.181243\pi\)
−0.364491 + 0.931207i \(0.618757\pi\)
\(864\) 0 0
\(865\) 4.83688 + 3.51420i 0.164459 + 0.119486i
\(866\) 0 0
\(867\) 9.26393 28.5115i 0.314620 0.968300i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0.482779 1.48584i 0.0163583 0.0503458i
\(872\) 0 0
\(873\) 11.3541 + 8.24924i 0.384278 + 0.279194i
\(874\) 0 0
\(875\) −7.78115 23.9479i −0.263051 0.809588i
\(876\) 0 0
\(877\) 40.7877 29.6340i 1.37730 1.00067i 0.380177 0.924914i \(-0.375863\pi\)
0.997126 0.0757562i \(-0.0241371\pi\)
\(878\) 0 0
\(879\) −22.2361 −0.750004
\(880\) 0 0
\(881\) −15.5066 −0.522430 −0.261215 0.965281i \(-0.584123\pi\)
−0.261215 + 0.965281i \(0.584123\pi\)
\(882\) 0 0
\(883\) −35.7984 + 26.0090i −1.20471 + 0.875274i −0.994740 0.102434i \(-0.967337\pi\)
−0.209971 + 0.977708i \(0.567337\pi\)
\(884\) 0 0
\(885\) −2.44427 7.52270i −0.0821633 0.252873i
\(886\) 0 0
\(887\) −30.3156 22.0256i −1.01790 0.739546i −0.0520471 0.998645i \(-0.516575\pi\)
−0.965851 + 0.259098i \(0.916575\pi\)
\(888\) 0 0
\(889\) 15.3262 47.1693i 0.514026 1.58201i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.476201 + 1.46560i −0.0159355 + 0.0490443i
\(894\) 0 0
\(895\) −0.645898 0.469272i −0.0215900 0.0156860i
\(896\) 0 0
\(897\) 0.364745 + 1.12257i 0.0121785 + 0.0374815i
\(898\) 0 0
\(899\) 9.09017 6.60440i 0.303174 0.220269i
\(900\) 0 0
\(901\) 30.0344 1.00059
\(902\) 0 0
\(903\) 48.5967 1.61720
\(904\) 0 0
\(905\) −2.50000 + 1.81636i −0.0831028 + 0.0603777i
\(906\) 0 0
\(907\) 9.04508 + 27.8379i 0.300337 + 0.924343i 0.981376 + 0.192096i \(0.0615284\pi\)
−0.681039 + 0.732247i \(0.738472\pi\)
\(908\) 0 0
\(909\) 9.51722 + 6.91467i 0.315666 + 0.229345i
\(910\) 0 0
\(911\) −10.4549 + 32.1769i −0.346387 + 1.06607i 0.614450 + 0.788955i \(0.289378\pi\)
−0.960837 + 0.277113i \(0.910622\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0.791796 2.43690i 0.0261760 0.0805614i
\(916\) 0 0
\(917\) −30.3435 22.0458i −1.00203 0.728017i
\(918\) 0 0
\(919\) 8.78115 + 27.0256i 0.289664 + 0.891493i 0.984962 + 0.172771i \(0.0552722\pi\)
−0.695298 + 0.718721i \(0.744728\pi\)
\(920\) 0 0
\(921\) 8.69098 6.31437i 0.286378 0.208066i
\(922\) 0 0
\(923\) −1.31308 −0.0432206
\(924\) 0 0
\(925\) 10.3262 0.339525
\(926\) 0 0
\(927\) −14.0902 + 10.2371i −0.462782 + 0.336231i
\(928\) 0 0
\(929\) 1.16312 + 3.57971i 0.0381607 + 0.117447i 0.968322 0.249704i \(-0.0803333\pi\)
−0.930161 + 0.367151i \(0.880333\pi\)
\(930\) 0 0
\(931\) −1.29180 0.938545i −0.0423369 0.0307596i
\(932\) 0 0
\(933\) 4.16312 12.8128i 0.136294 0.419471i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 7.30902 22.4948i 0.238775 0.734874i −0.757823 0.652460i \(-0.773737\pi\)
0.996598 0.0824142i \(-0.0262630\pi\)
\(938\) 0 0
\(939\) 13.2812 + 9.64932i 0.433414 + 0.314894i
\(940\) 0 0
\(941\) 1.82624 + 5.62058i 0.0595337 + 0.183226i 0.976401 0.215967i \(-0.0692904\pi\)
−0.916867 + 0.399193i \(0.869290\pi\)
\(942\) 0 0
\(943\) −19.0451 + 13.8371i −0.620193 + 0.450597i
\(944\) 0 0
\(945\) 2.61803 0.0851647
\(946\) 0 0
\(947\) 31.9230 1.03736 0.518679 0.854969i \(-0.326424\pi\)
0.518679 + 0.854969i \(0.326424\pi\)
\(948\) 0 0
\(949\) 0.437694 0.318003i 0.0142082 0.0103228i
\(950\) 0 0
\(951\) −6.72542 20.6987i −0.218087 0.671202i
\(952\) 0 0
\(953\) −30.5967 22.2298i −0.991126 0.720095i −0.0309585 0.999521i \(-0.509856\pi\)
−0.960167 + 0.279426i \(0.909856\pi\)
\(954\) 0 0
\(955\) −2.57295 + 7.91872i −0.0832587 + 0.256244i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.7812 + 39.3363i −0.412725 + 1.27024i
\(960\) 0 0
\(961\) −0.454915 0.330515i −0.0146747 0.0106618i
\(962\) 0 0
\(963\) −4.83688 14.8864i −0.155866 0.479707i
\(964\) 0 0
\(965\) 8.89919 6.46564i 0.286475 0.208136i
\(966\) 0 0
\(967\) 23.1591 0.744745 0.372372 0.928083i \(-0.378544\pi\)
0.372372 + 0.928083i \(0.378544\pi\)
\(968\) 0 0
\(969\) 1.00000 0.0321246
\(970\) 0 0
\(971\) 28.7426 20.8828i 0.922395 0.670159i −0.0217237 0.999764i \(-0.506915\pi\)
0.944119 + 0.329605i \(0.106915\pi\)
\(972\) 0 0
\(973\) 11.2082 + 34.4953i 0.359319 + 1.10587i
\(974\) 0 0
\(975\) −0.881966 0.640786i −0.0282455 0.0205216i
\(976\) 0 0
\(977\) −13.3435 + 41.0669i −0.426895 + 1.31385i 0.474273 + 0.880378i \(0.342711\pi\)
−0.901168 + 0.433470i \(0.857289\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 2.76393 8.50651i 0.0882456 0.271592i
\(982\) 0 0
\(983\) −24.5623 17.8456i −0.783416 0.569185i 0.122586 0.992458i \(-0.460881\pi\)
−0.906002 + 0.423273i \(0.860881\pi\)
\(984\) 0 0
\(985\) −3.69098 11.3597i −0.117604 0.361949i
\(986\) 0 0
\(987\) 36.1976 26.2991i 1.15218 0.837109i
\(988\) 0 0
\(989\) −57.3607 −1.82396
\(990\) 0 0
\(991\) 39.8541 1.26601 0.633004 0.774149i \(-0.281822\pi\)
0.633004 + 0.774149i \(0.281822\pi\)
\(992\) 0 0
\(993\) 4.80902 3.49396i 0.152610 0.110877i
\(994\) 0 0
\(995\) 0.0106431 + 0.0327561i 0.000337410 + 0.00103844i
\(996\) 0 0
\(997\) −18.9721 13.7841i −0.600854 0.436546i 0.245328 0.969440i \(-0.421104\pi\)
−0.846182 + 0.532894i \(0.821104\pi\)
\(998\) 0 0
\(999\) −0.690983 + 2.12663i −0.0218617 + 0.0672835i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.2.i.g.493.1 4
11.2 odd 10 1452.2.i.c.1213.1 4
11.3 even 5 1452.2.i.f.565.1 4
11.4 even 5 1452.2.a.m.1.2 2
11.5 even 5 inner 1452.2.i.g.1237.1 4
11.6 odd 10 132.2.i.a.49.1 4
11.7 odd 10 1452.2.a.l.1.2 2
11.8 odd 10 1452.2.i.c.565.1 4
11.9 even 5 1452.2.i.f.1213.1 4
11.10 odd 2 132.2.i.a.97.1 yes 4
33.17 even 10 396.2.j.b.181.1 4
33.26 odd 10 4356.2.a.w.1.1 2
33.29 even 10 4356.2.a.r.1.1 2
33.32 even 2 396.2.j.b.361.1 4
44.7 even 10 5808.2.a.bq.1.2 2
44.15 odd 10 5808.2.a.bn.1.2 2
44.39 even 10 528.2.y.i.49.1 4
44.43 even 2 528.2.y.i.97.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.a.49.1 4 11.6 odd 10
132.2.i.a.97.1 yes 4 11.10 odd 2
396.2.j.b.181.1 4 33.17 even 10
396.2.j.b.361.1 4 33.32 even 2
528.2.y.i.49.1 4 44.39 even 10
528.2.y.i.97.1 4 44.43 even 2
1452.2.a.l.1.2 2 11.7 odd 10
1452.2.a.m.1.2 2 11.4 even 5
1452.2.i.c.565.1 4 11.8 odd 10
1452.2.i.c.1213.1 4 11.2 odd 10
1452.2.i.f.565.1 4 11.3 even 5
1452.2.i.f.1213.1 4 11.9 even 5
1452.2.i.g.493.1 4 1.1 even 1 trivial
1452.2.i.g.1237.1 4 11.5 even 5 inner
4356.2.a.r.1.1 2 33.29 even 10
4356.2.a.w.1.1 2 33.26 odd 10
5808.2.a.bn.1.2 2 44.15 odd 10
5808.2.a.bq.1.2 2 44.7 even 10