Properties

Label 1452.2.i.f.565.1
Level $1452$
Weight $2$
Character 1452.565
Analytic conductor $11.594$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(493,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,-2,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 565.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 1452.565
Dual form 1452.2.i.f.1213.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{3} +(-0.500000 + 0.363271i) q^{5} +(1.30902 + 4.02874i) q^{7} +(-0.809017 - 0.587785i) q^{9} +(0.190983 + 0.138757i) q^{13} +(0.190983 + 0.587785i) q^{15} +(-5.54508 + 4.02874i) q^{17} +(0.0450850 - 0.138757i) q^{19} +4.23607 q^{21} -5.00000 q^{23} +(-1.42705 + 4.39201i) q^{25} +(-0.809017 + 0.587785i) q^{27} +(-0.618034 - 1.90211i) q^{29} +(-4.54508 - 3.30220i) q^{31} +(-2.11803 - 1.53884i) q^{35} +(-0.690983 - 2.12663i) q^{37} +(0.190983 - 0.138757i) q^{39} +(-1.45492 + 4.47777i) q^{41} +11.4721 q^{43} +0.618034 q^{45} +(-3.26393 + 10.0453i) q^{47} +(-8.85410 + 6.43288i) q^{49} +(2.11803 + 6.51864i) q^{51} +(-3.54508 - 2.57565i) q^{53} +(-0.118034 - 0.0857567i) q^{57} +(-3.95492 - 12.1720i) q^{59} +(-3.35410 + 2.43690i) q^{61} +(1.30902 - 4.02874i) q^{63} -0.145898 q^{65} -6.61803 q^{67} +(-1.54508 + 4.75528i) q^{69} +(-4.50000 + 3.26944i) q^{71} +(0.708204 + 2.17963i) q^{73} +(3.73607 + 2.71441i) q^{75} +(3.80902 + 2.76741i) q^{79} +(0.309017 + 0.951057i) q^{81} +(-5.04508 + 3.66547i) q^{83} +(1.30902 - 4.02874i) q^{85} -2.00000 q^{87} +17.1803 q^{89} +(-0.309017 + 0.951057i) q^{91} +(-4.54508 + 3.30220i) q^{93} +(0.0278640 + 0.0857567i) q^{95} +(11.3541 + 8.24924i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} - 2 q^{5} + 3 q^{7} - q^{9} + 3 q^{13} + 3 q^{15} - 11 q^{17} - 11 q^{19} + 8 q^{21} - 20 q^{23} + q^{25} - q^{27} + 2 q^{29} - 7 q^{31} - 4 q^{35} - 5 q^{37} + 3 q^{39} - 17 q^{41} + 28 q^{43}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.309017 0.951057i 0.178411 0.549093i
\(4\) 0 0
\(5\) −0.500000 + 0.363271i −0.223607 + 0.162460i −0.693949 0.720024i \(-0.744131\pi\)
0.470342 + 0.882484i \(0.344131\pi\)
\(6\) 0 0
\(7\) 1.30902 + 4.02874i 0.494762 + 1.52272i 0.817327 + 0.576173i \(0.195455\pi\)
−0.322566 + 0.946547i \(0.604545\pi\)
\(8\) 0 0
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0.190983 + 0.138757i 0.0529692 + 0.0384843i 0.613955 0.789341i \(-0.289578\pi\)
−0.560986 + 0.827826i \(0.689578\pi\)
\(14\) 0 0
\(15\) 0.190983 + 0.587785i 0.0493116 + 0.151765i
\(16\) 0 0
\(17\) −5.54508 + 4.02874i −1.34488 + 0.977113i −0.345631 + 0.938370i \(0.612335\pi\)
−0.999249 + 0.0387426i \(0.987665\pi\)
\(18\) 0 0
\(19\) 0.0450850 0.138757i 0.0103432 0.0318331i −0.945752 0.324890i \(-0.894673\pi\)
0.956095 + 0.293057i \(0.0946726\pi\)
\(20\) 0 0
\(21\) 4.23607 0.924386
\(22\) 0 0
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) 0 0
\(25\) −1.42705 + 4.39201i −0.285410 + 0.878402i
\(26\) 0 0
\(27\) −0.809017 + 0.587785i −0.155695 + 0.113119i
\(28\) 0 0
\(29\) −0.618034 1.90211i −0.114766 0.353214i 0.877132 0.480249i \(-0.159454\pi\)
−0.991898 + 0.127036i \(0.959454\pi\)
\(30\) 0 0
\(31\) −4.54508 3.30220i −0.816321 0.593092i 0.0993351 0.995054i \(-0.468328\pi\)
−0.915656 + 0.401962i \(0.868328\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.11803 1.53884i −0.358013 0.260112i
\(36\) 0 0
\(37\) −0.690983 2.12663i −0.113597 0.349615i 0.878055 0.478560i \(-0.158841\pi\)
−0.991652 + 0.128945i \(0.958841\pi\)
\(38\) 0 0
\(39\) 0.190983 0.138757i 0.0305818 0.0222189i
\(40\) 0 0
\(41\) −1.45492 + 4.47777i −0.227220 + 0.699310i 0.770839 + 0.637030i \(0.219837\pi\)
−0.998059 + 0.0622801i \(0.980163\pi\)
\(42\) 0 0
\(43\) 11.4721 1.74948 0.874742 0.484589i \(-0.161031\pi\)
0.874742 + 0.484589i \(0.161031\pi\)
\(44\) 0 0
\(45\) 0.618034 0.0921311
\(46\) 0 0
\(47\) −3.26393 + 10.0453i −0.476093 + 1.46526i 0.368384 + 0.929674i \(0.379911\pi\)
−0.844477 + 0.535591i \(0.820089\pi\)
\(48\) 0 0
\(49\) −8.85410 + 6.43288i −1.26487 + 0.918983i
\(50\) 0 0
\(51\) 2.11803 + 6.51864i 0.296584 + 0.912792i
\(52\) 0 0
\(53\) −3.54508 2.57565i −0.486955 0.353793i 0.317057 0.948406i \(-0.397305\pi\)
−0.804012 + 0.594613i \(0.797305\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.118034 0.0857567i −0.0156340 0.0113588i
\(58\) 0 0
\(59\) −3.95492 12.1720i −0.514886 1.58466i −0.783489 0.621405i \(-0.786562\pi\)
0.268603 0.963251i \(-0.413438\pi\)
\(60\) 0 0
\(61\) −3.35410 + 2.43690i −0.429449 + 0.312013i −0.781428 0.623995i \(-0.785509\pi\)
0.351980 + 0.936008i \(0.385509\pi\)
\(62\) 0 0
\(63\) 1.30902 4.02874i 0.164921 0.507574i
\(64\) 0 0
\(65\) −0.145898 −0.0180964
\(66\) 0 0
\(67\) −6.61803 −0.808522 −0.404261 0.914644i \(-0.632471\pi\)
−0.404261 + 0.914644i \(0.632471\pi\)
\(68\) 0 0
\(69\) −1.54508 + 4.75528i −0.186006 + 0.572469i
\(70\) 0 0
\(71\) −4.50000 + 3.26944i −0.534052 + 0.388011i −0.821871 0.569673i \(-0.807070\pi\)
0.287819 + 0.957685i \(0.407070\pi\)
\(72\) 0 0
\(73\) 0.708204 + 2.17963i 0.0828890 + 0.255106i 0.983909 0.178672i \(-0.0571801\pi\)
−0.901020 + 0.433778i \(0.857180\pi\)
\(74\) 0 0
\(75\) 3.73607 + 2.71441i 0.431404 + 0.313433i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.80902 + 2.76741i 0.428548 + 0.311358i 0.781068 0.624446i \(-0.214675\pi\)
−0.352520 + 0.935804i \(0.614675\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 0 0
\(83\) −5.04508 + 3.66547i −0.553770 + 0.402337i −0.829174 0.558991i \(-0.811189\pi\)
0.275404 + 0.961329i \(0.411189\pi\)
\(84\) 0 0
\(85\) 1.30902 4.02874i 0.141983 0.436978i
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) 17.1803 1.82111 0.910556 0.413385i \(-0.135654\pi\)
0.910556 + 0.413385i \(0.135654\pi\)
\(90\) 0 0
\(91\) −0.309017 + 0.951057i −0.0323938 + 0.0996978i
\(92\) 0 0
\(93\) −4.54508 + 3.30220i −0.471303 + 0.342422i
\(94\) 0 0
\(95\) 0.0278640 + 0.0857567i 0.00285879 + 0.00879845i
\(96\) 0 0
\(97\) 11.3541 + 8.24924i 1.15283 + 0.837583i 0.988855 0.148881i \(-0.0475670\pi\)
0.163979 + 0.986464i \(0.447567\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.51722 + 6.91467i 0.946999 + 0.688035i 0.950095 0.311960i \(-0.100986\pi\)
−0.00309628 + 0.999995i \(0.500986\pi\)
\(102\) 0 0
\(103\) 5.38197 + 16.5640i 0.530301 + 1.63210i 0.753589 + 0.657346i \(0.228321\pi\)
−0.223288 + 0.974752i \(0.571679\pi\)
\(104\) 0 0
\(105\) −2.11803 + 1.53884i −0.206699 + 0.150176i
\(106\) 0 0
\(107\) −4.83688 + 14.8864i −0.467599 + 1.43912i 0.388085 + 0.921623i \(0.373137\pi\)
−0.855684 + 0.517498i \(0.826863\pi\)
\(108\) 0 0
\(109\) 8.94427 0.856706 0.428353 0.903612i \(-0.359094\pi\)
0.428353 + 0.903612i \(0.359094\pi\)
\(110\) 0 0
\(111\) −2.23607 −0.212238
\(112\) 0 0
\(113\) 3.07295 9.45756i 0.289079 0.889693i −0.696068 0.717976i \(-0.745069\pi\)
0.985146 0.171717i \(-0.0549314\pi\)
\(114\) 0 0
\(115\) 2.50000 1.81636i 0.233126 0.169376i
\(116\) 0 0
\(117\) −0.0729490 0.224514i −0.00674414 0.0207563i
\(118\) 0 0
\(119\) −23.4894 17.0660i −2.15327 1.56444i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 3.80902 + 2.76741i 0.343447 + 0.249529i
\(124\) 0 0
\(125\) −1.83688 5.65334i −0.164296 0.505650i
\(126\) 0 0
\(127\) −9.47214 + 6.88191i −0.840516 + 0.610671i −0.922515 0.385962i \(-0.873870\pi\)
0.0819987 + 0.996632i \(0.473870\pi\)
\(128\) 0 0
\(129\) 3.54508 10.9106i 0.312127 0.960629i
\(130\) 0 0
\(131\) 8.85410 0.773586 0.386793 0.922166i \(-0.373583\pi\)
0.386793 + 0.922166i \(0.373583\pi\)
\(132\) 0 0
\(133\) 0.618034 0.0535903
\(134\) 0 0
\(135\) 0.190983 0.587785i 0.0164372 0.0505885i
\(136\) 0 0
\(137\) 7.89919 5.73910i 0.674873 0.490324i −0.196780 0.980448i \(-0.563048\pi\)
0.871653 + 0.490124i \(0.163048\pi\)
\(138\) 0 0
\(139\) 2.64590 + 8.14324i 0.224422 + 0.690700i 0.998350 + 0.0574263i \(0.0182894\pi\)
−0.773928 + 0.633274i \(0.781711\pi\)
\(140\) 0 0
\(141\) 8.54508 + 6.20837i 0.719626 + 0.522839i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.00000 + 0.726543i 0.0830455 + 0.0603361i
\(146\) 0 0
\(147\) 3.38197 + 10.4086i 0.278940 + 0.858489i
\(148\) 0 0
\(149\) 14.3713 10.4414i 1.17734 0.855391i 0.185475 0.982649i \(-0.440618\pi\)
0.991870 + 0.127258i \(0.0406176\pi\)
\(150\) 0 0
\(151\) 1.38197 4.25325i 0.112463 0.346125i −0.878947 0.476920i \(-0.841753\pi\)
0.991409 + 0.130795i \(0.0417531\pi\)
\(152\) 0 0
\(153\) 6.85410 0.554121
\(154\) 0 0
\(155\) 3.47214 0.278889
\(156\) 0 0
\(157\) −4.85410 + 14.9394i −0.387400 + 1.19229i 0.547325 + 0.836920i \(0.315646\pi\)
−0.934725 + 0.355373i \(0.884354\pi\)
\(158\) 0 0
\(159\) −3.54508 + 2.57565i −0.281144 + 0.204263i
\(160\) 0 0
\(161\) −6.54508 20.1437i −0.515825 1.58755i
\(162\) 0 0
\(163\) 8.39919 + 6.10237i 0.657875 + 0.477974i 0.865945 0.500140i \(-0.166718\pi\)
−0.208070 + 0.978114i \(0.566718\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.5902 9.14729i −0.974257 0.707839i −0.0178389 0.999841i \(-0.505679\pi\)
−0.956418 + 0.292002i \(0.905679\pi\)
\(168\) 0 0
\(169\) −4.00000 12.3107i −0.307692 0.946980i
\(170\) 0 0
\(171\) −0.118034 + 0.0857567i −0.00902628 + 0.00655798i
\(172\) 0 0
\(173\) −2.98936 + 9.20029i −0.227277 + 0.699485i 0.770776 + 0.637106i \(0.219869\pi\)
−0.998053 + 0.0623791i \(0.980131\pi\)
\(174\) 0 0
\(175\) −19.5623 −1.47877
\(176\) 0 0
\(177\) −12.7984 −0.961985
\(178\) 0 0
\(179\) 0.399187 1.22857i 0.0298366 0.0918277i −0.935029 0.354571i \(-0.884627\pi\)
0.964866 + 0.262743i \(0.0846271\pi\)
\(180\) 0 0
\(181\) −4.04508 + 2.93893i −0.300669 + 0.218449i −0.727882 0.685702i \(-0.759495\pi\)
0.427213 + 0.904151i \(0.359495\pi\)
\(182\) 0 0
\(183\) 1.28115 + 3.94298i 0.0947056 + 0.291474i
\(184\) 0 0
\(185\) 1.11803 + 0.812299i 0.0821995 + 0.0597214i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −3.42705 2.48990i −0.249281 0.181113i
\(190\) 0 0
\(191\) −4.16312 12.8128i −0.301233 0.927099i −0.981056 0.193723i \(-0.937944\pi\)
0.679824 0.733376i \(-0.262056\pi\)
\(192\) 0 0
\(193\) 14.3992 10.4616i 1.03648 0.753044i 0.0668816 0.997761i \(-0.478695\pi\)
0.969595 + 0.244717i \(0.0786950\pi\)
\(194\) 0 0
\(195\) −0.0450850 + 0.138757i −0.00322860 + 0.00993661i
\(196\) 0 0
\(197\) −19.3262 −1.37694 −0.688469 0.725266i \(-0.741717\pi\)
−0.688469 + 0.725266i \(0.741717\pi\)
\(198\) 0 0
\(199\) 0.0557281 0.00395046 0.00197523 0.999998i \(-0.499371\pi\)
0.00197523 + 0.999998i \(0.499371\pi\)
\(200\) 0 0
\(201\) −2.04508 + 6.29412i −0.144249 + 0.443953i
\(202\) 0 0
\(203\) 6.85410 4.97980i 0.481064 0.349513i
\(204\) 0 0
\(205\) −0.899187 2.76741i −0.0628019 0.193284i
\(206\) 0 0
\(207\) 4.04508 + 2.93893i 0.281153 + 0.204269i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −16.2533 11.8087i −1.11892 0.812945i −0.134877 0.990862i \(-0.543064\pi\)
−0.984045 + 0.177918i \(0.943064\pi\)
\(212\) 0 0
\(213\) 1.71885 + 5.29007i 0.117773 + 0.362469i
\(214\) 0 0
\(215\) −5.73607 + 4.16750i −0.391197 + 0.284221i
\(216\) 0 0
\(217\) 7.35410 22.6336i 0.499229 1.53647i
\(218\) 0 0
\(219\) 2.29180 0.154865
\(220\) 0 0
\(221\) −1.61803 −0.108841
\(222\) 0 0
\(223\) 6.16312 18.9681i 0.412713 1.27020i −0.501568 0.865118i \(-0.667243\pi\)
0.914281 0.405081i \(-0.132757\pi\)
\(224\) 0 0
\(225\) 3.73607 2.71441i 0.249071 0.180961i
\(226\) 0 0
\(227\) −1.69098 5.20431i −0.112234 0.345422i 0.879126 0.476590i \(-0.158127\pi\)
−0.991360 + 0.131168i \(0.958127\pi\)
\(228\) 0 0
\(229\) −7.61803 5.53483i −0.503414 0.365752i 0.306906 0.951740i \(-0.400706\pi\)
−0.810319 + 0.585988i \(0.800706\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.645898 0.469272i −0.0423142 0.0307431i 0.566427 0.824112i \(-0.308325\pi\)
−0.608741 + 0.793369i \(0.708325\pi\)
\(234\) 0 0
\(235\) −2.01722 6.20837i −0.131589 0.404989i
\(236\) 0 0
\(237\) 3.80902 2.76741i 0.247422 0.179763i
\(238\) 0 0
\(239\) −7.02786 + 21.6295i −0.454595 + 1.39910i 0.417016 + 0.908899i \(0.363076\pi\)
−0.871610 + 0.490199i \(0.836924\pi\)
\(240\) 0 0
\(241\) 5.23607 0.337285 0.168642 0.985677i \(-0.446062\pi\)
0.168642 + 0.985677i \(0.446062\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 2.09017 6.43288i 0.133536 0.410982i
\(246\) 0 0
\(247\) 0.0278640 0.0202444i 0.00177295 0.00128812i
\(248\) 0 0
\(249\) 1.92705 + 5.93085i 0.122122 + 0.375853i
\(250\) 0 0
\(251\) −7.54508 5.48183i −0.476242 0.346010i 0.323627 0.946185i \(-0.395098\pi\)
−0.799869 + 0.600175i \(0.795098\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.42705 2.48990i −0.214610 0.155923i
\(256\) 0 0
\(257\) 1.28115 + 3.94298i 0.0799161 + 0.245957i 0.983030 0.183444i \(-0.0587247\pi\)
−0.903114 + 0.429401i \(0.858725\pi\)
\(258\) 0 0
\(259\) 7.66312 5.56758i 0.476163 0.345953i
\(260\) 0 0
\(261\) −0.618034 + 1.90211i −0.0382553 + 0.117738i
\(262\) 0 0
\(263\) −19.7426 −1.21738 −0.608692 0.793407i \(-0.708305\pi\)
−0.608692 + 0.793407i \(0.708305\pi\)
\(264\) 0 0
\(265\) 2.70820 0.166364
\(266\) 0 0
\(267\) 5.30902 16.3395i 0.324907 0.999960i
\(268\) 0 0
\(269\) 20.5623 14.9394i 1.25371 0.910871i 0.255275 0.966868i \(-0.417834\pi\)
0.998431 + 0.0559978i \(0.0178340\pi\)
\(270\) 0 0
\(271\) 3.51722 + 10.8249i 0.213656 + 0.657565i 0.999246 + 0.0388184i \(0.0123594\pi\)
−0.785590 + 0.618747i \(0.787641\pi\)
\(272\) 0 0
\(273\) 0.809017 + 0.587785i 0.0489639 + 0.0355744i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 21.4894 + 15.6129i 1.29117 + 0.938090i 0.999828 0.0185288i \(-0.00589824\pi\)
0.291342 + 0.956619i \(0.405898\pi\)
\(278\) 0 0
\(279\) 1.73607 + 5.34307i 0.103936 + 0.319881i
\(280\) 0 0
\(281\) −3.38197 + 2.45714i −0.201751 + 0.146581i −0.684074 0.729413i \(-0.739793\pi\)
0.482323 + 0.875994i \(0.339793\pi\)
\(282\) 0 0
\(283\) 2.05573 6.32688i 0.122200 0.376094i −0.871180 0.490963i \(-0.836645\pi\)
0.993381 + 0.114869i \(0.0366449\pi\)
\(284\) 0 0
\(285\) 0.0901699 0.00534121
\(286\) 0 0
\(287\) −19.9443 −1.17727
\(288\) 0 0
\(289\) 9.26393 28.5115i 0.544937 1.67714i
\(290\) 0 0
\(291\) 11.3541 8.24924i 0.665589 0.483579i
\(292\) 0 0
\(293\) −6.87132 21.1478i −0.401427 1.23547i −0.923842 0.382774i \(-0.874969\pi\)
0.522415 0.852691i \(-0.325031\pi\)
\(294\) 0 0
\(295\) 6.39919 + 4.64928i 0.372575 + 0.270692i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.954915 0.693786i −0.0552242 0.0401227i
\(300\) 0 0
\(301\) 15.0172 + 46.2183i 0.865578 + 2.66398i
\(302\) 0 0
\(303\) 9.51722 6.91467i 0.546750 0.397237i
\(304\) 0 0
\(305\) 0.791796 2.43690i 0.0453381 0.139536i
\(306\) 0 0
\(307\) −10.7426 −0.613115 −0.306558 0.951852i \(-0.599177\pi\)
−0.306558 + 0.951852i \(0.599177\pi\)
\(308\) 0 0
\(309\) 17.4164 0.990785
\(310\) 0 0
\(311\) 4.16312 12.8128i 0.236069 0.726545i −0.760909 0.648859i \(-0.775247\pi\)
0.996978 0.0776865i \(-0.0247533\pi\)
\(312\) 0 0
\(313\) 13.2812 9.64932i 0.750695 0.545412i −0.145347 0.989381i \(-0.546430\pi\)
0.896042 + 0.443969i \(0.146430\pi\)
\(314\) 0 0
\(315\) 0.809017 + 2.48990i 0.0455829 + 0.140290i
\(316\) 0 0
\(317\) 17.6074 + 12.7925i 0.988930 + 0.718499i 0.959686 0.281073i \(-0.0906903\pi\)
0.0292432 + 0.999572i \(0.490690\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 12.6631 + 9.20029i 0.706786 + 0.513510i
\(322\) 0 0
\(323\) 0.309017 + 0.951057i 0.0171942 + 0.0529182i
\(324\) 0 0
\(325\) −0.881966 + 0.640786i −0.0489227 + 0.0355444i
\(326\) 0 0
\(327\) 2.76393 8.50651i 0.152846 0.470411i
\(328\) 0 0
\(329\) −44.7426 −2.46674
\(330\) 0 0
\(331\) −5.94427 −0.326727 −0.163363 0.986566i \(-0.552234\pi\)
−0.163363 + 0.986566i \(0.552234\pi\)
\(332\) 0 0
\(333\) −0.690983 + 2.12663i −0.0378656 + 0.116538i
\(334\) 0 0
\(335\) 3.30902 2.40414i 0.180791 0.131352i
\(336\) 0 0
\(337\) −3.14590 9.68208i −0.171368 0.527416i 0.828081 0.560608i \(-0.189433\pi\)
−0.999449 + 0.0331920i \(0.989433\pi\)
\(338\) 0 0
\(339\) −8.04508 5.84510i −0.436949 0.317462i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −13.5172 9.82084i −0.729861 0.530275i
\(344\) 0 0
\(345\) −0.954915 2.93893i −0.0514109 0.158226i
\(346\) 0 0
\(347\) −11.7082 + 8.50651i −0.628529 + 0.456653i −0.855890 0.517157i \(-0.826990\pi\)
0.227361 + 0.973811i \(0.426990\pi\)
\(348\) 0 0
\(349\) −10.1074 + 31.1074i −0.541036 + 1.66514i 0.189196 + 0.981939i \(0.439412\pi\)
−0.730232 + 0.683199i \(0.760588\pi\)
\(350\) 0 0
\(351\) −0.236068 −0.0126004
\(352\) 0 0
\(353\) 15.0557 0.801336 0.400668 0.916223i \(-0.368778\pi\)
0.400668 + 0.916223i \(0.368778\pi\)
\(354\) 0 0
\(355\) 1.06231 3.26944i 0.0563813 0.173524i
\(356\) 0 0
\(357\) −23.4894 + 17.0660i −1.24319 + 0.903229i
\(358\) 0 0
\(359\) 1.29180 + 3.97574i 0.0681784 + 0.209832i 0.979341 0.202215i \(-0.0648140\pi\)
−0.911163 + 0.412047i \(0.864814\pi\)
\(360\) 0 0
\(361\) 15.3541 + 11.1554i 0.808111 + 0.587127i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.14590 0.832544i −0.0599790 0.0435773i
\(366\) 0 0
\(367\) −3.37132 10.3759i −0.175982 0.541616i 0.823695 0.567033i \(-0.191909\pi\)
−0.999677 + 0.0254169i \(0.991909\pi\)
\(368\) 0 0
\(369\) 3.80902 2.76741i 0.198290 0.144066i
\(370\) 0 0
\(371\) 5.73607 17.6538i 0.297802 0.916540i
\(372\) 0 0
\(373\) 4.41641 0.228673 0.114336 0.993442i \(-0.463526\pi\)
0.114336 + 0.993442i \(0.463526\pi\)
\(374\) 0 0
\(375\) −5.94427 −0.306961
\(376\) 0 0
\(377\) 0.145898 0.449028i 0.00751413 0.0231261i
\(378\) 0 0
\(379\) 21.2254 15.4212i 1.09028 0.792132i 0.110831 0.993839i \(-0.464649\pi\)
0.979446 + 0.201707i \(0.0646488\pi\)
\(380\) 0 0
\(381\) 3.61803 + 11.1352i 0.185357 + 0.570472i
\(382\) 0 0
\(383\) 4.04508 + 2.93893i 0.206694 + 0.150172i 0.686317 0.727303i \(-0.259226\pi\)
−0.479623 + 0.877475i \(0.659226\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.28115 6.74315i −0.471788 0.342774i
\(388\) 0 0
\(389\) −2.35410 7.24518i −0.119358 0.367345i 0.873473 0.486872i \(-0.161862\pi\)
−0.992831 + 0.119527i \(0.961862\pi\)
\(390\) 0 0
\(391\) 27.7254 20.1437i 1.40214 1.01871i
\(392\) 0 0
\(393\) 2.73607 8.42075i 0.138016 0.424771i
\(394\) 0 0
\(395\) −2.90983 −0.146409
\(396\) 0 0
\(397\) 10.2361 0.513734 0.256867 0.966447i \(-0.417310\pi\)
0.256867 + 0.966447i \(0.417310\pi\)
\(398\) 0 0
\(399\) 0.190983 0.587785i 0.00956111 0.0294261i
\(400\) 0 0
\(401\) −10.3992 + 7.55545i −0.519311 + 0.377301i −0.816344 0.577566i \(-0.804003\pi\)
0.297034 + 0.954867i \(0.404003\pi\)
\(402\) 0 0
\(403\) −0.409830 1.26133i −0.0204151 0.0628312i
\(404\) 0 0
\(405\) −0.500000 0.363271i −0.0248452 0.0180511i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −2.76393 2.00811i −0.136668 0.0992949i 0.517351 0.855773i \(-0.326918\pi\)
−0.654019 + 0.756478i \(0.726918\pi\)
\(410\) 0 0
\(411\) −3.01722 9.28605i −0.148829 0.458047i
\(412\) 0 0
\(413\) 43.8607 31.8666i 2.15824 1.56806i
\(414\) 0 0
\(415\) 1.19098 3.66547i 0.0584631 0.179931i
\(416\) 0 0
\(417\) 8.56231 0.419298
\(418\) 0 0
\(419\) 12.7984 0.625241 0.312621 0.949878i \(-0.398793\pi\)
0.312621 + 0.949878i \(0.398793\pi\)
\(420\) 0 0
\(421\) −7.51722 + 23.1356i −0.366367 + 1.12756i 0.582754 + 0.812649i \(0.301975\pi\)
−0.949121 + 0.314913i \(0.898025\pi\)
\(422\) 0 0
\(423\) 8.54508 6.20837i 0.415476 0.301861i
\(424\) 0 0
\(425\) −9.78115 30.1033i −0.474456 1.46022i
\(426\) 0 0
\(427\) −14.2082 10.3229i −0.687583 0.499558i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.07295 + 4.41226i 0.292524 + 0.212531i 0.724361 0.689420i \(-0.242135\pi\)
−0.431838 + 0.901951i \(0.642135\pi\)
\(432\) 0 0
\(433\) −3.85410 11.8617i −0.185216 0.570037i 0.814736 0.579833i \(-0.196882\pi\)
−0.999952 + 0.00979528i \(0.996882\pi\)
\(434\) 0 0
\(435\) 1.00000 0.726543i 0.0479463 0.0348350i
\(436\) 0 0
\(437\) −0.225425 + 0.693786i −0.0107835 + 0.0331883i
\(438\) 0 0
\(439\) 5.47214 0.261171 0.130585 0.991437i \(-0.458314\pi\)
0.130585 + 0.991437i \(0.458314\pi\)
\(440\) 0 0
\(441\) 10.9443 0.521156
\(442\) 0 0
\(443\) −1.94427 + 5.98385i −0.0923751 + 0.284301i −0.986561 0.163395i \(-0.947755\pi\)
0.894186 + 0.447696i \(0.147755\pi\)
\(444\) 0 0
\(445\) −8.59017 + 6.24112i −0.407213 + 0.295858i
\(446\) 0 0
\(447\) −5.48936 16.8945i −0.259638 0.799083i
\(448\) 0 0
\(449\) 5.61803 + 4.08174i 0.265131 + 0.192629i 0.712406 0.701767i \(-0.247605\pi\)
−0.447275 + 0.894397i \(0.647605\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −3.61803 2.62866i −0.169990 0.123505i
\(454\) 0 0
\(455\) −0.190983 0.587785i −0.00895342 0.0275558i
\(456\) 0 0
\(457\) −6.30902 + 4.58377i −0.295123 + 0.214420i −0.725487 0.688236i \(-0.758385\pi\)
0.430364 + 0.902656i \(0.358385\pi\)
\(458\) 0 0
\(459\) 2.11803 6.51864i 0.0988614 0.304264i
\(460\) 0 0
\(461\) 17.2705 0.804368 0.402184 0.915559i \(-0.368251\pi\)
0.402184 + 0.915559i \(0.368251\pi\)
\(462\) 0 0
\(463\) −13.0344 −0.605762 −0.302881 0.953028i \(-0.597948\pi\)
−0.302881 + 0.953028i \(0.597948\pi\)
\(464\) 0 0
\(465\) 1.07295 3.30220i 0.0497568 0.153136i
\(466\) 0 0
\(467\) 6.28115 4.56352i 0.290657 0.211175i −0.432895 0.901444i \(-0.642508\pi\)
0.723552 + 0.690269i \(0.242508\pi\)
\(468\) 0 0
\(469\) −8.66312 26.6623i −0.400026 1.23115i
\(470\) 0 0
\(471\) 12.7082 + 9.23305i 0.585563 + 0.425437i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.545085 + 0.396027i 0.0250102 + 0.0181710i
\(476\) 0 0
\(477\) 1.35410 + 4.16750i 0.0620001 + 0.190817i
\(478\) 0 0
\(479\) −20.3992 + 14.8209i −0.932063 + 0.677183i −0.946497 0.322713i \(-0.895405\pi\)
0.0144343 + 0.999896i \(0.495405\pi\)
\(480\) 0 0
\(481\) 0.163119 0.502029i 0.00743758 0.0228905i
\(482\) 0 0
\(483\) −21.1803 −0.963739
\(484\) 0 0
\(485\) −8.67376 −0.393855
\(486\) 0 0
\(487\) 2.89261 8.90254i 0.131077 0.403412i −0.863883 0.503693i \(-0.831974\pi\)
0.994959 + 0.100281i \(0.0319742\pi\)
\(488\) 0 0
\(489\) 8.39919 6.10237i 0.379824 0.275959i
\(490\) 0 0
\(491\) 3.68034 + 11.3269i 0.166091 + 0.511177i 0.999115 0.0420606i \(-0.0133922\pi\)
−0.833024 + 0.553237i \(0.813392\pi\)
\(492\) 0 0
\(493\) 11.0902 + 8.05748i 0.499476 + 0.362891i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −19.0623 13.8496i −0.855061 0.621238i
\(498\) 0 0
\(499\) 3.37132 + 10.3759i 0.150921 + 0.464488i 0.997725 0.0674181i \(-0.0214761\pi\)
−0.846804 + 0.531906i \(0.821476\pi\)
\(500\) 0 0
\(501\) −12.5902 + 9.14729i −0.562487 + 0.408671i
\(502\) 0 0
\(503\) 2.56231 7.88597i 0.114248 0.351618i −0.877542 0.479500i \(-0.840818\pi\)
0.991789 + 0.127882i \(0.0408180\pi\)
\(504\) 0 0
\(505\) −7.27051 −0.323533
\(506\) 0 0
\(507\) −12.9443 −0.574875
\(508\) 0 0
\(509\) −5.02786 + 15.4742i −0.222856 + 0.685881i 0.775646 + 0.631168i \(0.217424\pi\)
−0.998502 + 0.0547125i \(0.982576\pi\)
\(510\) 0 0
\(511\) −7.85410 + 5.70634i −0.347445 + 0.252434i
\(512\) 0 0
\(513\) 0.0450850 + 0.138757i 0.00199055 + 0.00612628i
\(514\) 0 0
\(515\) −8.70820 6.32688i −0.383729 0.278796i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 7.82624 + 5.68609i 0.343534 + 0.249592i
\(520\) 0 0
\(521\) −1.23607 3.80423i −0.0541531 0.166666i 0.920322 0.391162i \(-0.127927\pi\)
−0.974475 + 0.224495i \(0.927927\pi\)
\(522\) 0 0
\(523\) −15.6353 + 11.3597i −0.683682 + 0.496724i −0.874577 0.484886i \(-0.838861\pi\)
0.190895 + 0.981610i \(0.438861\pi\)
\(524\) 0 0
\(525\) −6.04508 + 18.6049i −0.263829 + 0.811983i
\(526\) 0 0
\(527\) 38.5066 1.67737
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) −3.95492 + 12.1720i −0.171629 + 0.528219i
\(532\) 0 0
\(533\) −0.899187 + 0.653298i −0.0389481 + 0.0282975i
\(534\) 0 0
\(535\) −2.98936 9.20029i −0.129241 0.397763i
\(536\) 0 0
\(537\) −1.04508 0.759299i −0.0450987 0.0327662i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 6.88197 + 5.00004i 0.295879 + 0.214969i 0.725814 0.687891i \(-0.241463\pi\)
−0.429935 + 0.902860i \(0.641463\pi\)
\(542\) 0 0
\(543\) 1.54508 + 4.75528i 0.0663059 + 0.204069i
\(544\) 0 0
\(545\) −4.47214 + 3.24920i −0.191565 + 0.139180i
\(546\) 0 0
\(547\) 6.53444 20.1109i 0.279393 0.859882i −0.708631 0.705579i \(-0.750687\pi\)
0.988024 0.154303i \(-0.0493131\pi\)
\(548\) 0 0
\(549\) 4.14590 0.176943
\(550\) 0 0
\(551\) −0.291796 −0.0124309
\(552\) 0 0
\(553\) −6.16312 + 18.9681i −0.262082 + 0.806607i
\(554\) 0 0
\(555\) 1.11803 0.812299i 0.0474579 0.0344802i
\(556\) 0 0
\(557\) 6.28115 + 19.3314i 0.266141 + 0.819098i 0.991428 + 0.130651i \(0.0417069\pi\)
−0.725287 + 0.688446i \(0.758293\pi\)
\(558\) 0 0
\(559\) 2.19098 + 1.59184i 0.0926687 + 0.0673278i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 20.8992 + 15.1841i 0.880796 + 0.639936i 0.933462 0.358677i \(-0.116772\pi\)
−0.0526662 + 0.998612i \(0.516772\pi\)
\(564\) 0 0
\(565\) 1.89919 + 5.84510i 0.0798994 + 0.245905i
\(566\) 0 0
\(567\) −3.42705 + 2.48990i −0.143923 + 0.104566i
\(568\) 0 0
\(569\) −8.09017 + 24.8990i −0.339158 + 1.04382i 0.625480 + 0.780240i \(0.284903\pi\)
−0.964638 + 0.263580i \(0.915097\pi\)
\(570\) 0 0
\(571\) −11.3820 −0.476320 −0.238160 0.971226i \(-0.576544\pi\)
−0.238160 + 0.971226i \(0.576544\pi\)
\(572\) 0 0
\(573\) −13.4721 −0.562807
\(574\) 0 0
\(575\) 7.13525 21.9601i 0.297561 0.915798i
\(576\) 0 0
\(577\) −22.7082 + 16.4985i −0.945355 + 0.686841i −0.949704 0.313150i \(-0.898616\pi\)
0.00434878 + 0.999991i \(0.498616\pi\)
\(578\) 0 0
\(579\) −5.50000 16.9273i −0.228572 0.703473i
\(580\) 0 0
\(581\) −21.3713 15.5272i −0.886632 0.644176i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0.118034 + 0.0857567i 0.00488010 + 0.00354560i
\(586\) 0 0
\(587\) 7.25329 + 22.3233i 0.299375 + 0.921382i 0.981717 + 0.190349i \(0.0609618\pi\)
−0.682341 + 0.731034i \(0.739038\pi\)
\(588\) 0 0
\(589\) −0.663119 + 0.481784i −0.0273233 + 0.0198516i
\(590\) 0 0
\(591\) −5.97214 + 18.3803i −0.245661 + 0.756066i
\(592\) 0 0
\(593\) 17.3820 0.713792 0.356896 0.934144i \(-0.383835\pi\)
0.356896 + 0.934144i \(0.383835\pi\)
\(594\) 0 0
\(595\) 17.9443 0.735643
\(596\) 0 0
\(597\) 0.0172209 0.0530006i 0.000704806 0.00216917i
\(598\) 0 0
\(599\) −11.0000 + 7.99197i −0.449448 + 0.326543i −0.789378 0.613908i \(-0.789597\pi\)
0.339930 + 0.940451i \(0.389597\pi\)
\(600\) 0 0
\(601\) 13.2533 + 40.7894i 0.540613 + 1.66384i 0.731198 + 0.682165i \(0.238961\pi\)
−0.190585 + 0.981671i \(0.561039\pi\)
\(602\) 0 0
\(603\) 5.35410 + 3.88998i 0.218036 + 0.158412i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 28.7254 + 20.8702i 1.16593 + 0.847097i 0.990516 0.137398i \(-0.0438739\pi\)
0.175413 + 0.984495i \(0.443874\pi\)
\(608\) 0 0
\(609\) −2.61803 8.05748i −0.106088 0.326506i
\(610\) 0 0
\(611\) −2.01722 + 1.46560i −0.0816080 + 0.0592917i
\(612\) 0 0
\(613\) 6.41641 19.7477i 0.259156 0.797601i −0.733826 0.679337i \(-0.762267\pi\)
0.992982 0.118263i \(-0.0377327\pi\)
\(614\) 0 0
\(615\) −2.90983 −0.117336
\(616\) 0 0
\(617\) 26.7082 1.07523 0.537616 0.843190i \(-0.319325\pi\)
0.537616 + 0.843190i \(0.319325\pi\)
\(618\) 0 0
\(619\) −0.128677 + 0.396027i −0.00517197 + 0.0159177i −0.953609 0.301047i \(-0.902664\pi\)
0.948437 + 0.316965i \(0.102664\pi\)
\(620\) 0 0
\(621\) 4.04508 2.93893i 0.162324 0.117935i
\(622\) 0 0
\(623\) 22.4894 + 69.2151i 0.901017 + 2.77305i
\(624\) 0 0
\(625\) −15.7082 11.4127i −0.628328 0.456507i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.3992 + 9.00854i 0.494388 + 0.359194i
\(630\) 0 0
\(631\) −13.0279 40.0956i −0.518631 1.59618i −0.776577 0.630023i \(-0.783046\pi\)
0.257946 0.966159i \(-0.416954\pi\)
\(632\) 0 0
\(633\) −16.2533 + 11.8087i −0.646010 + 0.469354i
\(634\) 0 0
\(635\) 2.23607 6.88191i 0.0887357 0.273100i
\(636\) 0 0
\(637\) −2.58359 −0.102366
\(638\) 0 0
\(639\) 5.56231 0.220041
\(640\) 0 0
\(641\) 9.10081 28.0094i 0.359461 1.10631i −0.593917 0.804526i \(-0.702419\pi\)
0.953378 0.301780i \(-0.0975807\pi\)
\(642\) 0 0
\(643\) −10.6353 + 7.72696i −0.419414 + 0.304722i −0.777402 0.629004i \(-0.783463\pi\)
0.357988 + 0.933726i \(0.383463\pi\)
\(644\) 0 0
\(645\) 2.19098 + 6.74315i 0.0862699 + 0.265511i
\(646\) 0 0
\(647\) 1.07295 + 0.779543i 0.0421820 + 0.0306470i 0.608676 0.793419i \(-0.291701\pi\)
−0.566494 + 0.824066i \(0.691701\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −19.2533 13.9883i −0.754596 0.548246i
\(652\) 0 0
\(653\) 7.84752 + 24.1522i 0.307097 + 0.945148i 0.978886 + 0.204406i \(0.0655262\pi\)
−0.671789 + 0.740743i \(0.734474\pi\)
\(654\) 0 0
\(655\) −4.42705 + 3.21644i −0.172979 + 0.125677i
\(656\) 0 0
\(657\) 0.708204 2.17963i 0.0276297 0.0850354i
\(658\) 0 0
\(659\) 30.6525 1.19405 0.597025 0.802222i \(-0.296349\pi\)
0.597025 + 0.802222i \(0.296349\pi\)
\(660\) 0 0
\(661\) −12.9656 −0.504302 −0.252151 0.967688i \(-0.581138\pi\)
−0.252151 + 0.967688i \(0.581138\pi\)
\(662\) 0 0
\(663\) −0.500000 + 1.53884i −0.0194184 + 0.0597637i
\(664\) 0 0
\(665\) −0.309017 + 0.224514i −0.0119832 + 0.00870628i
\(666\) 0 0
\(667\) 3.09017 + 9.51057i 0.119652 + 0.368251i
\(668\) 0 0
\(669\) −16.1353 11.7229i −0.623825 0.453235i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −14.6074 10.6129i −0.563074 0.409097i 0.269509 0.962998i \(-0.413139\pi\)
−0.832583 + 0.553901i \(0.813139\pi\)
\(674\) 0 0
\(675\) −1.42705 4.39201i −0.0549272 0.169049i
\(676\) 0 0
\(677\) 30.9443 22.4823i 1.18928 0.864066i 0.196096 0.980585i \(-0.437173\pi\)
0.993189 + 0.116518i \(0.0371734\pi\)
\(678\) 0 0
\(679\) −18.3713 + 56.5411i −0.705027 + 2.16985i
\(680\) 0 0
\(681\) −5.47214 −0.209693
\(682\) 0 0
\(683\) 0.0557281 0.00213238 0.00106619 0.999999i \(-0.499661\pi\)
0.00106619 + 0.999999i \(0.499661\pi\)
\(684\) 0 0
\(685\) −1.86475 + 5.73910i −0.0712482 + 0.219280i
\(686\) 0 0
\(687\) −7.61803 + 5.53483i −0.290646 + 0.211167i
\(688\) 0 0
\(689\) −0.319660 0.983813i −0.0121781 0.0374803i
\(690\) 0 0
\(691\) −13.8541 10.0656i −0.527035 0.382913i 0.292213 0.956353i \(-0.405609\pi\)
−0.819247 + 0.573440i \(0.805609\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.28115 3.11044i −0.162393 0.117986i
\(696\) 0 0
\(697\) −9.97214 30.6911i −0.377722 1.16251i
\(698\) 0 0
\(699\) −0.645898 + 0.469272i −0.0244301 + 0.0177495i
\(700\) 0 0
\(701\) 12.0795 37.1770i 0.456237 1.40415i −0.413439 0.910532i \(-0.635672\pi\)
0.869676 0.493623i \(-0.164328\pi\)
\(702\) 0 0
\(703\) −0.326238 −0.0123043
\(704\) 0 0
\(705\) −6.52786 −0.245854
\(706\) 0 0
\(707\) −15.3992 + 47.3938i −0.579146 + 1.78243i
\(708\) 0 0
\(709\) 1.39919 1.01657i 0.0525476 0.0381780i −0.561201 0.827679i \(-0.689661\pi\)
0.613749 + 0.789501i \(0.289661\pi\)
\(710\) 0 0
\(711\) −1.45492 4.47777i −0.0545636 0.167929i
\(712\) 0 0
\(713\) 22.7254 + 16.5110i 0.851074 + 0.618341i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 18.3992 + 13.3678i 0.687130 + 0.499229i
\(718\) 0 0
\(719\) −2.92705 9.00854i −0.109161 0.335962i 0.881524 0.472140i \(-0.156518\pi\)
−0.990684 + 0.136178i \(0.956518\pi\)
\(720\) 0 0
\(721\) −59.6869 + 43.3651i −2.22286 + 1.61500i
\(722\) 0 0
\(723\) 1.61803 4.97980i 0.0601753 0.185201i
\(724\) 0 0
\(725\) 9.23607 0.343019
\(726\) 0 0
\(727\) −2.02129 −0.0749654 −0.0374827 0.999297i \(-0.511934\pi\)
−0.0374827 + 0.999297i \(0.511934\pi\)
\(728\) 0 0
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) 0 0
\(731\) −63.6140 + 46.2183i −2.35285 + 1.70944i
\(732\) 0 0
\(733\) 10.3475 + 31.8464i 0.382195 + 1.17627i 0.938495 + 0.345293i \(0.112220\pi\)
−0.556301 + 0.830981i \(0.687780\pi\)
\(734\) 0 0
\(735\) −5.47214 3.97574i −0.201843 0.146647i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −37.6074 27.3234i −1.38341 1.00511i −0.996552 0.0829670i \(-0.973560\pi\)
−0.386858 0.922139i \(-0.626440\pi\)
\(740\) 0 0
\(741\) −0.0106431 0.0327561i −0.000390985 0.00120333i
\(742\) 0 0
\(743\) −34.1697 + 24.8257i −1.25356 + 0.910768i −0.998423 0.0561357i \(-0.982122\pi\)
−0.255141 + 0.966904i \(0.582122\pi\)
\(744\) 0 0
\(745\) −3.39261 + 10.4414i −0.124296 + 0.382542i
\(746\) 0 0
\(747\) 6.23607 0.228166
\(748\) 0 0
\(749\) −66.3050 −2.42273
\(750\) 0 0
\(751\) −13.8090 + 42.4998i −0.503898 + 1.55084i 0.298717 + 0.954342i \(0.403441\pi\)
−0.802615 + 0.596497i \(0.796559\pi\)
\(752\) 0 0
\(753\) −7.54508 + 5.48183i −0.274958 + 0.199769i
\(754\) 0 0
\(755\) 0.854102 + 2.62866i 0.0310840 + 0.0956666i
\(756\) 0 0
\(757\) −27.9336 20.2950i −1.01527 0.737633i −0.0499581 0.998751i \(-0.515909\pi\)
−0.965307 + 0.261118i \(0.915909\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.51722 2.55541i −0.127499 0.0926336i 0.522208 0.852818i \(-0.325108\pi\)
−0.649707 + 0.760185i \(0.725108\pi\)
\(762\) 0 0
\(763\) 11.7082 + 36.0341i 0.423865 + 1.30452i
\(764\) 0 0
\(765\) −3.42705 + 2.48990i −0.123905 + 0.0900225i
\(766\) 0 0
\(767\) 0.933629 2.87341i 0.0337114 0.103753i
\(768\) 0 0
\(769\) 36.9787 1.33349 0.666743 0.745287i \(-0.267688\pi\)
0.666743 + 0.745287i \(0.267688\pi\)
\(770\) 0 0
\(771\) 4.14590 0.149311
\(772\) 0 0
\(773\) −6.10739 + 18.7966i −0.219668 + 0.676067i 0.779122 + 0.626873i \(0.215665\pi\)
−0.998789 + 0.0491945i \(0.984335\pi\)
\(774\) 0 0
\(775\) 20.9894 15.2497i 0.753960 0.547784i
\(776\) 0 0
\(777\) −2.92705 9.00854i −0.105007 0.323179i
\(778\) 0 0
\(779\) 0.555728 + 0.403760i 0.0199110 + 0.0144662i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1.61803 + 1.17557i 0.0578238 + 0.0420115i
\(784\) 0 0
\(785\) −3.00000 9.23305i −0.107075 0.329542i
\(786\) 0 0
\(787\) 1.85410 1.34708i 0.0660916 0.0480184i −0.554249 0.832351i \(-0.686994\pi\)
0.620340 + 0.784333i \(0.286994\pi\)
\(788\) 0 0
\(789\) −6.10081 + 18.7764i −0.217195 + 0.668457i
\(790\) 0 0
\(791\) 42.1246 1.49778
\(792\) 0 0
\(793\) −0.978714 −0.0347551
\(794\) 0 0
\(795\) 0.836881 2.57565i 0.0296811 0.0913491i
\(796\) 0 0
\(797\) 25.9443 18.8496i 0.918993 0.667688i −0.0242800 0.999705i \(-0.507729\pi\)
0.943273 + 0.332018i \(0.107729\pi\)
\(798\) 0 0
\(799\) −22.3713 68.8519i −0.791441 2.43580i
\(800\) 0 0
\(801\) −13.8992 10.0984i −0.491104 0.356808i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 10.5902 + 7.69421i 0.373254 + 0.271185i
\(806\) 0 0
\(807\) −7.85410 24.1724i −0.276477 0.850910i
\(808\) 0 0
\(809\) −43.1525 + 31.3521i −1.51716 + 1.10228i −0.554288 + 0.832325i \(0.687009\pi\)
−0.962873 + 0.269956i \(0.912991\pi\)
\(810\) 0 0
\(811\) −1.02786 + 3.16344i −0.0360932 + 0.111083i −0.967480 0.252948i \(-0.918600\pi\)
0.931387 + 0.364031i \(0.118600\pi\)
\(812\) 0 0
\(813\) 11.3820 0.399183
\(814\) 0 0
\(815\) −6.41641 −0.224757
\(816\) 0 0
\(817\) 0.517221 1.59184i 0.0180953 0.0556915i
\(818\) 0 0
\(819\) 0.809017 0.587785i 0.0282693 0.0205389i
\(820\) 0 0
\(821\) 4.36475 + 13.4333i 0.152331 + 0.468826i 0.997881 0.0650707i \(-0.0207273\pi\)
−0.845550 + 0.533896i \(0.820727\pi\)
\(822\) 0 0
\(823\) 17.8992 + 13.0045i 0.623926 + 0.453309i 0.854291 0.519795i \(-0.173992\pi\)
−0.230364 + 0.973104i \(0.573992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.0344 10.1966i −0.488025 0.354571i 0.316399 0.948626i \(-0.397526\pi\)
−0.804424 + 0.594055i \(0.797526\pi\)
\(828\) 0 0
\(829\) −13.1180 40.3732i −0.455608 1.40222i −0.870420 0.492310i \(-0.836153\pi\)
0.414812 0.909907i \(-0.363847\pi\)
\(830\) 0 0
\(831\) 21.4894 15.6129i 0.745458 0.541607i
\(832\) 0 0
\(833\) 23.1803 71.3418i 0.803151 2.47185i
\(834\) 0 0
\(835\) 9.61803 0.332846
\(836\) 0 0
\(837\) 5.61803 0.194188
\(838\) 0 0
\(839\) −13.7812 + 42.4140i −0.475778 + 1.46429i 0.369127 + 0.929379i \(0.379657\pi\)
−0.844905 + 0.534916i \(0.820343\pi\)
\(840\) 0 0
\(841\) 20.2254 14.6946i 0.697428 0.506711i
\(842\) 0 0
\(843\) 1.29180 + 3.97574i 0.0444918 + 0.136932i
\(844\) 0 0
\(845\) 6.47214 + 4.70228i 0.222648 + 0.161763i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −5.38197 3.91023i −0.184709 0.134199i
\(850\) 0 0
\(851\) 3.45492 + 10.6331i 0.118433 + 0.364499i
\(852\) 0 0
\(853\) 25.3713 18.4333i 0.868698 0.631146i −0.0615396 0.998105i \(-0.519601\pi\)
0.930237 + 0.366959i \(0.119601\pi\)
\(854\) 0 0
\(855\) 0.0278640 0.0857567i 0.000952930 0.00293282i
\(856\) 0 0
\(857\) 6.81966 0.232955 0.116478 0.993193i \(-0.462840\pi\)
0.116478 + 0.993193i \(0.462840\pi\)
\(858\) 0 0
\(859\) −17.8754 −0.609900 −0.304950 0.952368i \(-0.598640\pi\)
−0.304950 + 0.952368i \(0.598640\pi\)
\(860\) 0 0
\(861\) −6.16312 + 18.9681i −0.210039 + 0.646432i
\(862\) 0 0
\(863\) −36.7426 + 26.6951i −1.25073 + 0.908712i −0.998264 0.0588932i \(-0.981243\pi\)
−0.252470 + 0.967605i \(0.581243\pi\)
\(864\) 0 0
\(865\) −1.84752 5.68609i −0.0628177 0.193333i
\(866\) 0 0
\(867\) −24.2533 17.6210i −0.823685 0.598442i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −1.26393 0.918300i −0.0428267 0.0311154i
\(872\) 0 0
\(873\) −4.33688 13.3475i −0.146781 0.451746i
\(874\) 0 0
\(875\) 20.3713 14.8006i 0.688676 0.500353i
\(876\) 0 0
\(877\) −15.5795 + 47.9489i −0.526083 + 1.61912i 0.236081 + 0.971733i \(0.424137\pi\)
−0.762164 + 0.647384i \(0.775863\pi\)
\(878\) 0 0
\(879\) −22.2361 −0.750004
\(880\) 0 0
\(881\) −15.5066 −0.522430 −0.261215 0.965281i \(-0.584123\pi\)
−0.261215 + 0.965281i \(0.584123\pi\)
\(882\) 0 0
\(883\) 13.6738 42.0835i 0.460159 1.41622i −0.404812 0.914400i \(-0.632663\pi\)
0.864970 0.501823i \(-0.167337\pi\)
\(884\) 0 0
\(885\) 6.39919 4.64928i 0.215106 0.156284i
\(886\) 0 0
\(887\) 11.5795 + 35.6381i 0.388802 + 1.19661i 0.933684 + 0.358098i \(0.116575\pi\)
−0.544882 + 0.838513i \(0.683425\pi\)
\(888\) 0 0
\(889\) −40.1246 29.1522i −1.34574 0.977735i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.24671 + 0.905789i 0.0417196 + 0.0303111i
\(894\) 0 0
\(895\) 0.246711 + 0.759299i 0.00824664 + 0.0253806i
\(896\) 0 0
\(897\) −0.954915 + 0.693786i −0.0318837 + 0.0231649i
\(898\) 0 0
\(899\) −3.47214 + 10.6861i −0.115802 + 0.356403i
\(900\) 0 0
\(901\) 30.0344 1.00059
\(902\) 0 0
\(903\) 48.5967 1.61720
\(904\) 0 0
\(905\) 0.954915 2.93893i 0.0317424 0.0976932i
\(906\) 0 0
\(907\) −23.6803 + 17.2048i −0.786293 + 0.571275i −0.906861 0.421430i \(-0.861528\pi\)
0.120568 + 0.992705i \(0.461528\pi\)
\(908\) 0 0
\(909\) −3.63525 11.1882i −0.120574 0.371088i
\(910\) 0 0
\(911\) 27.3713 + 19.8864i 0.906852 + 0.658867i 0.940217 0.340576i \(-0.110622\pi\)
−0.0333645 + 0.999443i \(0.510622\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −2.07295 1.50609i −0.0685296 0.0497897i
\(916\) 0 0
\(917\) 11.5902 + 35.6709i 0.382741 + 1.17796i
\(918\) 0 0
\(919\) −22.9894 + 16.7027i −0.758349 + 0.550973i −0.898403 0.439171i \(-0.855272\pi\)
0.140055 + 0.990144i \(0.455272\pi\)
\(920\) 0 0
\(921\) −3.31966 + 10.2169i −0.109387 + 0.336657i
\(922\) 0 0
\(923\) −1.31308 −0.0432206
\(924\) 0 0
\(925\) 10.3262 0.339525
\(926\) 0 0
\(927\) 5.38197 16.5640i 0.176767 0.544033i
\(928\) 0 0
\(929\) −3.04508 + 2.21238i −0.0999060 + 0.0725860i −0.636617 0.771180i \(-0.719667\pi\)
0.536711 + 0.843766i \(0.319667\pi\)
\(930\) 0 0
\(931\) 0.493422 + 1.51860i 0.0161713 + 0.0497700i
\(932\) 0 0
\(933\) −10.8992 7.91872i −0.356823 0.259247i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −19.1353 13.9026i −0.625122 0.454177i 0.229585 0.973289i \(-0.426263\pi\)
−0.854707 + 0.519111i \(0.826263\pi\)
\(938\) 0 0
\(939\) −5.07295 15.6129i −0.165549 0.509509i
\(940\) 0 0
\(941\) −4.78115 + 3.47371i −0.155861 + 0.113240i −0.662982 0.748635i \(-0.730710\pi\)
0.507121 + 0.861875i \(0.330710\pi\)
\(942\) 0 0
\(943\) 7.27458 22.3888i 0.236893 0.729081i
\(944\) 0 0
\(945\) 2.61803 0.0851647
\(946\) 0 0
\(947\) 31.9230 1.03736 0.518679 0.854969i \(-0.326424\pi\)
0.518679 + 0.854969i \(0.326424\pi\)
\(948\) 0 0
\(949\) −0.167184 + 0.514540i −0.00542703 + 0.0167027i
\(950\) 0 0
\(951\) 17.6074 12.7925i 0.570959 0.414826i
\(952\) 0 0
\(953\) 11.6869 + 35.9686i 0.378576 + 1.16514i 0.941034 + 0.338312i \(0.109856\pi\)
−0.562458 + 0.826826i \(0.690144\pi\)
\(954\) 0 0
\(955\) 6.73607 + 4.89404i 0.217974 + 0.158367i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 33.4615 + 24.3112i 1.08053 + 0.785050i
\(960\) 0 0
\(961\) 0.173762 + 0.534785i 0.00560523 + 0.0172511i
\(962\) 0 0
\(963\) 12.6631 9.20029i 0.408063 0.296475i
\(964\) 0 0
\(965\) −3.39919 + 10.4616i −0.109424 + 0.336772i
\(966\) 0 0
\(967\) 23.1591 0.744745 0.372372 0.928083i \(-0.378544\pi\)
0.372372 + 0.928083i \(0.378544\pi\)
\(968\) 0 0
\(969\) 1.00000 0.0321246
\(970\) 0 0
\(971\) −10.9787 + 33.7890i −0.352324 + 1.08434i 0.605221 + 0.796057i \(0.293085\pi\)
−0.957545 + 0.288284i \(0.906915\pi\)
\(972\) 0 0
\(973\) −29.3435 + 21.3193i −0.940708 + 0.683464i
\(974\) 0 0
\(975\) 0.336881 + 1.03681i 0.0107888 + 0.0332046i
\(976\) 0 0
\(977\) 34.9336 + 25.3808i 1.11763 + 0.812003i 0.983848 0.179009i \(-0.0572890\pi\)
0.133778 + 0.991011i \(0.457289\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −7.23607 5.25731i −0.231030 0.167853i
\(982\) 0 0
\(983\) 9.38197 + 28.8747i 0.299238 + 0.920961i 0.981765 + 0.190100i \(0.0608812\pi\)
−0.682527 + 0.730861i \(0.739119\pi\)
\(984\) 0 0
\(985\) 9.66312 7.02067i 0.307893 0.223697i
\(986\) 0 0
\(987\) −13.8262 + 42.5528i −0.440094 + 1.35447i
\(988\) 0 0
\(989\) −57.3607 −1.82396
\(990\) 0 0
\(991\) 39.8541 1.26601 0.633004 0.774149i \(-0.281822\pi\)
0.633004 + 0.774149i \(0.281822\pi\)
\(992\) 0 0
\(993\) −1.83688 + 5.65334i −0.0582917 + 0.179403i
\(994\) 0 0
\(995\) −0.0278640 + 0.0202444i −0.000883350 + 0.000641791i
\(996\) 0 0
\(997\) 7.24671 + 22.3031i 0.229506 + 0.706346i 0.997803 + 0.0662525i \(0.0211043\pi\)
−0.768297 + 0.640093i \(0.778896\pi\)
\(998\) 0 0
\(999\) 1.80902 + 1.31433i 0.0572348 + 0.0415835i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.2.i.f.565.1 4
11.2 odd 10 132.2.i.a.49.1 4
11.3 even 5 inner 1452.2.i.f.1213.1 4
11.4 even 5 1452.2.i.g.493.1 4
11.5 even 5 1452.2.a.m.1.2 2
11.6 odd 10 1452.2.a.l.1.2 2
11.7 odd 10 132.2.i.a.97.1 yes 4
11.8 odd 10 1452.2.i.c.1213.1 4
11.9 even 5 1452.2.i.g.1237.1 4
11.10 odd 2 1452.2.i.c.565.1 4
33.2 even 10 396.2.j.b.181.1 4
33.5 odd 10 4356.2.a.w.1.1 2
33.17 even 10 4356.2.a.r.1.1 2
33.29 even 10 396.2.j.b.361.1 4
44.7 even 10 528.2.y.i.97.1 4
44.27 odd 10 5808.2.a.bn.1.2 2
44.35 even 10 528.2.y.i.49.1 4
44.39 even 10 5808.2.a.bq.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.a.49.1 4 11.2 odd 10
132.2.i.a.97.1 yes 4 11.7 odd 10
396.2.j.b.181.1 4 33.2 even 10
396.2.j.b.361.1 4 33.29 even 10
528.2.y.i.49.1 4 44.35 even 10
528.2.y.i.97.1 4 44.7 even 10
1452.2.a.l.1.2 2 11.6 odd 10
1452.2.a.m.1.2 2 11.5 even 5
1452.2.i.c.565.1 4 11.10 odd 2
1452.2.i.c.1213.1 4 11.8 odd 10
1452.2.i.f.565.1 4 1.1 even 1 trivial
1452.2.i.f.1213.1 4 11.3 even 5 inner
1452.2.i.g.493.1 4 11.4 even 5
1452.2.i.g.1237.1 4 11.9 even 5
4356.2.a.r.1.1 2 33.17 even 10
4356.2.a.w.1.1 2 33.5 odd 10
5808.2.a.bn.1.2 2 44.27 odd 10
5808.2.a.bq.1.2 2 44.39 even 10