Properties

Label 1452.2.h
Level $1452$
Weight $2$
Character orbit 1452.h
Rep. character $\chi_{1452}(967,\cdot)$
Character field $\Q$
Dimension $108$
Sturm bound $528$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 44 \)
Character field: \(\Q\)
Sturm bound: \(528\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1452, [\chi])\).

Total New Old
Modular forms 288 108 180
Cusp forms 240 108 132
Eisenstein series 48 0 48

Trace form

\( 108 q - 4 q^{4} - 108 q^{9} + 8 q^{12} - 12 q^{14} - 12 q^{16} + 36 q^{20} + 100 q^{25} + 4 q^{26} - 48 q^{34} + 4 q^{36} + 32 q^{37} + 8 q^{38} + 12 q^{42} - 16 q^{48} + 132 q^{49} + 16 q^{53} + 12 q^{56}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1452, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1452, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1452, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 2}\)