Properties

Label 1450.2.b.k.349.5
Level $1450$
Weight $2$
Character 1450.349
Analytic conductor $11.578$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1450,2,Mod(349,1450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1450.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1450.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5783082931\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.5
Root \(0.264658 - 1.38923i\) of defining polynomial
Character \(\chi\) \(=\) 1450.349
Dual form 1450.2.b.k.349.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +0.470683i q^{3} -1.00000 q^{4} -0.470683 q^{6} +3.30777i q^{7} -1.00000i q^{8} +2.77846 q^{9} +O(q^{10})\) \(q+1.00000i q^{2} +0.470683i q^{3} -1.00000 q^{4} -0.470683 q^{6} +3.30777i q^{7} -1.00000i q^{8} +2.77846 q^{9} +4.71982 q^{11} -0.470683i q^{12} +2.24914i q^{13} -3.30777 q^{14} +1.00000 q^{16} -0.719824i q^{17} +2.77846i q^{18} +0.470683 q^{19} -1.55691 q^{21} +4.71982i q^{22} -5.80605i q^{23} +0.470683 q^{24} -2.24914 q^{26} +2.71982i q^{27} -3.30777i q^{28} -1.00000 q^{29} +10.2181 q^{31} +1.00000i q^{32} +2.22154i q^{33} +0.719824 q^{34} -2.77846 q^{36} -1.02760i q^{37} +0.470683i q^{38} -1.05863 q^{39} -0.0275977 q^{41} -1.55691i q^{42} +6.61555i q^{43} -4.71982 q^{44} +5.80605 q^{46} -4.33537i q^{47} +0.470683i q^{48} -3.94137 q^{49} +0.338809 q^{51} -2.24914i q^{52} +10.7474i q^{53} -2.71982 q^{54} +3.30777 q^{56} +0.221543i q^{57} -1.00000i q^{58} -11.0276 q^{59} +1.35342 q^{61} +10.2181i q^{62} +9.19051i q^{63} -1.00000 q^{64} -2.22154 q^{66} +8.80605i q^{67} +0.719824i q^{68} +2.73281 q^{69} -5.80605 q^{71} -2.77846i q^{72} +3.64658i q^{73} +1.02760 q^{74} -0.470683 q^{76} +15.6121i q^{77} -1.05863i q^{78} -16.6707 q^{79} +7.05520 q^{81} -0.0275977i q^{82} -5.21811i q^{83} +1.55691 q^{84} -6.61555 q^{86} -0.470683i q^{87} -4.71982i q^{88} -9.08623 q^{89} -7.43965 q^{91} +5.80605i q^{92} +4.80949i q^{93} +4.33537 q^{94} -0.470683 q^{96} +11.1905i q^{97} -3.94137i q^{98} +13.1138 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 2 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{4} - 2 q^{6} + 10 q^{11} - 4 q^{14} + 6 q^{16} + 2 q^{19} + 24 q^{21} + 2 q^{24} + 4 q^{26} - 6 q^{29} + 8 q^{31} - 14 q^{34} - 8 q^{39} + 34 q^{41} - 10 q^{44} - 16 q^{46} - 22 q^{49} + 22 q^{51} + 2 q^{54} + 4 q^{56} - 32 q^{59} + 4 q^{61} - 6 q^{64} - 30 q^{66} - 12 q^{69} + 16 q^{71} - 28 q^{74} - 2 q^{76} - 26 q^{81} - 24 q^{84} - 8 q^{86} - 22 q^{89} - 8 q^{91} - 24 q^{94} - 2 q^{96} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1450\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.470683i 0.271749i 0.990726 + 0.135875i \(0.0433844\pi\)
−0.990726 + 0.135875i \(0.956616\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −0.470683 −0.192156
\(7\) 3.30777i 1.25022i 0.780536 + 0.625110i \(0.214946\pi\)
−0.780536 + 0.625110i \(0.785054\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 2.77846 0.926152
\(10\) 0 0
\(11\) 4.71982 1.42308 0.711540 0.702645i \(-0.247998\pi\)
0.711540 + 0.702645i \(0.247998\pi\)
\(12\) − 0.470683i − 0.135875i
\(13\) 2.24914i 0.623799i 0.950115 + 0.311900i \(0.100965\pi\)
−0.950115 + 0.311900i \(0.899035\pi\)
\(14\) −3.30777 −0.884040
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 0.719824i − 0.174583i −0.996183 0.0872915i \(-0.972179\pi\)
0.996183 0.0872915i \(-0.0278211\pi\)
\(18\) 2.77846i 0.654889i
\(19\) 0.470683 0.107982 0.0539911 0.998541i \(-0.482806\pi\)
0.0539911 + 0.998541i \(0.482806\pi\)
\(20\) 0 0
\(21\) −1.55691 −0.339747
\(22\) 4.71982i 1.00627i
\(23\) − 5.80605i − 1.21065i −0.795980 0.605323i \(-0.793044\pi\)
0.795980 0.605323i \(-0.206956\pi\)
\(24\) 0.470683 0.0960779
\(25\) 0 0
\(26\) −2.24914 −0.441093
\(27\) 2.71982i 0.523430i
\(28\) − 3.30777i − 0.625110i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 10.2181 1.83523 0.917613 0.397475i \(-0.130114\pi\)
0.917613 + 0.397475i \(0.130114\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.22154i 0.386721i
\(34\) 0.719824 0.123449
\(35\) 0 0
\(36\) −2.77846 −0.463076
\(37\) − 1.02760i − 0.168936i −0.996426 0.0844680i \(-0.973081\pi\)
0.996426 0.0844680i \(-0.0269191\pi\)
\(38\) 0.470683i 0.0763549i
\(39\) −1.05863 −0.169517
\(40\) 0 0
\(41\) −0.0275977 −0.00431003 −0.00215501 0.999998i \(-0.500686\pi\)
−0.00215501 + 0.999998i \(0.500686\pi\)
\(42\) − 1.55691i − 0.240237i
\(43\) 6.61555i 1.00886i 0.863452 + 0.504431i \(0.168298\pi\)
−0.863452 + 0.504431i \(0.831702\pi\)
\(44\) −4.71982 −0.711540
\(45\) 0 0
\(46\) 5.80605 0.856056
\(47\) − 4.33537i − 0.632379i −0.948696 0.316189i \(-0.897596\pi\)
0.948696 0.316189i \(-0.102404\pi\)
\(48\) 0.470683i 0.0679373i
\(49\) −3.94137 −0.563052
\(50\) 0 0
\(51\) 0.338809 0.0474428
\(52\) − 2.24914i − 0.311900i
\(53\) 10.7474i 1.47627i 0.674652 + 0.738136i \(0.264294\pi\)
−0.674652 + 0.738136i \(0.735706\pi\)
\(54\) −2.71982 −0.370121
\(55\) 0 0
\(56\) 3.30777 0.442020
\(57\) 0.221543i 0.0293441i
\(58\) − 1.00000i − 0.131306i
\(59\) −11.0276 −1.43567 −0.717835 0.696213i \(-0.754867\pi\)
−0.717835 + 0.696213i \(0.754867\pi\)
\(60\) 0 0
\(61\) 1.35342 0.173287 0.0866437 0.996239i \(-0.472386\pi\)
0.0866437 + 0.996239i \(0.472386\pi\)
\(62\) 10.2181i 1.29770i
\(63\) 9.19051i 1.15790i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −2.22154 −0.273453
\(67\) 8.80605i 1.07583i 0.842999 + 0.537915i \(0.180788\pi\)
−0.842999 + 0.537915i \(0.819212\pi\)
\(68\) 0.719824i 0.0872915i
\(69\) 2.73281 0.328992
\(70\) 0 0
\(71\) −5.80605 −0.689052 −0.344526 0.938777i \(-0.611960\pi\)
−0.344526 + 0.938777i \(0.611960\pi\)
\(72\) − 2.77846i − 0.327444i
\(73\) 3.64658i 0.426800i 0.976965 + 0.213400i \(0.0684538\pi\)
−0.976965 + 0.213400i \(0.931546\pi\)
\(74\) 1.02760 0.119456
\(75\) 0 0
\(76\) −0.470683 −0.0539911
\(77\) 15.6121i 1.77917i
\(78\) − 1.05863i − 0.119867i
\(79\) −16.6707 −1.87561 −0.937803 0.347169i \(-0.887143\pi\)
−0.937803 + 0.347169i \(0.887143\pi\)
\(80\) 0 0
\(81\) 7.05520 0.783911
\(82\) − 0.0275977i − 0.00304765i
\(83\) − 5.21811i − 0.572761i −0.958116 0.286381i \(-0.907548\pi\)
0.958116 0.286381i \(-0.0924522\pi\)
\(84\) 1.55691 0.169873
\(85\) 0 0
\(86\) −6.61555 −0.713373
\(87\) − 0.470683i − 0.0504626i
\(88\) − 4.71982i − 0.503135i
\(89\) −9.08623 −0.963139 −0.481569 0.876408i \(-0.659933\pi\)
−0.481569 + 0.876408i \(0.659933\pi\)
\(90\) 0 0
\(91\) −7.43965 −0.779887
\(92\) 5.80605i 0.605323i
\(93\) 4.80949i 0.498721i
\(94\) 4.33537 0.447159
\(95\) 0 0
\(96\) −0.470683 −0.0480389
\(97\) 11.1905i 1.13622i 0.822951 + 0.568112i \(0.192326\pi\)
−0.822951 + 0.568112i \(0.807674\pi\)
\(98\) − 3.94137i − 0.398138i
\(99\) 13.1138 1.31799
\(100\) 0 0
\(101\) −3.02760 −0.301257 −0.150629 0.988590i \(-0.548130\pi\)
−0.150629 + 0.988590i \(0.548130\pi\)
\(102\) 0.338809i 0.0335471i
\(103\) − 6.01461i − 0.592637i −0.955089 0.296318i \(-0.904241\pi\)
0.955089 0.296318i \(-0.0957590\pi\)
\(104\) 2.24914 0.220546
\(105\) 0 0
\(106\) −10.7474 −1.04388
\(107\) − 11.7474i − 1.13567i −0.823144 0.567833i \(-0.807782\pi\)
0.823144 0.567833i \(-0.192218\pi\)
\(108\) − 2.71982i − 0.261715i
\(109\) 9.92332 0.950482 0.475241 0.879856i \(-0.342361\pi\)
0.475241 + 0.879856i \(0.342361\pi\)
\(110\) 0 0
\(111\) 0.483673 0.0459082
\(112\) 3.30777i 0.312555i
\(113\) 14.0276i 1.31961i 0.751439 + 0.659803i \(0.229360\pi\)
−0.751439 + 0.659803i \(0.770640\pi\)
\(114\) −0.221543 −0.0207494
\(115\) 0 0
\(116\) 1.00000 0.0928477
\(117\) 6.24914i 0.577733i
\(118\) − 11.0276i − 1.01517i
\(119\) 2.38101 0.218267
\(120\) 0 0
\(121\) 11.2767 1.02516
\(122\) 1.35342i 0.122533i
\(123\) − 0.0129898i − 0.00117125i
\(124\) −10.2181 −0.917613
\(125\) 0 0
\(126\) −9.19051 −0.818755
\(127\) − 16.2181i − 1.43912i −0.694428 0.719562i \(-0.744343\pi\)
0.694428 0.719562i \(-0.255657\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −3.11383 −0.274157
\(130\) 0 0
\(131\) 21.3630 1.86649 0.933246 0.359239i \(-0.116964\pi\)
0.933246 + 0.359239i \(0.116964\pi\)
\(132\) − 2.22154i − 0.193360i
\(133\) 1.55691i 0.135002i
\(134\) −8.80605 −0.760727
\(135\) 0 0
\(136\) −0.719824 −0.0617244
\(137\) − 9.54392i − 0.815392i −0.913118 0.407696i \(-0.866332\pi\)
0.913118 0.407696i \(-0.133668\pi\)
\(138\) 2.73281i 0.232633i
\(139\) 3.74742 0.317852 0.158926 0.987290i \(-0.449197\pi\)
0.158926 + 0.987290i \(0.449197\pi\)
\(140\) 0 0
\(141\) 2.04059 0.171848
\(142\) − 5.80605i − 0.487233i
\(143\) 10.6155i 0.887717i
\(144\) 2.77846 0.231538
\(145\) 0 0
\(146\) −3.64658 −0.301793
\(147\) − 1.85514i − 0.153009i
\(148\) 1.02760i 0.0844680i
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) −14.2491 −1.15958 −0.579789 0.814766i \(-0.696865\pi\)
−0.579789 + 0.814766i \(0.696865\pi\)
\(152\) − 0.470683i − 0.0381775i
\(153\) − 2.00000i − 0.161690i
\(154\) −15.6121 −1.25806
\(155\) 0 0
\(156\) 1.05863 0.0847585
\(157\) − 12.2035i − 0.973945i −0.873417 0.486973i \(-0.838101\pi\)
0.873417 0.486973i \(-0.161899\pi\)
\(158\) − 16.6707i − 1.32625i
\(159\) −5.05863 −0.401176
\(160\) 0 0
\(161\) 19.2051 1.51358
\(162\) 7.05520i 0.554308i
\(163\) 17.5845i 1.37733i 0.725082 + 0.688663i \(0.241802\pi\)
−0.725082 + 0.688663i \(0.758198\pi\)
\(164\) 0.0275977 0.00215501
\(165\) 0 0
\(166\) 5.21811 0.405003
\(167\) − 11.7914i − 0.912450i −0.889865 0.456225i \(-0.849201\pi\)
0.889865 0.456225i \(-0.150799\pi\)
\(168\) 1.55691i 0.120119i
\(169\) 7.94137 0.610874
\(170\) 0 0
\(171\) 1.30777 0.100008
\(172\) − 6.61555i − 0.504431i
\(173\) − 20.7880i − 1.58048i −0.612795 0.790242i \(-0.709955\pi\)
0.612795 0.790242i \(-0.290045\pi\)
\(174\) 0.470683 0.0356824
\(175\) 0 0
\(176\) 4.71982 0.355770
\(177\) − 5.19051i − 0.390142i
\(178\) − 9.08623i − 0.681042i
\(179\) 7.74742 0.579069 0.289535 0.957168i \(-0.406499\pi\)
0.289535 + 0.957168i \(0.406499\pi\)
\(180\) 0 0
\(181\) −19.7440 −1.46756 −0.733779 0.679388i \(-0.762245\pi\)
−0.733779 + 0.679388i \(0.762245\pi\)
\(182\) − 7.43965i − 0.551463i
\(183\) 0.637031i 0.0470907i
\(184\) −5.80605 −0.428028
\(185\) 0 0
\(186\) −4.80949 −0.352649
\(187\) − 3.39744i − 0.248446i
\(188\) 4.33537i 0.316189i
\(189\) −8.99656 −0.654404
\(190\) 0 0
\(191\) 0.397442 0.0287579 0.0143790 0.999897i \(-0.495423\pi\)
0.0143790 + 0.999897i \(0.495423\pi\)
\(192\) − 0.470683i − 0.0339686i
\(193\) 4.35342i 0.313366i 0.987649 + 0.156683i \(0.0500801\pi\)
−0.987649 + 0.156683i \(0.949920\pi\)
\(194\) −11.1905 −0.803432
\(195\) 0 0
\(196\) 3.94137 0.281526
\(197\) 6.70683i 0.477842i 0.971039 + 0.238921i \(0.0767937\pi\)
−0.971039 + 0.238921i \(0.923206\pi\)
\(198\) 13.1138i 0.931959i
\(199\) 9.36297 0.663723 0.331862 0.943328i \(-0.392323\pi\)
0.331862 + 0.943328i \(0.392323\pi\)
\(200\) 0 0
\(201\) −4.14486 −0.292356
\(202\) − 3.02760i − 0.213021i
\(203\) − 3.30777i − 0.232160i
\(204\) −0.338809 −0.0237214
\(205\) 0 0
\(206\) 6.01461 0.419058
\(207\) − 16.1319i − 1.12124i
\(208\) 2.24914i 0.155950i
\(209\) 2.22154 0.153667
\(210\) 0 0
\(211\) −24.5665 −1.69123 −0.845613 0.533797i \(-0.820765\pi\)
−0.845613 + 0.533797i \(0.820765\pi\)
\(212\) − 10.7474i − 0.738136i
\(213\) − 2.73281i − 0.187249i
\(214\) 11.7474 0.803037
\(215\) 0 0
\(216\) 2.71982 0.185061
\(217\) 33.7992i 2.29444i
\(218\) 9.92332i 0.672092i
\(219\) −1.71639 −0.115983
\(220\) 0 0
\(221\) 1.61899 0.108905
\(222\) 0.483673i 0.0324620i
\(223\) − 2.11727i − 0.141783i −0.997484 0.0708913i \(-0.977416\pi\)
0.997484 0.0708913i \(-0.0225844\pi\)
\(224\) −3.30777 −0.221010
\(225\) 0 0
\(226\) −14.0276 −0.933102
\(227\) − 15.9138i − 1.05623i −0.849172 0.528117i \(-0.822898\pi\)
0.849172 0.528117i \(-0.177102\pi\)
\(228\) − 0.221543i − 0.0146720i
\(229\) 22.2897 1.47295 0.736473 0.676467i \(-0.236490\pi\)
0.736473 + 0.676467i \(0.236490\pi\)
\(230\) 0 0
\(231\) −7.34836 −0.483487
\(232\) 1.00000i 0.0656532i
\(233\) 23.3871i 1.53214i 0.642756 + 0.766071i \(0.277791\pi\)
−0.642756 + 0.766071i \(0.722209\pi\)
\(234\) −6.24914 −0.408519
\(235\) 0 0
\(236\) 11.0276 0.717835
\(237\) − 7.84664i − 0.509694i
\(238\) 2.38101i 0.154338i
\(239\) −20.2277 −1.30842 −0.654209 0.756314i \(-0.726998\pi\)
−0.654209 + 0.756314i \(0.726998\pi\)
\(240\) 0 0
\(241\) 1.26375 0.0814052 0.0407026 0.999171i \(-0.487040\pi\)
0.0407026 + 0.999171i \(0.487040\pi\)
\(242\) 11.2767i 0.724896i
\(243\) 11.4802i 0.736457i
\(244\) −1.35342 −0.0866437
\(245\) 0 0
\(246\) 0.0129898 0.000828197 0
\(247\) 1.05863i 0.0673592i
\(248\) − 10.2181i − 0.648850i
\(249\) 2.45608 0.155647
\(250\) 0 0
\(251\) 9.63971 0.608453 0.304226 0.952600i \(-0.401602\pi\)
0.304226 + 0.952600i \(0.401602\pi\)
\(252\) − 9.19051i − 0.578948i
\(253\) − 27.4036i − 1.72285i
\(254\) 16.2181 1.01761
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 9.43965i − 0.588829i −0.955678 0.294415i \(-0.904875\pi\)
0.955678 0.294415i \(-0.0951246\pi\)
\(258\) − 3.11383i − 0.193858i
\(259\) 3.39906 0.211207
\(260\) 0 0
\(261\) −2.77846 −0.171982
\(262\) 21.3630i 1.31981i
\(263\) − 11.6646i − 0.719272i −0.933093 0.359636i \(-0.882901\pi\)
0.933093 0.359636i \(-0.117099\pi\)
\(264\) 2.22154 0.136727
\(265\) 0 0
\(266\) −1.55691 −0.0954605
\(267\) − 4.27674i − 0.261732i
\(268\) − 8.80605i − 0.537915i
\(269\) 20.1414 1.22804 0.614022 0.789289i \(-0.289551\pi\)
0.614022 + 0.789289i \(0.289551\pi\)
\(270\) 0 0
\(271\) −27.0422 −1.64270 −0.821349 0.570427i \(-0.806778\pi\)
−0.821349 + 0.570427i \(0.806778\pi\)
\(272\) − 0.719824i − 0.0436457i
\(273\) − 3.50172i − 0.211934i
\(274\) 9.54392 0.576570
\(275\) 0 0
\(276\) −2.73281 −0.164496
\(277\) − 12.4216i − 0.746342i −0.927763 0.373171i \(-0.878271\pi\)
0.927763 0.373171i \(-0.121729\pi\)
\(278\) 3.74742i 0.224755i
\(279\) 28.3906 1.69970
\(280\) 0 0
\(281\) 24.8957 1.48515 0.742577 0.669761i \(-0.233603\pi\)
0.742577 + 0.669761i \(0.233603\pi\)
\(282\) 2.04059i 0.121515i
\(283\) 4.83709i 0.287535i 0.989611 + 0.143768i \(0.0459218\pi\)
−0.989611 + 0.143768i \(0.954078\pi\)
\(284\) 5.80605 0.344526
\(285\) 0 0
\(286\) −10.6155 −0.627710
\(287\) − 0.0912868i − 0.00538849i
\(288\) 2.77846i 0.163722i
\(289\) 16.4819 0.969521
\(290\) 0 0
\(291\) −5.26719 −0.308768
\(292\) − 3.64658i − 0.213400i
\(293\) − 33.5190i − 1.95820i −0.203377 0.979101i \(-0.565192\pi\)
0.203377 0.979101i \(-0.434808\pi\)
\(294\) 1.85514 0.108194
\(295\) 0 0
\(296\) −1.02760 −0.0597279
\(297\) 12.8371i 0.744884i
\(298\) − 2.00000i − 0.115857i
\(299\) 13.0586 0.755200
\(300\) 0 0
\(301\) −21.8827 −1.26130
\(302\) − 14.2491i − 0.819946i
\(303\) − 1.42504i − 0.0818664i
\(304\) 0.470683 0.0269955
\(305\) 0 0
\(306\) 2.00000 0.114332
\(307\) − 12.3680i − 0.705880i −0.935646 0.352940i \(-0.885182\pi\)
0.935646 0.352940i \(-0.114818\pi\)
\(308\) − 15.6121i − 0.889583i
\(309\) 2.83098 0.161049
\(310\) 0 0
\(311\) 15.3224 0.868853 0.434426 0.900707i \(-0.356951\pi\)
0.434426 + 0.900707i \(0.356951\pi\)
\(312\) 1.05863i 0.0599333i
\(313\) − 22.1268i − 1.25068i −0.780352 0.625341i \(-0.784960\pi\)
0.780352 0.625341i \(-0.215040\pi\)
\(314\) 12.2035 0.688683
\(315\) 0 0
\(316\) 16.6707 0.937803
\(317\) 10.1775i 0.571626i 0.958285 + 0.285813i \(0.0922637\pi\)
−0.958285 + 0.285813i \(0.907736\pi\)
\(318\) − 5.05863i − 0.283674i
\(319\) −4.71982 −0.264259
\(320\) 0 0
\(321\) 5.52932 0.308616
\(322\) 19.2051i 1.07026i
\(323\) − 0.338809i − 0.0188518i
\(324\) −7.05520 −0.391955
\(325\) 0 0
\(326\) −17.5845 −0.973916
\(327\) 4.67074i 0.258293i
\(328\) 0.0275977i 0.00152383i
\(329\) 14.3404 0.790613
\(330\) 0 0
\(331\) 8.69834 0.478104 0.239052 0.971007i \(-0.423163\pi\)
0.239052 + 0.971007i \(0.423163\pi\)
\(332\) 5.21811i 0.286381i
\(333\) − 2.85514i − 0.156460i
\(334\) 11.7914 0.645199
\(335\) 0 0
\(336\) −1.55691 −0.0849366
\(337\) 16.7198i 0.910787i 0.890290 + 0.455393i \(0.150501\pi\)
−0.890290 + 0.455393i \(0.849499\pi\)
\(338\) 7.94137i 0.431953i
\(339\) −6.60256 −0.358602
\(340\) 0 0
\(341\) 48.2277 2.61167
\(342\) 1.30777i 0.0707163i
\(343\) 10.1173i 0.546281i
\(344\) 6.61555 0.356686
\(345\) 0 0
\(346\) 20.7880 1.11757
\(347\) 6.74398i 0.362036i 0.983480 + 0.181018i \(0.0579392\pi\)
−0.983480 + 0.181018i \(0.942061\pi\)
\(348\) 0.470683i 0.0252313i
\(349\) −7.42504 −0.397453 −0.198727 0.980055i \(-0.563681\pi\)
−0.198727 + 0.980055i \(0.563681\pi\)
\(350\) 0 0
\(351\) −6.11727 −0.326516
\(352\) 4.71982i 0.251567i
\(353\) − 3.36802i − 0.179262i −0.995975 0.0896309i \(-0.971431\pi\)
0.995975 0.0896309i \(-0.0285688\pi\)
\(354\) 5.19051 0.275872
\(355\) 0 0
\(356\) 9.08623 0.481569
\(357\) 1.12070i 0.0593140i
\(358\) 7.74742i 0.409464i
\(359\) −1.81111 −0.0955868 −0.0477934 0.998857i \(-0.515219\pi\)
−0.0477934 + 0.998857i \(0.515219\pi\)
\(360\) 0 0
\(361\) −18.7785 −0.988340
\(362\) − 19.7440i − 1.03772i
\(363\) 5.30777i 0.278586i
\(364\) 7.43965 0.389944
\(365\) 0 0
\(366\) −0.637031 −0.0332981
\(367\) − 30.8268i − 1.60914i −0.593855 0.804572i \(-0.702395\pi\)
0.593855 0.804572i \(-0.297605\pi\)
\(368\) − 5.80605i − 0.302662i
\(369\) −0.0766789 −0.00399174
\(370\) 0 0
\(371\) −35.5500 −1.84567
\(372\) − 4.80949i − 0.249361i
\(373\) − 2.06207i − 0.106770i −0.998574 0.0533850i \(-0.982999\pi\)
0.998574 0.0533850i \(-0.0170011\pi\)
\(374\) 3.39744 0.175678
\(375\) 0 0
\(376\) −4.33537 −0.223580
\(377\) − 2.24914i − 0.115837i
\(378\) − 8.99656i − 0.462733i
\(379\) 7.29478 0.374708 0.187354 0.982292i \(-0.440009\pi\)
0.187354 + 0.982292i \(0.440009\pi\)
\(380\) 0 0
\(381\) 7.63359 0.391081
\(382\) 0.397442i 0.0203349i
\(383\) 15.7846i 0.806554i 0.915078 + 0.403277i \(0.132129\pi\)
−0.915078 + 0.403277i \(0.867871\pi\)
\(384\) 0.470683 0.0240195
\(385\) 0 0
\(386\) −4.35342 −0.221583
\(387\) 18.3810i 0.934359i
\(388\) − 11.1905i − 0.568112i
\(389\) 13.3534 0.677045 0.338523 0.940958i \(-0.390073\pi\)
0.338523 + 0.940958i \(0.390073\pi\)
\(390\) 0 0
\(391\) −4.17934 −0.211358
\(392\) 3.94137i 0.199069i
\(393\) 10.0552i 0.507218i
\(394\) −6.70683 −0.337885
\(395\) 0 0
\(396\) −13.1138 −0.658995
\(397\) 20.2130i 1.01446i 0.861810 + 0.507232i \(0.169331\pi\)
−0.861810 + 0.507232i \(0.830669\pi\)
\(398\) 9.36297i 0.469323i
\(399\) −0.732814 −0.0366866
\(400\) 0 0
\(401\) 15.2897 0.763533 0.381766 0.924259i \(-0.375316\pi\)
0.381766 + 0.924259i \(0.375316\pi\)
\(402\) − 4.14486i − 0.206727i
\(403\) 22.9820i 1.14481i
\(404\) 3.02760 0.150629
\(405\) 0 0
\(406\) 3.30777 0.164162
\(407\) − 4.85008i − 0.240410i
\(408\) − 0.338809i − 0.0167736i
\(409\) −14.8302 −0.733307 −0.366653 0.930358i \(-0.619497\pi\)
−0.366653 + 0.930358i \(0.619497\pi\)
\(410\) 0 0
\(411\) 4.49217 0.221582
\(412\) 6.01461i 0.296318i
\(413\) − 36.4768i − 1.79491i
\(414\) 16.1319 0.792838
\(415\) 0 0
\(416\) −2.24914 −0.110273
\(417\) 1.76385i 0.0863761i
\(418\) 2.22154i 0.108659i
\(419\) 13.8647 0.677334 0.338667 0.940906i \(-0.390024\pi\)
0.338667 + 0.940906i \(0.390024\pi\)
\(420\) 0 0
\(421\) 2.70178 0.131677 0.0658383 0.997830i \(-0.479028\pi\)
0.0658383 + 0.997830i \(0.479028\pi\)
\(422\) − 24.5665i − 1.19588i
\(423\) − 12.0456i − 0.585679i
\(424\) 10.7474 0.521941
\(425\) 0 0
\(426\) 2.73281 0.132405
\(427\) 4.47680i 0.216647i
\(428\) 11.7474i 0.567833i
\(429\) −4.99656 −0.241236
\(430\) 0 0
\(431\) −27.3009 −1.31504 −0.657519 0.753438i \(-0.728394\pi\)
−0.657519 + 0.753438i \(0.728394\pi\)
\(432\) 2.71982i 0.130858i
\(433\) 0.262130i 0.0125972i 0.999980 + 0.00629859i \(0.00200492\pi\)
−0.999980 + 0.00629859i \(0.997995\pi\)
\(434\) −33.7992 −1.62241
\(435\) 0 0
\(436\) −9.92332 −0.475241
\(437\) − 2.73281i − 0.130728i
\(438\) − 1.71639i − 0.0820121i
\(439\) −20.4983 −0.978330 −0.489165 0.872191i \(-0.662698\pi\)
−0.489165 + 0.872191i \(0.662698\pi\)
\(440\) 0 0
\(441\) −10.9509 −0.521472
\(442\) 1.61899i 0.0770073i
\(443\) 0.456076i 0.0216688i 0.999941 + 0.0108344i \(0.00344876\pi\)
−0.999941 + 0.0108344i \(0.996551\pi\)
\(444\) −0.483673 −0.0229541
\(445\) 0 0
\(446\) 2.11727 0.100255
\(447\) − 0.941367i − 0.0445251i
\(448\) − 3.30777i − 0.156278i
\(449\) 8.62854 0.407206 0.203603 0.979054i \(-0.434735\pi\)
0.203603 + 0.979054i \(0.434735\pi\)
\(450\) 0 0
\(451\) −0.130256 −0.00613352
\(452\) − 14.0276i − 0.659803i
\(453\) − 6.70683i − 0.315115i
\(454\) 15.9138 0.746870
\(455\) 0 0
\(456\) 0.221543 0.0103747
\(457\) − 11.6872i − 0.546703i −0.961914 0.273351i \(-0.911868\pi\)
0.961914 0.273351i \(-0.0881322\pi\)
\(458\) 22.2897i 1.04153i
\(459\) 1.95779 0.0913820
\(460\) 0 0
\(461\) −1.82066 −0.0847967 −0.0423984 0.999101i \(-0.513500\pi\)
−0.0423984 + 0.999101i \(0.513500\pi\)
\(462\) − 7.34836i − 0.341877i
\(463\) − 26.8241i − 1.24662i −0.781974 0.623311i \(-0.785787\pi\)
0.781974 0.623311i \(-0.214213\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 0 0
\(466\) −23.3871 −1.08339
\(467\) − 0.366407i − 0.0169553i −0.999964 0.00847764i \(-0.997301\pi\)
0.999964 0.00847764i \(-0.00269855\pi\)
\(468\) − 6.24914i − 0.288867i
\(469\) −29.1284 −1.34503
\(470\) 0 0
\(471\) 5.74398 0.264669
\(472\) 11.0276i 0.507586i
\(473\) 31.2242i 1.43569i
\(474\) 7.84664 0.360408
\(475\) 0 0
\(476\) −2.38101 −0.109134
\(477\) 29.8613i 1.36725i
\(478\) − 20.2277i − 0.925191i
\(479\) −13.7363 −0.627625 −0.313813 0.949485i \(-0.601606\pi\)
−0.313813 + 0.949485i \(0.601606\pi\)
\(480\) 0 0
\(481\) 2.31121 0.105382
\(482\) 1.26375i 0.0575622i
\(483\) 9.03953i 0.411313i
\(484\) −11.2767 −0.512579
\(485\) 0 0
\(486\) −11.4802 −0.520754
\(487\) 22.9414i 1.03957i 0.854296 + 0.519786i \(0.173988\pi\)
−0.854296 + 0.519786i \(0.826012\pi\)
\(488\) − 1.35342i − 0.0612663i
\(489\) −8.27674 −0.374287
\(490\) 0 0
\(491\) 12.8241 0.578744 0.289372 0.957217i \(-0.406554\pi\)
0.289372 + 0.957217i \(0.406554\pi\)
\(492\) 0.0129898i 0 0.000585624i
\(493\) 0.719824i 0.0324192i
\(494\) −1.05863 −0.0476302
\(495\) 0 0
\(496\) 10.2181 0.458806
\(497\) − 19.2051i − 0.861467i
\(498\) 2.45608i 0.110059i
\(499\) 0.349979 0.0156672 0.00783361 0.999969i \(-0.497506\pi\)
0.00783361 + 0.999969i \(0.497506\pi\)
\(500\) 0 0
\(501\) 5.55004 0.247957
\(502\) 9.63971i 0.430241i
\(503\) − 34.1629i − 1.52325i −0.648019 0.761624i \(-0.724402\pi\)
0.648019 0.761624i \(-0.275598\pi\)
\(504\) 9.19051 0.409378
\(505\) 0 0
\(506\) 27.4036 1.21824
\(507\) 3.73787i 0.166005i
\(508\) 16.2181i 0.719562i
\(509\) 33.7586 1.49632 0.748162 0.663517i \(-0.230937\pi\)
0.748162 + 0.663517i \(0.230937\pi\)
\(510\) 0 0
\(511\) −12.0621 −0.533595
\(512\) 1.00000i 0.0441942i
\(513\) 1.28018i 0.0565212i
\(514\) 9.43965 0.416365
\(515\) 0 0
\(516\) 3.11383 0.137079
\(517\) − 20.4622i − 0.899926i
\(518\) 3.39906i 0.149346i
\(519\) 9.78457 0.429495
\(520\) 0 0
\(521\) 31.3810 1.37483 0.687414 0.726266i \(-0.258746\pi\)
0.687414 + 0.726266i \(0.258746\pi\)
\(522\) − 2.77846i − 0.121610i
\(523\) − 38.0303i − 1.66295i −0.555564 0.831474i \(-0.687498\pi\)
0.555564 0.831474i \(-0.312502\pi\)
\(524\) −21.3630 −0.933246
\(525\) 0 0
\(526\) 11.6646 0.508602
\(527\) − 7.35524i − 0.320399i
\(528\) 2.22154i 0.0966802i
\(529\) −10.7103 −0.465664
\(530\) 0 0
\(531\) −30.6397 −1.32965
\(532\) − 1.55691i − 0.0675008i
\(533\) − 0.0620710i − 0.00268859i
\(534\) 4.27674 0.185073
\(535\) 0 0
\(536\) 8.80605 0.380364
\(537\) 3.64658i 0.157362i
\(538\) 20.1414i 0.868359i
\(539\) −18.6026 −0.801269
\(540\) 0 0
\(541\) −42.7862 −1.83952 −0.919761 0.392479i \(-0.871618\pi\)
−0.919761 + 0.392479i \(0.871618\pi\)
\(542\) − 27.0422i − 1.16156i
\(543\) − 9.29317i − 0.398808i
\(544\) 0.719824 0.0308622
\(545\) 0 0
\(546\) 3.50172 0.149860
\(547\) − 28.0974i − 1.20136i −0.799490 0.600679i \(-0.794897\pi\)
0.799490 0.600679i \(-0.205103\pi\)
\(548\) 9.54392i 0.407696i
\(549\) 3.76041 0.160490
\(550\) 0 0
\(551\) −0.470683 −0.0200518
\(552\) − 2.73281i − 0.116316i
\(553\) − 55.1430i − 2.34492i
\(554\) 12.4216 0.527743
\(555\) 0 0
\(556\) −3.74742 −0.158926
\(557\) 12.6155i 0.534538i 0.963622 + 0.267269i \(0.0861212\pi\)
−0.963622 + 0.267269i \(0.913879\pi\)
\(558\) 28.3906i 1.20187i
\(559\) −14.8793 −0.629327
\(560\) 0 0
\(561\) 1.59912 0.0675149
\(562\) 24.8957i 1.05016i
\(563\) − 33.7586i − 1.42276i −0.702810 0.711378i \(-0.748072\pi\)
0.702810 0.711378i \(-0.251928\pi\)
\(564\) −2.04059 −0.0859242
\(565\) 0 0
\(566\) −4.83709 −0.203318
\(567\) 23.3370i 0.980061i
\(568\) 5.80605i 0.243617i
\(569\) −5.66119 −0.237329 −0.118665 0.992934i \(-0.537861\pi\)
−0.118665 + 0.992934i \(0.537861\pi\)
\(570\) 0 0
\(571\) 30.6105 1.28101 0.640505 0.767954i \(-0.278725\pi\)
0.640505 + 0.767954i \(0.278725\pi\)
\(572\) − 10.6155i − 0.443858i
\(573\) 0.187070i 0.00781494i
\(574\) 0.0912868 0.00381024
\(575\) 0 0
\(576\) −2.77846 −0.115769
\(577\) − 2.94298i − 0.122518i −0.998122 0.0612590i \(-0.980488\pi\)
0.998122 0.0612590i \(-0.0195116\pi\)
\(578\) 16.4819i 0.685555i
\(579\) −2.04908 −0.0851569
\(580\) 0 0
\(581\) 17.2603 0.716078
\(582\) − 5.26719i − 0.218332i
\(583\) 50.7259i 2.10085i
\(584\) 3.64658 0.150897
\(585\) 0 0
\(586\) 33.5190 1.38466
\(587\) − 14.5715i − 0.601431i −0.953714 0.300716i \(-0.902775\pi\)
0.953714 0.300716i \(-0.0972255\pi\)
\(588\) 1.85514i 0.0765045i
\(589\) 4.80949 0.198172
\(590\) 0 0
\(591\) −3.15680 −0.129853
\(592\) − 1.02760i − 0.0422340i
\(593\) 19.0552i 0.782503i 0.920284 + 0.391252i \(0.127958\pi\)
−0.920284 + 0.391252i \(0.872042\pi\)
\(594\) −12.8371 −0.526712
\(595\) 0 0
\(596\) 2.00000 0.0819232
\(597\) 4.40699i 0.180366i
\(598\) 13.0586i 0.534007i
\(599\) −5.86631 −0.239691 −0.119845 0.992793i \(-0.538240\pi\)
−0.119845 + 0.992793i \(0.538240\pi\)
\(600\) 0 0
\(601\) −31.3285 −1.27792 −0.638958 0.769242i \(-0.720634\pi\)
−0.638958 + 0.769242i \(0.720634\pi\)
\(602\) − 21.8827i − 0.891874i
\(603\) 24.4672i 0.996383i
\(604\) 14.2491 0.579789
\(605\) 0 0
\(606\) 1.42504 0.0578883
\(607\) 11.0061i 0.446724i 0.974736 + 0.223362i \(0.0717033\pi\)
−0.974736 + 0.223362i \(0.928297\pi\)
\(608\) 0.470683i 0.0190887i
\(609\) 1.55691 0.0630893
\(610\) 0 0
\(611\) 9.75086 0.394478
\(612\) 2.00000i 0.0808452i
\(613\) 14.7068i 0.594003i 0.954877 + 0.297002i \(0.0959867\pi\)
−0.954877 + 0.297002i \(0.904013\pi\)
\(614\) 12.3680 0.499133
\(615\) 0 0
\(616\) 15.6121 0.629030
\(617\) 20.1579i 0.811525i 0.913979 + 0.405762i \(0.132994\pi\)
−0.913979 + 0.405762i \(0.867006\pi\)
\(618\) 2.83098i 0.113879i
\(619\) −39.9379 −1.60524 −0.802620 0.596490i \(-0.796562\pi\)
−0.802620 + 0.596490i \(0.796562\pi\)
\(620\) 0 0
\(621\) 15.7914 0.633689
\(622\) 15.3224i 0.614372i
\(623\) − 30.0552i − 1.20414i
\(624\) −1.05863 −0.0423792
\(625\) 0 0
\(626\) 22.1268 0.884366
\(627\) 1.04564i 0.0417590i
\(628\) 12.2035i 0.486973i
\(629\) −0.739689 −0.0294933
\(630\) 0 0
\(631\) 40.3189 1.60507 0.802536 0.596604i \(-0.203484\pi\)
0.802536 + 0.596604i \(0.203484\pi\)
\(632\) 16.6707i 0.663127i
\(633\) − 11.5630i − 0.459589i
\(634\) −10.1775 −0.404201
\(635\) 0 0
\(636\) 5.05863 0.200588
\(637\) − 8.86469i − 0.351232i
\(638\) − 4.71982i − 0.186860i
\(639\) −16.1319 −0.638167
\(640\) 0 0
\(641\) −35.7992 −1.41398 −0.706991 0.707222i \(-0.749948\pi\)
−0.706991 + 0.707222i \(0.749948\pi\)
\(642\) 5.52932i 0.218225i
\(643\) 21.1741i 0.835024i 0.908671 + 0.417512i \(0.137098\pi\)
−0.908671 + 0.417512i \(0.862902\pi\)
\(644\) −19.2051 −0.756788
\(645\) 0 0
\(646\) 0.338809 0.0133303
\(647\) 33.6742i 1.32387i 0.749562 + 0.661934i \(0.230264\pi\)
−0.749562 + 0.661934i \(0.769736\pi\)
\(648\) − 7.05520i − 0.277154i
\(649\) −52.0483 −2.04308
\(650\) 0 0
\(651\) −15.9087 −0.623512
\(652\) − 17.5845i − 0.688663i
\(653\) 28.3500i 1.10942i 0.832044 + 0.554710i \(0.187171\pi\)
−0.832044 + 0.554710i \(0.812829\pi\)
\(654\) −4.67074 −0.182640
\(655\) 0 0
\(656\) −0.0275977 −0.00107751
\(657\) 10.1319i 0.395282i
\(658\) 14.3404i 0.559048i
\(659\) 13.1268 0.511348 0.255674 0.966763i \(-0.417703\pi\)
0.255674 + 0.966763i \(0.417703\pi\)
\(660\) 0 0
\(661\) −23.3078 −0.906567 −0.453284 0.891366i \(-0.649748\pi\)
−0.453284 + 0.891366i \(0.649748\pi\)
\(662\) 8.69834i 0.338071i
\(663\) 0.762030i 0.0295948i
\(664\) −5.21811 −0.202502
\(665\) 0 0
\(666\) 2.85514 0.110634
\(667\) 5.80605i 0.224811i
\(668\) 11.7914i 0.456225i
\(669\) 0.996562 0.0385293
\(670\) 0 0
\(671\) 6.38789 0.246602
\(672\) − 1.55691i − 0.0600593i
\(673\) − 27.4784i − 1.05922i −0.848243 0.529608i \(-0.822339\pi\)
0.848243 0.529608i \(-0.177661\pi\)
\(674\) −16.7198 −0.644024
\(675\) 0 0
\(676\) −7.94137 −0.305437
\(677\) − 35.6363i − 1.36961i −0.728725 0.684807i \(-0.759887\pi\)
0.728725 0.684807i \(-0.240113\pi\)
\(678\) − 6.60256i − 0.253570i
\(679\) −37.0157 −1.42053
\(680\) 0 0
\(681\) 7.49035 0.287031
\(682\) 48.2277i 1.84673i
\(683\) − 10.3319i − 0.395340i −0.980269 0.197670i \(-0.936662\pi\)
0.980269 0.197670i \(-0.0633375\pi\)
\(684\) −1.30777 −0.0500040
\(685\) 0 0
\(686\) −10.1173 −0.386279
\(687\) 10.4914i 0.400272i
\(688\) 6.61555i 0.252215i
\(689\) −24.1725 −0.920897
\(690\) 0 0
\(691\) 3.02148 0.114943 0.0574713 0.998347i \(-0.481696\pi\)
0.0574713 + 0.998347i \(0.481696\pi\)
\(692\) 20.7880i 0.790242i
\(693\) 43.3776i 1.64778i
\(694\) −6.74398 −0.255998
\(695\) 0 0
\(696\) −0.470683 −0.0178412
\(697\) 0.0198655i 0 0.000752458i
\(698\) − 7.42504i − 0.281042i
\(699\) −11.0079 −0.416358
\(700\) 0 0
\(701\) 37.5500 1.41825 0.709123 0.705085i \(-0.249091\pi\)
0.709123 + 0.705085i \(0.249091\pi\)
\(702\) − 6.11727i − 0.230881i
\(703\) − 0.483673i − 0.0182421i
\(704\) −4.71982 −0.177885
\(705\) 0 0
\(706\) 3.36802 0.126757
\(707\) − 10.0146i − 0.376638i
\(708\) 5.19051i 0.195071i
\(709\) 23.7586 0.892273 0.446136 0.894965i \(-0.352800\pi\)
0.446136 + 0.894965i \(0.352800\pi\)
\(710\) 0 0
\(711\) −46.3189 −1.73710
\(712\) 9.08623i 0.340521i
\(713\) − 59.3269i − 2.22181i
\(714\) −1.12070 −0.0419413
\(715\) 0 0
\(716\) −7.74742 −0.289535
\(717\) − 9.52082i − 0.355562i
\(718\) − 1.81111i − 0.0675901i
\(719\) −48.4768 −1.80788 −0.903940 0.427660i \(-0.859338\pi\)
−0.903940 + 0.427660i \(0.859338\pi\)
\(720\) 0 0
\(721\) 19.8950 0.740927
\(722\) − 18.7785i − 0.698862i
\(723\) 0.594825i 0.0221218i
\(724\) 19.7440 0.733779
\(725\) 0 0
\(726\) −5.30777 −0.196990
\(727\) − 31.5208i − 1.16904i −0.811378 0.584521i \(-0.801282\pi\)
0.811378 0.584521i \(-0.198718\pi\)
\(728\) 7.43965i 0.275732i
\(729\) 15.7620 0.583779
\(730\) 0 0
\(731\) 4.76203 0.176130
\(732\) − 0.637031i − 0.0235453i
\(733\) 21.5017i 0.794184i 0.917779 + 0.397092i \(0.129981\pi\)
−0.917779 + 0.397092i \(0.870019\pi\)
\(734\) 30.8268 1.13784
\(735\) 0 0
\(736\) 5.80605 0.214014
\(737\) 41.5630i 1.53099i
\(738\) − 0.0766789i − 0.00282259i
\(739\) −12.5604 −0.462040 −0.231020 0.972949i \(-0.574206\pi\)
−0.231020 + 0.972949i \(0.574206\pi\)
\(740\) 0 0
\(741\) −0.498281 −0.0183048
\(742\) − 35.5500i − 1.30508i
\(743\) 26.5275i 0.973199i 0.873625 + 0.486600i \(0.161763\pi\)
−0.873625 + 0.486600i \(0.838237\pi\)
\(744\) 4.80949 0.176325
\(745\) 0 0
\(746\) 2.06207 0.0754978
\(747\) − 14.4983i − 0.530464i
\(748\) 3.39744i 0.124223i
\(749\) 38.8578 1.41983
\(750\) 0 0
\(751\) −37.4232 −1.36559 −0.682796 0.730609i \(-0.739236\pi\)
−0.682796 + 0.730609i \(0.739236\pi\)
\(752\) − 4.33537i − 0.158095i
\(753\) 4.53725i 0.165347i
\(754\) 2.24914 0.0819089
\(755\) 0 0
\(756\) 8.99656 0.327202
\(757\) 30.0844i 1.09344i 0.837317 + 0.546718i \(0.184123\pi\)
−0.837317 + 0.546718i \(0.815877\pi\)
\(758\) 7.29478i 0.264958i
\(759\) 12.8984 0.468182
\(760\) 0 0
\(761\) 42.1690 1.52863 0.764313 0.644845i \(-0.223078\pi\)
0.764313 + 0.644845i \(0.223078\pi\)
\(762\) 7.63359i 0.276536i
\(763\) 32.8241i 1.18831i
\(764\) −0.397442 −0.0143790
\(765\) 0 0
\(766\) −15.7846 −0.570320
\(767\) − 24.8026i − 0.895571i
\(768\) 0.470683i 0.0169843i
\(769\) 29.9587 1.08034 0.540168 0.841557i \(-0.318361\pi\)
0.540168 + 0.841557i \(0.318361\pi\)
\(770\) 0 0
\(771\) 4.44309 0.160014
\(772\) − 4.35342i − 0.156683i
\(773\) 50.1966i 1.80545i 0.430221 + 0.902723i \(0.358436\pi\)
−0.430221 + 0.902723i \(0.641564\pi\)
\(774\) −18.3810 −0.660692
\(775\) 0 0
\(776\) 11.1905 0.401716
\(777\) 1.59988i 0.0573954i
\(778\) 13.3534i 0.478743i
\(779\) −0.0129898 −0.000465406 0
\(780\) 0 0
\(781\) −27.4036 −0.980576
\(782\) − 4.17934i − 0.149453i
\(783\) − 2.71982i − 0.0971986i
\(784\) −3.94137 −0.140763
\(785\) 0 0
\(786\) −10.0552 −0.358657
\(787\) − 44.5845i − 1.58927i −0.607090 0.794633i \(-0.707663\pi\)
0.607090 0.794633i \(-0.292337\pi\)
\(788\) − 6.70683i − 0.238921i
\(789\) 5.49035 0.195462
\(790\) 0 0
\(791\) −46.4001 −1.64980
\(792\) − 13.1138i − 0.465980i
\(793\) 3.04403i 0.108097i
\(794\) −20.2130 −0.717334
\(795\) 0 0
\(796\) −9.36297 −0.331862
\(797\) − 23.3155i − 0.825878i −0.910759 0.412939i \(-0.864502\pi\)
0.910759 0.412939i \(-0.135498\pi\)
\(798\) − 0.732814i − 0.0259413i
\(799\) −3.12070 −0.110403
\(800\) 0 0
\(801\) −25.2457 −0.892013
\(802\) 15.2897i 0.539899i
\(803\) 17.2112i 0.607371i
\(804\) 4.14486 0.146178
\(805\) 0 0
\(806\) −22.9820 −0.809505
\(807\) 9.48024i 0.333720i
\(808\) 3.02760i 0.106511i
\(809\) −50.6570 −1.78100 −0.890502 0.454978i \(-0.849647\pi\)
−0.890502 + 0.454978i \(0.849647\pi\)
\(810\) 0 0
\(811\) 40.6949 1.42899 0.714496 0.699640i \(-0.246656\pi\)
0.714496 + 0.699640i \(0.246656\pi\)
\(812\) 3.30777i 0.116080i
\(813\) − 12.7283i − 0.446402i
\(814\) 4.85008 0.169995
\(815\) 0 0
\(816\) 0.338809 0.0118607
\(817\) 3.11383i 0.108939i
\(818\) − 14.8302i − 0.518526i
\(819\) −20.6707 −0.722294
\(820\) 0 0
\(821\) −11.8421 −0.413294 −0.206647 0.978416i \(-0.566255\pi\)
−0.206647 + 0.978416i \(0.566255\pi\)
\(822\) 4.49217i 0.156682i
\(823\) − 14.5243i − 0.506284i −0.967429 0.253142i \(-0.918536\pi\)
0.967429 0.253142i \(-0.0814640\pi\)
\(824\) −6.01461 −0.209529
\(825\) 0 0
\(826\) 36.4768 1.26919
\(827\) − 30.9183i − 1.07513i −0.843221 0.537567i \(-0.819344\pi\)
0.843221 0.537567i \(-0.180656\pi\)
\(828\) 16.1319i 0.560621i
\(829\) −1.26719 −0.0440112 −0.0220056 0.999758i \(-0.507005\pi\)
−0.0220056 + 0.999758i \(0.507005\pi\)
\(830\) 0 0
\(831\) 5.84664 0.202818
\(832\) − 2.24914i − 0.0779749i
\(833\) 2.83709i 0.0982994i
\(834\) −1.76385 −0.0610771
\(835\) 0 0
\(836\) −2.22154 −0.0768337
\(837\) 27.7914i 0.960613i
\(838\) 13.8647i 0.478948i
\(839\) −33.1855 −1.14569 −0.572845 0.819664i \(-0.694160\pi\)
−0.572845 + 0.819664i \(0.694160\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 2.70178i 0.0931094i
\(843\) 11.7180i 0.403590i
\(844\) 24.5665 0.845613
\(845\) 0 0
\(846\) 12.0456 0.414138
\(847\) 37.3009i 1.28167i
\(848\) 10.7474i 0.369068i
\(849\) −2.27674 −0.0781375
\(850\) 0 0
\(851\) −5.96629 −0.204522
\(852\) 2.73281i 0.0936247i
\(853\) 42.7743i 1.46456i 0.681002 + 0.732281i \(0.261544\pi\)
−0.681002 + 0.732281i \(0.738456\pi\)
\(854\) −4.47680 −0.153193
\(855\) 0 0
\(856\) −11.7474 −0.401519
\(857\) 44.7061i 1.52713i 0.645731 + 0.763565i \(0.276553\pi\)
−0.645731 + 0.763565i \(0.723447\pi\)
\(858\) − 4.99656i − 0.170580i
\(859\) 7.01643 0.239397 0.119699 0.992810i \(-0.461807\pi\)
0.119699 + 0.992810i \(0.461807\pi\)
\(860\) 0 0
\(861\) 0.0429672 0.00146432
\(862\) − 27.3009i − 0.929872i
\(863\) − 40.4768i − 1.37785i −0.724834 0.688923i \(-0.758084\pi\)
0.724834 0.688923i \(-0.241916\pi\)
\(864\) −2.71982 −0.0925303
\(865\) 0 0
\(866\) −0.262130 −0.00890755
\(867\) 7.75774i 0.263466i
\(868\) − 33.7992i − 1.14722i
\(869\) −78.6830 −2.66914
\(870\) 0 0
\(871\) −19.8061 −0.671103
\(872\) − 9.92332i − 0.336046i
\(873\) 31.0923i 1.05232i
\(874\) 2.73281 0.0924388
\(875\) 0 0
\(876\) 1.71639 0.0579913
\(877\) 6.14325i 0.207443i 0.994606 + 0.103721i \(0.0330750\pi\)
−0.994606 + 0.103721i \(0.966925\pi\)
\(878\) − 20.4983i − 0.691783i
\(879\) 15.7768 0.532140
\(880\) 0 0
\(881\) −56.6639 −1.90905 −0.954527 0.298124i \(-0.903639\pi\)
−0.954527 + 0.298124i \(0.903639\pi\)
\(882\) − 10.9509i − 0.368737i
\(883\) 49.5389i 1.66712i 0.552432 + 0.833558i \(0.313700\pi\)
−0.552432 + 0.833558i \(0.686300\pi\)
\(884\) −1.61899 −0.0544524
\(885\) 0 0
\(886\) −0.456076 −0.0153222
\(887\) − 1.03265i − 0.0346731i −0.999850 0.0173366i \(-0.994481\pi\)
0.999850 0.0173366i \(-0.00551867\pi\)
\(888\) − 0.483673i − 0.0162310i
\(889\) 53.6458 1.79922
\(890\) 0 0
\(891\) 33.2993 1.11557
\(892\) 2.11727i 0.0708913i
\(893\) − 2.04059i − 0.0682857i
\(894\) 0.941367 0.0314840
\(895\) 0 0
\(896\) 3.30777 0.110505
\(897\) 6.14648i 0.205225i
\(898\) 8.62854i 0.287938i
\(899\) −10.2181 −0.340793
\(900\) 0 0
\(901\) 7.73625 0.257732
\(902\) − 0.130256i − 0.00433705i
\(903\) − 10.2998i − 0.342757i
\(904\) 14.0276 0.466551
\(905\) 0 0
\(906\) 6.70683 0.222820
\(907\) − 8.04059i − 0.266983i −0.991050 0.133492i \(-0.957381\pi\)
0.991050 0.133492i \(-0.0426189\pi\)
\(908\) 15.9138i 0.528117i
\(909\) −8.41205 −0.279010
\(910\) 0 0
\(911\) 14.0456 0.465353 0.232676 0.972554i \(-0.425252\pi\)
0.232676 + 0.972554i \(0.425252\pi\)
\(912\) 0.221543i 0.00733602i
\(913\) − 24.6285i − 0.815086i
\(914\) 11.6872 0.386577
\(915\) 0 0
\(916\) −22.2897 −0.736473
\(917\) 70.6639i 2.33353i
\(918\) 1.95779i 0.0646168i
\(919\) −15.5163 −0.511836 −0.255918 0.966698i \(-0.582378\pi\)
−0.255918 + 0.966698i \(0.582378\pi\)
\(920\) 0 0
\(921\) 5.82142 0.191822
\(922\) − 1.82066i − 0.0599603i
\(923\) − 13.0586i − 0.429830i
\(924\) 7.34836 0.241743
\(925\) 0 0
\(926\) 26.8241 0.881495
\(927\) − 16.7113i − 0.548872i
\(928\) − 1.00000i − 0.0328266i
\(929\) −6.93181 −0.227425 −0.113713 0.993514i \(-0.536274\pi\)
−0.113713 + 0.993514i \(0.536274\pi\)
\(930\) 0 0
\(931\) −1.85514 −0.0607996
\(932\) − 23.3871i − 0.766071i
\(933\) 7.21199i 0.236110i
\(934\) 0.366407 0.0119892
\(935\) 0 0
\(936\) 6.24914 0.204260
\(937\) 45.3189i 1.48051i 0.672329 + 0.740253i \(0.265294\pi\)
−0.672329 + 0.740253i \(0.734706\pi\)
\(938\) − 29.1284i − 0.951077i
\(939\) 10.4147 0.339872
\(940\) 0 0
\(941\) 7.75086 0.252671 0.126335 0.991988i \(-0.459678\pi\)
0.126335 + 0.991988i \(0.459678\pi\)
\(942\) 5.74398i 0.187149i
\(943\) 0.160234i 0.00521792i
\(944\) −11.0276 −0.358918
\(945\) 0 0
\(946\) −31.2242 −1.01519
\(947\) 11.1544i 0.362470i 0.983440 + 0.181235i \(0.0580094\pi\)
−0.983440 + 0.181235i \(0.941991\pi\)
\(948\) 7.84664i 0.254847i
\(949\) −8.20168 −0.266238
\(950\) 0 0
\(951\) −4.79039 −0.155339
\(952\) − 2.38101i − 0.0771691i
\(953\) − 55.1492i − 1.78646i −0.449604 0.893228i \(-0.648435\pi\)
0.449604 0.893228i \(-0.351565\pi\)
\(954\) −29.8613 −0.966794
\(955\) 0 0
\(956\) 20.2277 0.654209
\(957\) − 2.22154i − 0.0718123i
\(958\) − 13.7363i − 0.443798i
\(959\) 31.5691 1.01942
\(960\) 0 0
\(961\) 73.4097 2.36805
\(962\) 2.31121i 0.0745165i
\(963\) − 32.6397i − 1.05180i
\(964\) −1.26375 −0.0407026
\(965\) 0 0
\(966\) −9.03953 −0.290842
\(967\) 28.8984i 0.929310i 0.885492 + 0.464655i \(0.153822\pi\)
−0.885492 + 0.464655i \(0.846178\pi\)
\(968\) − 11.2767i − 0.362448i
\(969\) 0.159472 0.00512297
\(970\) 0 0
\(971\) −12.1932 −0.391298 −0.195649 0.980674i \(-0.562681\pi\)
−0.195649 + 0.980674i \(0.562681\pi\)
\(972\) − 11.4802i − 0.368229i
\(973\) 12.3956i 0.397385i
\(974\) −22.9414 −0.735089
\(975\) 0 0
\(976\) 1.35342 0.0433218
\(977\) − 20.5861i − 0.658609i −0.944224 0.329304i \(-0.893186\pi\)
0.944224 0.329304i \(-0.106814\pi\)
\(978\) − 8.27674i − 0.264661i
\(979\) −42.8854 −1.37062
\(980\) 0 0
\(981\) 27.5715 0.880291
\(982\) 12.8241i 0.409233i
\(983\) − 19.7681i − 0.630506i −0.949008 0.315253i \(-0.897911\pi\)
0.949008 0.315253i \(-0.102089\pi\)
\(984\) −0.0129898 −0.000414098 0
\(985\) 0 0
\(986\) −0.719824 −0.0229239
\(987\) 6.74980i 0.214849i
\(988\) − 1.05863i − 0.0336796i
\(989\) 38.4102 1.22137
\(990\) 0 0
\(991\) 47.5139 1.50933 0.754665 0.656110i \(-0.227799\pi\)
0.754665 + 0.656110i \(0.227799\pi\)
\(992\) 10.2181i 0.324425i
\(993\) 4.09416i 0.129924i
\(994\) 19.2051 0.609149
\(995\) 0 0
\(996\) −2.45608 −0.0778237
\(997\) 31.7276i 1.00482i 0.864629 + 0.502411i \(0.167554\pi\)
−0.864629 + 0.502411i \(0.832446\pi\)
\(998\) 0.349979i 0.0110784i
\(999\) 2.79488 0.0884262
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1450.2.b.k.349.5 6
5.2 odd 4 1450.2.a.q.1.2 3
5.3 odd 4 1450.2.a.s.1.2 yes 3
5.4 even 2 inner 1450.2.b.k.349.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1450.2.a.q.1.2 3 5.2 odd 4
1450.2.a.s.1.2 yes 3 5.3 odd 4
1450.2.b.k.349.2 6 5.4 even 2 inner
1450.2.b.k.349.5 6 1.1 even 1 trivial