Properties

Label 1450.2.b.k.349.1
Level $1450$
Weight $2$
Character 1450.349
Analytic conductor $11.578$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1450,2,Mod(349,1450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1450.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1450.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5783082931\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.1
Root \(-0.671462 - 1.24464i\) of defining polynomial
Character \(\chi\) \(=\) 1450.349
Dual form 1450.2.b.k.349.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -2.34292i q^{3} -1.00000 q^{4} -2.34292 q^{6} +3.83221i q^{7} +1.00000i q^{8} -2.48929 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} -2.34292i q^{3} -1.00000 q^{4} -2.34292 q^{6} +3.83221i q^{7} +1.00000i q^{8} -2.48929 q^{9} +3.19656 q^{11} +2.34292i q^{12} +1.14637i q^{13} +3.83221 q^{14} +1.00000 q^{16} -0.803442i q^{17} +2.48929i q^{18} +2.34292 q^{19} +8.97858 q^{21} -3.19656i q^{22} -8.12494i q^{23} +2.34292 q^{24} +1.14637 q^{26} -1.19656i q^{27} -3.83221i q^{28} -1.00000 q^{29} +1.90383 q^{31} -1.00000i q^{32} -7.48929i q^{33} -0.803442 q^{34} +2.48929 q^{36} -7.63565i q^{37} -2.34292i q^{38} +2.68585 q^{39} +8.63565 q^{41} -8.97858i q^{42} +7.66442i q^{43} -3.19656 q^{44} -8.12494 q^{46} -11.4679i q^{47} -2.34292i q^{48} -7.68585 q^{49} -1.88240 q^{51} -1.14637i q^{52} -0.560904i q^{53} -1.19656 q^{54} -3.83221 q^{56} -5.48929i q^{57} +1.00000i q^{58} -2.36435 q^{59} +10.7146 q^{61} -1.90383i q^{62} -9.53948i q^{63} -1.00000 q^{64} -7.48929 q^{66} +5.12494i q^{67} +0.803442i q^{68} -19.0361 q^{69} +8.12494 q^{71} -2.48929i q^{72} +5.71462i q^{73} -7.63565 q^{74} -2.34292 q^{76} +12.2499i q^{77} -2.68585i q^{78} +14.9357 q^{79} -10.2713 q^{81} -8.63565i q^{82} -3.09617i q^{83} -8.97858 q^{84} +7.66442 q^{86} +2.34292i q^{87} +3.19656i q^{88} +3.32150 q^{89} -4.39312 q^{91} +8.12494i q^{92} -4.46052i q^{93} -11.4679 q^{94} -2.34292 q^{96} -11.5395i q^{97} +7.68585i q^{98} -7.95715 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 2 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{4} - 2 q^{6} + 10 q^{11} - 4 q^{14} + 6 q^{16} + 2 q^{19} + 24 q^{21} + 2 q^{24} + 4 q^{26} - 6 q^{29} + 8 q^{31} - 14 q^{34} - 8 q^{39} + 34 q^{41} - 10 q^{44} - 16 q^{46} - 22 q^{49} + 22 q^{51} + 2 q^{54} + 4 q^{56} - 32 q^{59} + 4 q^{61} - 6 q^{64} - 30 q^{66} - 12 q^{69} + 16 q^{71} - 28 q^{74} - 2 q^{76} - 26 q^{81} - 24 q^{84} - 8 q^{86} - 22 q^{89} - 8 q^{91} - 24 q^{94} - 2 q^{96} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1450\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) − 2.34292i − 1.35269i −0.736586 0.676344i \(-0.763563\pi\)
0.736586 0.676344i \(-0.236437\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −2.34292 −0.956494
\(7\) 3.83221i 1.44844i 0.689569 + 0.724220i \(0.257800\pi\)
−0.689569 + 0.724220i \(0.742200\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −2.48929 −0.829763
\(10\) 0 0
\(11\) 3.19656 0.963798 0.481899 0.876227i \(-0.339947\pi\)
0.481899 + 0.876227i \(0.339947\pi\)
\(12\) 2.34292i 0.676344i
\(13\) 1.14637i 0.317945i 0.987283 + 0.158972i \(0.0508181\pi\)
−0.987283 + 0.158972i \(0.949182\pi\)
\(14\) 3.83221 1.02420
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 0.803442i − 0.194863i −0.995242 0.0974317i \(-0.968937\pi\)
0.995242 0.0974317i \(-0.0310628\pi\)
\(18\) 2.48929i 0.586731i
\(19\) 2.34292 0.537503 0.268752 0.963209i \(-0.413389\pi\)
0.268752 + 0.963209i \(0.413389\pi\)
\(20\) 0 0
\(21\) 8.97858 1.95929
\(22\) − 3.19656i − 0.681508i
\(23\) − 8.12494i − 1.69417i −0.531459 0.847084i \(-0.678356\pi\)
0.531459 0.847084i \(-0.321644\pi\)
\(24\) 2.34292 0.478247
\(25\) 0 0
\(26\) 1.14637 0.224821
\(27\) − 1.19656i − 0.230278i
\(28\) − 3.83221i − 0.724220i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 1.90383 0.341937 0.170969 0.985276i \(-0.445310\pi\)
0.170969 + 0.985276i \(0.445310\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) − 7.48929i − 1.30372i
\(34\) −0.803442 −0.137789
\(35\) 0 0
\(36\) 2.48929 0.414881
\(37\) − 7.63565i − 1.25529i −0.778498 0.627647i \(-0.784018\pi\)
0.778498 0.627647i \(-0.215982\pi\)
\(38\) − 2.34292i − 0.380072i
\(39\) 2.68585 0.430080
\(40\) 0 0
\(41\) 8.63565 1.34866 0.674331 0.738429i \(-0.264432\pi\)
0.674331 + 0.738429i \(0.264432\pi\)
\(42\) − 8.97858i − 1.38542i
\(43\) 7.66442i 1.16881i 0.811461 + 0.584407i \(0.198673\pi\)
−0.811461 + 0.584407i \(0.801327\pi\)
\(44\) −3.19656 −0.481899
\(45\) 0 0
\(46\) −8.12494 −1.19796
\(47\) − 11.4679i − 1.67276i −0.548150 0.836380i \(-0.684668\pi\)
0.548150 0.836380i \(-0.315332\pi\)
\(48\) − 2.34292i − 0.338172i
\(49\) −7.68585 −1.09798
\(50\) 0 0
\(51\) −1.88240 −0.263589
\(52\) − 1.14637i − 0.158972i
\(53\) − 0.560904i − 0.0770460i −0.999258 0.0385230i \(-0.987735\pi\)
0.999258 0.0385230i \(-0.0122653\pi\)
\(54\) −1.19656 −0.162831
\(55\) 0 0
\(56\) −3.83221 −0.512101
\(57\) − 5.48929i − 0.727074i
\(58\) 1.00000i 0.131306i
\(59\) −2.36435 −0.307812 −0.153906 0.988086i \(-0.549185\pi\)
−0.153906 + 0.988086i \(0.549185\pi\)
\(60\) 0 0
\(61\) 10.7146 1.37187 0.685933 0.727665i \(-0.259394\pi\)
0.685933 + 0.727665i \(0.259394\pi\)
\(62\) − 1.90383i − 0.241786i
\(63\) − 9.53948i − 1.20186i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −7.48929 −0.921868
\(67\) 5.12494i 0.626111i 0.949735 + 0.313056i \(0.101353\pi\)
−0.949735 + 0.313056i \(0.898647\pi\)
\(68\) 0.803442i 0.0974317i
\(69\) −19.0361 −2.29168
\(70\) 0 0
\(71\) 8.12494 0.964253 0.482127 0.876102i \(-0.339865\pi\)
0.482127 + 0.876102i \(0.339865\pi\)
\(72\) − 2.48929i − 0.293365i
\(73\) 5.71462i 0.668845i 0.942423 + 0.334423i \(0.108541\pi\)
−0.942423 + 0.334423i \(0.891459\pi\)
\(74\) −7.63565 −0.887627
\(75\) 0 0
\(76\) −2.34292 −0.268752
\(77\) 12.2499i 1.39600i
\(78\) − 2.68585i − 0.304112i
\(79\) 14.9357 1.68040 0.840201 0.542276i \(-0.182437\pi\)
0.840201 + 0.542276i \(0.182437\pi\)
\(80\) 0 0
\(81\) −10.2713 −1.14126
\(82\) − 8.63565i − 0.953648i
\(83\) − 3.09617i − 0.339849i −0.985457 0.169925i \(-0.945648\pi\)
0.985457 0.169925i \(-0.0543524\pi\)
\(84\) −8.97858 −0.979643
\(85\) 0 0
\(86\) 7.66442 0.826476
\(87\) 2.34292i 0.251188i
\(88\) 3.19656i 0.340754i
\(89\) 3.32150 0.352078 0.176039 0.984383i \(-0.443671\pi\)
0.176039 + 0.984383i \(0.443671\pi\)
\(90\) 0 0
\(91\) −4.39312 −0.460524
\(92\) 8.12494i 0.847084i
\(93\) − 4.46052i − 0.462534i
\(94\) −11.4679 −1.18282
\(95\) 0 0
\(96\) −2.34292 −0.239124
\(97\) − 11.5395i − 1.17166i −0.810435 0.585828i \(-0.800769\pi\)
0.810435 0.585828i \(-0.199231\pi\)
\(98\) 7.68585i 0.776388i
\(99\) −7.95715 −0.799724
\(100\) 0 0
\(101\) 5.63565 0.560769 0.280384 0.959888i \(-0.409538\pi\)
0.280384 + 0.959888i \(0.409538\pi\)
\(102\) 1.88240i 0.186386i
\(103\) 17.5970i 1.73389i 0.498407 + 0.866943i \(0.333918\pi\)
−0.498407 + 0.866943i \(0.666082\pi\)
\(104\) −1.14637 −0.112410
\(105\) 0 0
\(106\) −0.560904 −0.0544798
\(107\) 1.56090i 0.150898i 0.997150 + 0.0754491i \(0.0240390\pi\)
−0.997150 + 0.0754491i \(0.975961\pi\)
\(108\) 1.19656i 0.115139i
\(109\) −11.4966 −1.10118 −0.550589 0.834776i \(-0.685597\pi\)
−0.550589 + 0.834776i \(0.685597\pi\)
\(110\) 0 0
\(111\) −17.8898 −1.69802
\(112\) 3.83221i 0.362110i
\(113\) − 5.36435i − 0.504635i −0.967644 0.252318i \(-0.918807\pi\)
0.967644 0.252318i \(-0.0811928\pi\)
\(114\) −5.48929 −0.514119
\(115\) 0 0
\(116\) 1.00000 0.0928477
\(117\) − 2.85363i − 0.263819i
\(118\) 2.36435i 0.217656i
\(119\) 3.07896 0.282248
\(120\) 0 0
\(121\) −0.782020 −0.0710927
\(122\) − 10.7146i − 0.970056i
\(123\) − 20.2327i − 1.82432i
\(124\) −1.90383 −0.170969
\(125\) 0 0
\(126\) −9.53948 −0.849844
\(127\) 7.90383i 0.701351i 0.936497 + 0.350676i \(0.114048\pi\)
−0.936497 + 0.350676i \(0.885952\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 17.9572 1.58104
\(130\) 0 0
\(131\) −3.10352 −0.271156 −0.135578 0.990767i \(-0.543289\pi\)
−0.135578 + 0.990767i \(0.543289\pi\)
\(132\) 7.48929i 0.651859i
\(133\) 8.97858i 0.778541i
\(134\) 5.12494 0.442728
\(135\) 0 0
\(136\) 0.803442 0.0688946
\(137\) 19.2541i 1.64499i 0.568773 + 0.822494i \(0.307418\pi\)
−0.568773 + 0.822494i \(0.692582\pi\)
\(138\) 19.0361i 1.62046i
\(139\) −6.43910 −0.546157 −0.273079 0.961992i \(-0.588042\pi\)
−0.273079 + 0.961992i \(0.588042\pi\)
\(140\) 0 0
\(141\) −26.8683 −2.26272
\(142\) − 8.12494i − 0.681830i
\(143\) 3.66442i 0.306434i
\(144\) −2.48929 −0.207441
\(145\) 0 0
\(146\) 5.71462 0.472945
\(147\) 18.0073i 1.48522i
\(148\) 7.63565i 0.627647i
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) −10.8536 −0.883256 −0.441628 0.897198i \(-0.645599\pi\)
−0.441628 + 0.897198i \(0.645599\pi\)
\(152\) 2.34292i 0.190036i
\(153\) 2.00000i 0.161690i
\(154\) 12.2499 0.987124
\(155\) 0 0
\(156\) −2.68585 −0.215040
\(157\) − 7.69319i − 0.613984i −0.951712 0.306992i \(-0.900678\pi\)
0.951712 0.306992i \(-0.0993224\pi\)
\(158\) − 14.9357i − 1.18822i
\(159\) −1.31415 −0.104219
\(160\) 0 0
\(161\) 31.1365 2.45390
\(162\) 10.2713i 0.806990i
\(163\) 1.61423i 0.126436i 0.998000 + 0.0632182i \(0.0201364\pi\)
−0.998000 + 0.0632182i \(0.979864\pi\)
\(164\) −8.63565 −0.674331
\(165\) 0 0
\(166\) −3.09617 −0.240310
\(167\) − 13.7220i − 1.06184i −0.847423 0.530919i \(-0.821847\pi\)
0.847423 0.530919i \(-0.178153\pi\)
\(168\) 8.97858i 0.692712i
\(169\) 11.6858 0.898911
\(170\) 0 0
\(171\) −5.83221 −0.446000
\(172\) − 7.66442i − 0.584407i
\(173\) − 18.3074i − 1.39189i −0.718096 0.695944i \(-0.754986\pi\)
0.718096 0.695944i \(-0.245014\pi\)
\(174\) 2.34292 0.177617
\(175\) 0 0
\(176\) 3.19656 0.240950
\(177\) 5.53948i 0.416373i
\(178\) − 3.32150i − 0.248957i
\(179\) −2.43910 −0.182307 −0.0911533 0.995837i \(-0.529055\pi\)
−0.0911533 + 0.995837i \(0.529055\pi\)
\(180\) 0 0
\(181\) 4.02456 0.299143 0.149572 0.988751i \(-0.452211\pi\)
0.149572 + 0.988751i \(0.452211\pi\)
\(182\) 4.39312i 0.325639i
\(183\) − 25.1035i − 1.85571i
\(184\) 8.12494 0.598979
\(185\) 0 0
\(186\) −4.46052 −0.327061
\(187\) − 2.56825i − 0.187809i
\(188\) 11.4679i 0.836380i
\(189\) 4.58546 0.333543
\(190\) 0 0
\(191\) −5.56825 −0.402904 −0.201452 0.979498i \(-0.564566\pi\)
−0.201452 + 0.979498i \(0.564566\pi\)
\(192\) 2.34292i 0.169086i
\(193\) − 13.7146i − 0.987200i −0.869689 0.493600i \(-0.835681\pi\)
0.869689 0.493600i \(-0.164319\pi\)
\(194\) −11.5395 −0.828486
\(195\) 0 0
\(196\) 7.68585 0.548989
\(197\) − 25.4292i − 1.81176i −0.423537 0.905879i \(-0.639212\pi\)
0.423537 0.905879i \(-0.360788\pi\)
\(198\) 7.95715i 0.565490i
\(199\) −15.1035 −1.07066 −0.535330 0.844643i \(-0.679813\pi\)
−0.535330 + 0.844643i \(0.679813\pi\)
\(200\) 0 0
\(201\) 12.0073 0.846933
\(202\) − 5.63565i − 0.396523i
\(203\) − 3.83221i − 0.268969i
\(204\) 1.88240 0.131795
\(205\) 0 0
\(206\) 17.5970 1.22604
\(207\) 20.2253i 1.40576i
\(208\) 1.14637i 0.0794861i
\(209\) 7.48929 0.518045
\(210\) 0 0
\(211\) 19.7967 1.36286 0.681431 0.731882i \(-0.261358\pi\)
0.681431 + 0.731882i \(0.261358\pi\)
\(212\) 0.560904i 0.0385230i
\(213\) − 19.0361i − 1.30433i
\(214\) 1.56090 0.106701
\(215\) 0 0
\(216\) 1.19656 0.0814154
\(217\) 7.29587i 0.495276i
\(218\) 11.4966i 0.778650i
\(219\) 13.3889 0.904738
\(220\) 0 0
\(221\) 0.921039 0.0619558
\(222\) 17.8898i 1.20068i
\(223\) − 5.37169i − 0.359715i −0.983693 0.179858i \(-0.942436\pi\)
0.983693 0.179858i \(-0.0575637\pi\)
\(224\) 3.83221 0.256050
\(225\) 0 0
\(226\) −5.36435 −0.356831
\(227\) 28.3215i 1.87976i 0.341499 + 0.939882i \(0.389065\pi\)
−0.341499 + 0.939882i \(0.610935\pi\)
\(228\) 5.48929i 0.363537i
\(229\) −10.0147 −0.661790 −0.330895 0.943668i \(-0.607351\pi\)
−0.330895 + 0.943668i \(0.607351\pi\)
\(230\) 0 0
\(231\) 28.7005 1.88836
\(232\) − 1.00000i − 0.0656532i
\(233\) 23.3246i 1.52805i 0.645188 + 0.764024i \(0.276779\pi\)
−0.645188 + 0.764024i \(0.723221\pi\)
\(234\) −2.85363 −0.186548
\(235\) 0 0
\(236\) 2.36435 0.153906
\(237\) − 34.9933i − 2.27306i
\(238\) − 3.07896i − 0.199579i
\(239\) 21.9143 1.41752 0.708759 0.705450i \(-0.249255\pi\)
0.708759 + 0.705450i \(0.249255\pi\)
\(240\) 0 0
\(241\) 9.45065 0.608770 0.304385 0.952549i \(-0.401549\pi\)
0.304385 + 0.952549i \(0.401549\pi\)
\(242\) 0.782020i 0.0502701i
\(243\) 20.4752i 1.31349i
\(244\) −10.7146 −0.685933
\(245\) 0 0
\(246\) −20.2327 −1.28999
\(247\) 2.68585i 0.170896i
\(248\) 1.90383i 0.120893i
\(249\) −7.25410 −0.459710
\(250\) 0 0
\(251\) −26.8855 −1.69700 −0.848500 0.529195i \(-0.822494\pi\)
−0.848500 + 0.529195i \(0.822494\pi\)
\(252\) 9.53948i 0.600931i
\(253\) − 25.9718i − 1.63284i
\(254\) 7.90383 0.495930
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.39312i 0.398792i 0.979919 + 0.199396i \(0.0638979\pi\)
−0.979919 + 0.199396i \(0.936102\pi\)
\(258\) − 17.9572i − 1.11796i
\(259\) 29.2614 1.81822
\(260\) 0 0
\(261\) 2.48929 0.154083
\(262\) 3.10352i 0.191736i
\(263\) 27.4679i 1.69374i 0.531799 + 0.846871i \(0.321516\pi\)
−0.531799 + 0.846871i \(0.678484\pi\)
\(264\) 7.48929 0.460934
\(265\) 0 0
\(266\) 8.97858 0.550512
\(267\) − 7.78202i − 0.476252i
\(268\) − 5.12494i − 0.313056i
\(269\) −9.59281 −0.584884 −0.292442 0.956283i \(-0.594468\pi\)
−0.292442 + 0.956283i \(0.594468\pi\)
\(270\) 0 0
\(271\) −29.9614 −1.82002 −0.910012 0.414583i \(-0.863928\pi\)
−0.910012 + 0.414583i \(0.863928\pi\)
\(272\) − 0.803442i − 0.0487159i
\(273\) 10.2927i 0.622944i
\(274\) 19.2541 1.16318
\(275\) 0 0
\(276\) 19.0361 1.14584
\(277\) − 15.7894i − 0.948691i −0.880339 0.474346i \(-0.842685\pi\)
0.880339 0.474346i \(-0.157315\pi\)
\(278\) 6.43910i 0.386191i
\(279\) −4.73917 −0.283727
\(280\) 0 0
\(281\) 12.1390 0.724153 0.362077 0.932148i \(-0.382068\pi\)
0.362077 + 0.932148i \(0.382068\pi\)
\(282\) 26.8683i 1.59999i
\(283\) 4.17513i 0.248186i 0.992271 + 0.124093i \(0.0396021\pi\)
−0.992271 + 0.124093i \(0.960398\pi\)
\(284\) −8.12494 −0.482127
\(285\) 0 0
\(286\) 3.66442 0.216682
\(287\) 33.0937i 1.95346i
\(288\) 2.48929i 0.146683i
\(289\) 16.3545 0.962028
\(290\) 0 0
\(291\) −27.0361 −1.58489
\(292\) − 5.71462i − 0.334423i
\(293\) − 9.09931i − 0.531587i −0.964030 0.265794i \(-0.914366\pi\)
0.964030 0.265794i \(-0.0856340\pi\)
\(294\) 18.0073 1.05021
\(295\) 0 0
\(296\) 7.63565 0.443813
\(297\) − 3.82487i − 0.221941i
\(298\) 2.00000i 0.115857i
\(299\) 9.31415 0.538651
\(300\) 0 0
\(301\) −29.3717 −1.69296
\(302\) 10.8536i 0.624556i
\(303\) − 13.2039i − 0.758544i
\(304\) 2.34292 0.134376
\(305\) 0 0
\(306\) 2.00000 0.114332
\(307\) 33.3116i 1.90120i 0.310426 + 0.950598i \(0.399528\pi\)
−0.310426 + 0.950598i \(0.600472\pi\)
\(308\) − 12.2499i − 0.698002i
\(309\) 41.2285 2.34541
\(310\) 0 0
\(311\) 19.7648 1.12076 0.560380 0.828236i \(-0.310655\pi\)
0.560380 + 0.828236i \(0.310655\pi\)
\(312\) 2.68585i 0.152056i
\(313\) − 19.1898i − 1.08467i −0.840161 0.542337i \(-0.817540\pi\)
0.840161 0.542337i \(-0.182460\pi\)
\(314\) −7.69319 −0.434152
\(315\) 0 0
\(316\) −14.9357 −0.840201
\(317\) − 30.7722i − 1.72834i −0.503203 0.864168i \(-0.667845\pi\)
0.503203 0.864168i \(-0.332155\pi\)
\(318\) 1.31415i 0.0736941i
\(319\) −3.19656 −0.178973
\(320\) 0 0
\(321\) 3.65708 0.204118
\(322\) − 31.1365i − 1.73517i
\(323\) − 1.88240i − 0.104740i
\(324\) 10.2713 0.570628
\(325\) 0 0
\(326\) 1.61423 0.0894040
\(327\) 26.9357i 1.48955i
\(328\) 8.63565i 0.476824i
\(329\) 43.9473 2.42289
\(330\) 0 0
\(331\) −31.5714 −1.73532 −0.867660 0.497158i \(-0.834377\pi\)
−0.867660 + 0.497158i \(0.834377\pi\)
\(332\) 3.09617i 0.169925i
\(333\) 19.0073i 1.04160i
\(334\) −13.7220 −0.750832
\(335\) 0 0
\(336\) 8.97858 0.489822
\(337\) − 15.1966i − 0.827809i −0.910320 0.413905i \(-0.864165\pi\)
0.910320 0.413905i \(-0.135835\pi\)
\(338\) − 11.6858i − 0.635626i
\(339\) −12.5682 −0.682614
\(340\) 0 0
\(341\) 6.08569 0.329559
\(342\) 5.83221i 0.315370i
\(343\) − 2.62831i − 0.141915i
\(344\) −7.66442 −0.413238
\(345\) 0 0
\(346\) −18.3074 −0.984213
\(347\) 17.0246i 0.913926i 0.889486 + 0.456963i \(0.151063\pi\)
−0.889486 + 0.456963i \(0.848937\pi\)
\(348\) − 2.34292i − 0.125594i
\(349\) 7.20390 0.385616 0.192808 0.981236i \(-0.438241\pi\)
0.192808 + 0.981236i \(0.438241\pi\)
\(350\) 0 0
\(351\) 1.37169 0.0732155
\(352\) − 3.19656i − 0.170377i
\(353\) 24.3116i 1.29398i 0.762499 + 0.646989i \(0.223972\pi\)
−0.762499 + 0.646989i \(0.776028\pi\)
\(354\) 5.53948 0.294420
\(355\) 0 0
\(356\) −3.32150 −0.176039
\(357\) − 7.21377i − 0.381793i
\(358\) 2.43910i 0.128910i
\(359\) −33.2902 −1.75699 −0.878495 0.477751i \(-0.841452\pi\)
−0.878495 + 0.477751i \(0.841452\pi\)
\(360\) 0 0
\(361\) −13.5107 −0.711090
\(362\) − 4.02456i − 0.211526i
\(363\) 1.83221i 0.0961662i
\(364\) 4.39312 0.230262
\(365\) 0 0
\(366\) −25.1035 −1.31218
\(367\) − 18.9315i − 0.988217i −0.869400 0.494109i \(-0.835494\pi\)
0.869400 0.494109i \(-0.164506\pi\)
\(368\) − 8.12494i − 0.423542i
\(369\) −21.4966 −1.11907
\(370\) 0 0
\(371\) 2.14950 0.111597
\(372\) 4.46052i 0.231267i
\(373\) 11.8996i 0.616139i 0.951364 + 0.308069i \(0.0996829\pi\)
−0.951364 + 0.308069i \(0.900317\pi\)
\(374\) −2.56825 −0.132801
\(375\) 0 0
\(376\) 11.4679 0.591410
\(377\) − 1.14637i − 0.0590408i
\(378\) − 4.58546i − 0.235851i
\(379\) 20.4005 1.04790 0.523951 0.851749i \(-0.324458\pi\)
0.523951 + 0.851749i \(0.324458\pi\)
\(380\) 0 0
\(381\) 18.5181 0.948709
\(382\) 5.56825i 0.284896i
\(383\) 36.8929i 1.88514i 0.334011 + 0.942569i \(0.391598\pi\)
−0.334011 + 0.942569i \(0.608402\pi\)
\(384\) 2.34292 0.119562
\(385\) 0 0
\(386\) −13.7146 −0.698056
\(387\) − 19.0790i − 0.969838i
\(388\) 11.5395i 0.585828i
\(389\) 22.7146 1.15168 0.575838 0.817564i \(-0.304676\pi\)
0.575838 + 0.817564i \(0.304676\pi\)
\(390\) 0 0
\(391\) −6.52792 −0.330131
\(392\) − 7.68585i − 0.388194i
\(393\) 7.27131i 0.366789i
\(394\) −25.4292 −1.28111
\(395\) 0 0
\(396\) 7.95715 0.399862
\(397\) 33.5113i 1.68189i 0.541124 + 0.840943i \(0.317999\pi\)
−0.541124 + 0.840943i \(0.682001\pi\)
\(398\) 15.1035i 0.757071i
\(399\) 21.0361 1.05312
\(400\) 0 0
\(401\) −17.0147 −0.849673 −0.424837 0.905270i \(-0.639668\pi\)
−0.424837 + 0.905270i \(0.639668\pi\)
\(402\) − 12.0073i − 0.598872i
\(403\) 2.18248i 0.108717i
\(404\) −5.63565 −0.280384
\(405\) 0 0
\(406\) −3.83221 −0.190189
\(407\) − 24.4078i − 1.20985i
\(408\) − 1.88240i − 0.0931929i
\(409\) 21.3461 1.05549 0.527747 0.849401i \(-0.323037\pi\)
0.527747 + 0.849401i \(0.323037\pi\)
\(410\) 0 0
\(411\) 45.1109 2.22515
\(412\) − 17.5970i − 0.866943i
\(413\) − 9.06067i − 0.445847i
\(414\) 20.2253 0.994021
\(415\) 0 0
\(416\) 1.14637 0.0562052
\(417\) 15.0863i 0.738780i
\(418\) − 7.48929i − 0.366313i
\(419\) −3.81079 −0.186169 −0.0930846 0.995658i \(-0.529673\pi\)
−0.0930846 + 0.995658i \(0.529673\pi\)
\(420\) 0 0
\(421\) −23.9859 −1.16900 −0.584501 0.811393i \(-0.698710\pi\)
−0.584501 + 0.811393i \(0.698710\pi\)
\(422\) − 19.7967i − 0.963689i
\(423\) 28.5468i 1.38799i
\(424\) 0.560904 0.0272399
\(425\) 0 0
\(426\) −19.0361 −0.922303
\(427\) 41.0607i 1.98707i
\(428\) − 1.56090i − 0.0754491i
\(429\) 8.58546 0.414510
\(430\) 0 0
\(431\) 7.00314 0.337329 0.168665 0.985674i \(-0.446055\pi\)
0.168665 + 0.985674i \(0.446055\pi\)
\(432\) − 1.19656i − 0.0575694i
\(433\) 23.3790i 1.12352i 0.827299 + 0.561762i \(0.189877\pi\)
−0.827299 + 0.561762i \(0.810123\pi\)
\(434\) 7.29587 0.350213
\(435\) 0 0
\(436\) 11.4966 0.550589
\(437\) − 19.0361i − 0.910621i
\(438\) − 13.3889i − 0.639747i
\(439\) −13.7073 −0.654212 −0.327106 0.944988i \(-0.606073\pi\)
−0.327106 + 0.944988i \(0.606073\pi\)
\(440\) 0 0
\(441\) 19.1323 0.911061
\(442\) − 0.921039i − 0.0438093i
\(443\) 9.25410i 0.439675i 0.975536 + 0.219838i \(0.0705528\pi\)
−0.975536 + 0.219838i \(0.929447\pi\)
\(444\) 17.8898 0.849010
\(445\) 0 0
\(446\) −5.37169 −0.254357
\(447\) 4.68585i 0.221633i
\(448\) − 3.83221i − 0.181055i
\(449\) −25.8971 −1.22216 −0.611080 0.791569i \(-0.709265\pi\)
−0.611080 + 0.791569i \(0.709265\pi\)
\(450\) 0 0
\(451\) 27.6044 1.29984
\(452\) 5.36435i 0.252318i
\(453\) 25.4292i 1.19477i
\(454\) 28.3215 1.32919
\(455\) 0 0
\(456\) 5.48929 0.257059
\(457\) − 26.5829i − 1.24350i −0.783217 0.621749i \(-0.786422\pi\)
0.783217 0.621749i \(-0.213578\pi\)
\(458\) 10.0147i 0.467956i
\(459\) −0.961365 −0.0448727
\(460\) 0 0
\(461\) 0.527923 0.0245878 0.0122939 0.999924i \(-0.496087\pi\)
0.0122939 + 0.999924i \(0.496087\pi\)
\(462\) − 28.7005i − 1.33527i
\(463\) 38.0575i 1.76868i 0.466840 + 0.884342i \(0.345392\pi\)
−0.466840 + 0.884342i \(0.654608\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 0 0
\(466\) 23.3246 1.08049
\(467\) − 10.5181i − 0.486718i −0.969936 0.243359i \(-0.921751\pi\)
0.969936 0.243359i \(-0.0782493\pi\)
\(468\) 2.85363i 0.131909i
\(469\) −19.6399 −0.906885
\(470\) 0 0
\(471\) −18.0246 −0.830528
\(472\) − 2.36435i − 0.108828i
\(473\) 24.4998i 1.12650i
\(474\) −34.9933 −1.60729
\(475\) 0 0
\(476\) −3.07896 −0.141124
\(477\) 1.39625i 0.0639299i
\(478\) − 21.9143i − 1.00234i
\(479\) −5.54935 −0.253556 −0.126778 0.991931i \(-0.540464\pi\)
−0.126778 + 0.991931i \(0.540464\pi\)
\(480\) 0 0
\(481\) 8.75325 0.399114
\(482\) − 9.45065i − 0.430465i
\(483\) − 72.9504i − 3.31936i
\(484\) 0.782020 0.0355463
\(485\) 0 0
\(486\) 20.4752 0.928774
\(487\) − 26.6858i − 1.20925i −0.796510 0.604626i \(-0.793323\pi\)
0.796510 0.604626i \(-0.206677\pi\)
\(488\) 10.7146i 0.485028i
\(489\) 3.78202 0.171029
\(490\) 0 0
\(491\) 24.0575 1.08570 0.542851 0.839829i \(-0.317345\pi\)
0.542851 + 0.839829i \(0.317345\pi\)
\(492\) 20.2327i 0.912159i
\(493\) 0.803442i 0.0361852i
\(494\) 2.68585 0.120842
\(495\) 0 0
\(496\) 1.90383 0.0854843
\(497\) 31.1365i 1.39666i
\(498\) 7.25410i 0.325064i
\(499\) −3.87085 −0.173283 −0.0866414 0.996240i \(-0.527613\pi\)
−0.0866414 + 0.996240i \(0.527613\pi\)
\(500\) 0 0
\(501\) −32.1495 −1.43633
\(502\) 26.8855i 1.19996i
\(503\) 43.1751i 1.92508i 0.271132 + 0.962542i \(0.412602\pi\)
−0.271132 + 0.962542i \(0.587398\pi\)
\(504\) 9.53948 0.424922
\(505\) 0 0
\(506\) −25.9718 −1.15459
\(507\) − 27.3790i − 1.21595i
\(508\) − 7.90383i − 0.350676i
\(509\) 21.5725 0.956183 0.478091 0.878310i \(-0.341329\pi\)
0.478091 + 0.878310i \(0.341329\pi\)
\(510\) 0 0
\(511\) −21.8996 −0.968782
\(512\) − 1.00000i − 0.0441942i
\(513\) − 2.80344i − 0.123775i
\(514\) 6.39312 0.281988
\(515\) 0 0
\(516\) −17.9572 −0.790520
\(517\) − 36.6577i − 1.61220i
\(518\) − 29.2614i − 1.28567i
\(519\) −42.8929 −1.88279
\(520\) 0 0
\(521\) 32.0790 1.40540 0.702702 0.711484i \(-0.251977\pi\)
0.702702 + 0.711484i \(0.251977\pi\)
\(522\) − 2.48929i − 0.108953i
\(523\) − 31.6247i − 1.38285i −0.722447 0.691426i \(-0.756983\pi\)
0.722447 0.691426i \(-0.243017\pi\)
\(524\) 3.10352 0.135578
\(525\) 0 0
\(526\) 27.4679 1.19766
\(527\) − 1.52962i − 0.0666311i
\(528\) − 7.48929i − 0.325929i
\(529\) −43.0147 −1.87020
\(530\) 0 0
\(531\) 5.88554 0.255411
\(532\) − 8.97858i − 0.389271i
\(533\) 9.89962i 0.428800i
\(534\) −7.78202 −0.336761
\(535\) 0 0
\(536\) −5.12494 −0.221364
\(537\) 5.71462i 0.246604i
\(538\) 9.59281i 0.413575i
\(539\) −24.5682 −1.05823
\(540\) 0 0
\(541\) −21.9368 −0.943137 −0.471568 0.881829i \(-0.656312\pi\)
−0.471568 + 0.881829i \(0.656312\pi\)
\(542\) 29.9614i 1.28695i
\(543\) − 9.42923i − 0.404647i
\(544\) −0.803442 −0.0344473
\(545\) 0 0
\(546\) 10.2927 0.440488
\(547\) 13.6901i 0.585345i 0.956213 + 0.292672i \(0.0945445\pi\)
−0.956213 + 0.292672i \(0.905456\pi\)
\(548\) − 19.2541i − 0.822494i
\(549\) −26.6718 −1.13832
\(550\) 0 0
\(551\) −2.34292 −0.0998119
\(552\) − 19.0361i − 0.810231i
\(553\) 57.2369i 2.43396i
\(554\) −15.7894 −0.670826
\(555\) 0 0
\(556\) 6.43910 0.273079
\(557\) 1.66442i 0.0705239i 0.999378 + 0.0352619i \(0.0112266\pi\)
−0.999378 + 0.0352619i \(0.988773\pi\)
\(558\) 4.73917i 0.200625i
\(559\) −8.78623 −0.371618
\(560\) 0 0
\(561\) −6.01721 −0.254047
\(562\) − 12.1390i − 0.512054i
\(563\) 21.5725i 0.909171i 0.890703 + 0.454585i \(0.150213\pi\)
−0.890703 + 0.454585i \(0.849787\pi\)
\(564\) 26.8683 1.13136
\(565\) 0 0
\(566\) 4.17513 0.175494
\(567\) − 39.3618i − 1.65304i
\(568\) 8.12494i 0.340915i
\(569\) −7.88240 −0.330448 −0.165224 0.986256i \(-0.552835\pi\)
−0.165224 + 0.986256i \(0.552835\pi\)
\(570\) 0 0
\(571\) −29.0796 −1.21694 −0.608471 0.793576i \(-0.708217\pi\)
−0.608471 + 0.793576i \(0.708217\pi\)
\(572\) − 3.66442i − 0.153217i
\(573\) 13.0460i 0.545004i
\(574\) 33.0937 1.38130
\(575\) 0 0
\(576\) 2.48929 0.103720
\(577\) 38.5155i 1.60342i 0.597711 + 0.801711i \(0.296077\pi\)
−0.597711 + 0.801711i \(0.703923\pi\)
\(578\) − 16.3545i − 0.680257i
\(579\) −32.1323 −1.33537
\(580\) 0 0
\(581\) 11.8652 0.492251
\(582\) 27.0361i 1.12068i
\(583\) − 1.79296i − 0.0742568i
\(584\) −5.71462 −0.236472
\(585\) 0 0
\(586\) −9.09931 −0.375889
\(587\) 15.6184i 0.644642i 0.946630 + 0.322321i \(0.104463\pi\)
−0.946630 + 0.322321i \(0.895537\pi\)
\(588\) − 18.0073i − 0.742610i
\(589\) 4.46052 0.183792
\(590\) 0 0
\(591\) −59.5787 −2.45074
\(592\) − 7.63565i − 0.313823i
\(593\) − 1.72869i − 0.0709889i −0.999370 0.0354944i \(-0.988699\pi\)
0.999370 0.0354944i \(-0.0113006\pi\)
\(594\) −3.82487 −0.156936
\(595\) 0 0
\(596\) 2.00000 0.0819232
\(597\) 35.3864i 1.44827i
\(598\) − 9.31415i − 0.380884i
\(599\) −20.0189 −0.817950 −0.408975 0.912546i \(-0.634114\pi\)
−0.408975 + 0.912546i \(0.634114\pi\)
\(600\) 0 0
\(601\) 11.6388 0.474756 0.237378 0.971417i \(-0.423712\pi\)
0.237378 + 0.971417i \(0.423712\pi\)
\(602\) 29.3717i 1.19710i
\(603\) − 12.7575i − 0.519524i
\(604\) 10.8536 0.441628
\(605\) 0 0
\(606\) −13.2039 −0.536372
\(607\) 36.4036i 1.47758i 0.673938 + 0.738788i \(0.264602\pi\)
−0.673938 + 0.738788i \(0.735398\pi\)
\(608\) − 2.34292i − 0.0950181i
\(609\) −8.97858 −0.363830
\(610\) 0 0
\(611\) 13.1464 0.531845
\(612\) − 2.00000i − 0.0808452i
\(613\) − 33.4292i − 1.35019i −0.737729 0.675097i \(-0.764102\pi\)
0.737729 0.675097i \(-0.235898\pi\)
\(614\) 33.3116 1.34435
\(615\) 0 0
\(616\) −12.2499 −0.493562
\(617\) 16.2400i 0.653799i 0.945059 + 0.326899i \(0.106004\pi\)
−0.945059 + 0.326899i \(0.893996\pi\)
\(618\) − 41.2285i − 1.65845i
\(619\) −30.1004 −1.20984 −0.604918 0.796288i \(-0.706794\pi\)
−0.604918 + 0.796288i \(0.706794\pi\)
\(620\) 0 0
\(621\) −9.72196 −0.390129
\(622\) − 19.7648i − 0.792497i
\(623\) 12.7287i 0.509964i
\(624\) 2.68585 0.107520
\(625\) 0 0
\(626\) −19.1898 −0.766980
\(627\) − 17.5468i − 0.700753i
\(628\) 7.69319i 0.306992i
\(629\) −6.13481 −0.244611
\(630\) 0 0
\(631\) 31.1793 1.24123 0.620615 0.784115i \(-0.286883\pi\)
0.620615 + 0.784115i \(0.286883\pi\)
\(632\) 14.9357i 0.594111i
\(633\) − 46.3822i − 1.84353i
\(634\) −30.7722 −1.22212
\(635\) 0 0
\(636\) 1.31415 0.0521096
\(637\) − 8.81079i − 0.349096i
\(638\) 3.19656i 0.126553i
\(639\) −20.2253 −0.800102
\(640\) 0 0
\(641\) 5.29587 0.209174 0.104587 0.994516i \(-0.466648\pi\)
0.104587 + 0.994516i \(0.466648\pi\)
\(642\) − 3.65708i − 0.144333i
\(643\) − 28.1867i − 1.11157i −0.831325 0.555787i \(-0.812417\pi\)
0.831325 0.555787i \(-0.187583\pi\)
\(644\) −31.1365 −1.22695
\(645\) 0 0
\(646\) −1.88240 −0.0740622
\(647\) − 15.6497i − 0.615254i −0.951507 0.307627i \(-0.900465\pi\)
0.951507 0.307627i \(-0.0995350\pi\)
\(648\) − 10.2713i − 0.403495i
\(649\) −7.55777 −0.296668
\(650\) 0 0
\(651\) 17.0937 0.669953
\(652\) − 1.61423i − 0.0632182i
\(653\) − 24.1292i − 0.944247i −0.881532 0.472123i \(-0.843488\pi\)
0.881532 0.472123i \(-0.156512\pi\)
\(654\) 26.9357 1.05327
\(655\) 0 0
\(656\) 8.63565 0.337166
\(657\) − 14.2253i − 0.554983i
\(658\) − 43.9473i − 1.71324i
\(659\) −28.1898 −1.09812 −0.549060 0.835783i \(-0.685014\pi\)
−0.549060 + 0.835783i \(0.685014\pi\)
\(660\) 0 0
\(661\) −16.1678 −0.628854 −0.314427 0.949282i \(-0.601812\pi\)
−0.314427 + 0.949282i \(0.601812\pi\)
\(662\) 31.5714i 1.22706i
\(663\) − 2.15792i − 0.0838068i
\(664\) 3.09617 0.120155
\(665\) 0 0
\(666\) 19.0073 0.736520
\(667\) 8.12494i 0.314599i
\(668\) 13.7220i 0.530919i
\(669\) −12.5855 −0.486582
\(670\) 0 0
\(671\) 34.2499 1.32220
\(672\) − 8.97858i − 0.346356i
\(673\) 13.7690i 0.530757i 0.964144 + 0.265378i \(0.0854969\pi\)
−0.964144 + 0.265378i \(0.914503\pi\)
\(674\) −15.1966 −0.585350
\(675\) 0 0
\(676\) −11.6858 −0.449456
\(677\) − 14.4710i − 0.556166i −0.960557 0.278083i \(-0.910301\pi\)
0.960557 0.278083i \(-0.0896990\pi\)
\(678\) 12.5682i 0.482681i
\(679\) 44.2217 1.69707
\(680\) 0 0
\(681\) 66.3551 2.54273
\(682\) − 6.08569i − 0.233033i
\(683\) − 19.0533i − 0.729055i −0.931193 0.364528i \(-0.881230\pi\)
0.931193 0.364528i \(-0.118770\pi\)
\(684\) 5.83221 0.223000
\(685\) 0 0
\(686\) −2.62831 −0.100349
\(687\) 23.4637i 0.895194i
\(688\) 7.66442i 0.292203i
\(689\) 0.643000 0.0244964
\(690\) 0 0
\(691\) 41.7679 1.58893 0.794464 0.607312i \(-0.207752\pi\)
0.794464 + 0.607312i \(0.207752\pi\)
\(692\) 18.3074i 0.695944i
\(693\) − 30.4935i − 1.15835i
\(694\) 17.0246 0.646243
\(695\) 0 0
\(696\) −2.34292 −0.0888083
\(697\) − 6.93825i − 0.262805i
\(698\) − 7.20390i − 0.272672i
\(699\) 54.6478 2.06697
\(700\) 0 0
\(701\) −0.149501 −0.00564658 −0.00282329 0.999996i \(-0.500899\pi\)
−0.00282329 + 0.999996i \(0.500899\pi\)
\(702\) − 1.37169i − 0.0517712i
\(703\) − 17.8898i − 0.674725i
\(704\) −3.19656 −0.120475
\(705\) 0 0
\(706\) 24.3116 0.914980
\(707\) 21.5970i 0.812240i
\(708\) − 5.53948i − 0.208186i
\(709\) 11.5725 0.434613 0.217306 0.976103i \(-0.430273\pi\)
0.217306 + 0.976103i \(0.430273\pi\)
\(710\) 0 0
\(711\) −37.1793 −1.39433
\(712\) 3.32150i 0.124478i
\(713\) − 15.4685i − 0.579299i
\(714\) −7.21377 −0.269969
\(715\) 0 0
\(716\) 2.43910 0.0911533
\(717\) − 51.3435i − 1.91746i
\(718\) 33.2902i 1.24238i
\(719\) −2.93933 −0.109618 −0.0548092 0.998497i \(-0.517455\pi\)
−0.0548092 + 0.998497i \(0.517455\pi\)
\(720\) 0 0
\(721\) −67.4355 −2.51143
\(722\) 13.5107i 0.502817i
\(723\) − 22.1422i − 0.823476i
\(724\) −4.02456 −0.149572
\(725\) 0 0
\(726\) 1.83221 0.0679998
\(727\) − 29.3435i − 1.08829i −0.838991 0.544146i \(-0.816854\pi\)
0.838991 0.544146i \(-0.183146\pi\)
\(728\) − 4.39312i − 0.162820i
\(729\) 17.1579 0.635479
\(730\) 0 0
\(731\) 6.15792 0.227759
\(732\) 25.1035i 0.927853i
\(733\) − 28.2927i − 1.04502i −0.852634 0.522508i \(-0.824997\pi\)
0.852634 0.522508i \(-0.175003\pi\)
\(734\) −18.9315 −0.698775
\(735\) 0 0
\(736\) −8.12494 −0.299489
\(737\) 16.3822i 0.603445i
\(738\) 21.4966i 0.791302i
\(739\) −15.6069 −0.574109 −0.287054 0.957914i \(-0.592676\pi\)
−0.287054 + 0.957914i \(0.592676\pi\)
\(740\) 0 0
\(741\) 6.29273 0.231169
\(742\) − 2.14950i − 0.0789107i
\(743\) − 42.9013i − 1.57390i −0.617019 0.786948i \(-0.711660\pi\)
0.617019 0.786948i \(-0.288340\pi\)
\(744\) 4.46052 0.163531
\(745\) 0 0
\(746\) 11.8996 0.435676
\(747\) 7.70727i 0.281994i
\(748\) 2.56825i 0.0939045i
\(749\) −5.98171 −0.218567
\(750\) 0 0
\(751\) −41.0403 −1.49758 −0.748791 0.662806i \(-0.769366\pi\)
−0.748791 + 0.662806i \(0.769366\pi\)
\(752\) − 11.4679i − 0.418190i
\(753\) 62.9908i 2.29551i
\(754\) −1.14637 −0.0417482
\(755\) 0 0
\(756\) −4.58546 −0.166772
\(757\) − 35.9227i − 1.30563i −0.757516 0.652817i \(-0.773587\pi\)
0.757516 0.652817i \(-0.226413\pi\)
\(758\) − 20.4005i − 0.740978i
\(759\) −60.8500 −2.20872
\(760\) 0 0
\(761\) 3.77154 0.136718 0.0683591 0.997661i \(-0.478224\pi\)
0.0683591 + 0.997661i \(0.478224\pi\)
\(762\) − 18.5181i − 0.670838i
\(763\) − 44.0575i − 1.59499i
\(764\) 5.56825 0.201452
\(765\) 0 0
\(766\) 36.8929 1.33299
\(767\) − 2.71040i − 0.0978670i
\(768\) − 2.34292i − 0.0845430i
\(769\) −15.7062 −0.566380 −0.283190 0.959064i \(-0.591393\pi\)
−0.283190 + 0.959064i \(0.591393\pi\)
\(770\) 0 0
\(771\) 14.9786 0.539440
\(772\) 13.7146i 0.493600i
\(773\) − 3.13588i − 0.112790i −0.998409 0.0563949i \(-0.982039\pi\)
0.998409 0.0563949i \(-0.0179606\pi\)
\(774\) −19.0790 −0.685779
\(775\) 0 0
\(776\) 11.5395 0.414243
\(777\) − 68.5573i − 2.45948i
\(778\) − 22.7146i − 0.814358i
\(779\) 20.2327 0.724911
\(780\) 0 0
\(781\) 25.9718 0.929346
\(782\) 6.52792i 0.233438i
\(783\) 1.19656i 0.0427615i
\(784\) −7.68585 −0.274495
\(785\) 0 0
\(786\) 7.27131 0.259359
\(787\) 25.3858i 0.904905i 0.891789 + 0.452452i \(0.149451\pi\)
−0.891789 + 0.452452i \(0.850549\pi\)
\(788\) 25.4292i 0.905879i
\(789\) 64.3551 2.29110
\(790\) 0 0
\(791\) 20.5573 0.730934
\(792\) − 7.95715i − 0.282745i
\(793\) 12.2829i 0.436177i
\(794\) 33.5113 1.18927
\(795\) 0 0
\(796\) 15.1035 0.535330
\(797\) 0.593884i 0.0210364i 0.999945 + 0.0105182i \(0.00334811\pi\)
−0.999945 + 0.0105182i \(0.996652\pi\)
\(798\) − 21.0361i − 0.744670i
\(799\) −9.21377 −0.325960
\(800\) 0 0
\(801\) −8.26817 −0.292142
\(802\) 17.0147i 0.600810i
\(803\) 18.2671i 0.644632i
\(804\) −12.0073 −0.423466
\(805\) 0 0
\(806\) 2.18248 0.0768746
\(807\) 22.4752i 0.791165i
\(808\) 5.63565i 0.198262i
\(809\) 35.2776 1.24029 0.620147 0.784486i \(-0.287073\pi\)
0.620147 + 0.784486i \(0.287073\pi\)
\(810\) 0 0
\(811\) −13.1568 −0.461999 −0.231000 0.972954i \(-0.574200\pi\)
−0.231000 + 0.972954i \(0.574200\pi\)
\(812\) 3.83221i 0.134484i
\(813\) 70.1972i 2.46192i
\(814\) −24.4078 −0.855493
\(815\) 0 0
\(816\) −1.88240 −0.0658973
\(817\) 17.9572i 0.628241i
\(818\) − 21.3461i − 0.746347i
\(819\) 10.9357 0.382125
\(820\) 0 0
\(821\) −48.2400 −1.68359 −0.841794 0.539799i \(-0.818500\pi\)
−0.841794 + 0.539799i \(0.818500\pi\)
\(822\) − 45.1109i − 1.57342i
\(823\) − 32.7581i − 1.14187i −0.820994 0.570937i \(-0.806580\pi\)
0.820994 0.570937i \(-0.193420\pi\)
\(824\) −17.5970 −0.613021
\(825\) 0 0
\(826\) −9.06067 −0.315261
\(827\) − 35.9118i − 1.24878i −0.781115 0.624388i \(-0.785349\pi\)
0.781115 0.624388i \(-0.214651\pi\)
\(828\) − 20.2253i − 0.702879i
\(829\) −23.0361 −0.800077 −0.400039 0.916498i \(-0.631003\pi\)
−0.400039 + 0.916498i \(0.631003\pi\)
\(830\) 0 0
\(831\) −36.9933 −1.28328
\(832\) − 1.14637i − 0.0397431i
\(833\) 6.17513i 0.213956i
\(834\) 15.0863 0.522396
\(835\) 0 0
\(836\) −7.48929 −0.259022
\(837\) − 2.27804i − 0.0787405i
\(838\) 3.81079i 0.131642i
\(839\) 11.8757 0.409994 0.204997 0.978763i \(-0.434282\pi\)
0.204997 + 0.978763i \(0.434282\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 23.9859i 0.826610i
\(843\) − 28.4408i − 0.979553i
\(844\) −19.7967 −0.681431
\(845\) 0 0
\(846\) 28.5468 0.981460
\(847\) − 2.99686i − 0.102973i
\(848\) − 0.560904i − 0.0192615i
\(849\) 9.78202 0.335718
\(850\) 0 0
\(851\) −62.0393 −2.12668
\(852\) 19.0361i 0.652167i
\(853\) 50.6493i 1.73420i 0.498136 + 0.867099i \(0.334018\pi\)
−0.498136 + 0.867099i \(0.665982\pi\)
\(854\) 41.0607 1.40507
\(855\) 0 0
\(856\) −1.56090 −0.0533506
\(857\) 11.1453i 0.380716i 0.981715 + 0.190358i \(0.0609649\pi\)
−0.981715 + 0.190358i \(0.939035\pi\)
\(858\) − 8.58546i − 0.293103i
\(859\) 0.352789 0.0120370 0.00601850 0.999982i \(-0.498084\pi\)
0.00601850 + 0.999982i \(0.498084\pi\)
\(860\) 0 0
\(861\) 77.5359 2.64242
\(862\) − 7.00314i − 0.238528i
\(863\) − 5.06067i − 0.172267i −0.996284 0.0861337i \(-0.972549\pi\)
0.996284 0.0861337i \(-0.0274512\pi\)
\(864\) −1.19656 −0.0407077
\(865\) 0 0
\(866\) 23.3790 0.794452
\(867\) − 38.3173i − 1.30132i
\(868\) − 7.29587i − 0.247638i
\(869\) 47.7429 1.61957
\(870\) 0 0
\(871\) −5.87506 −0.199069
\(872\) − 11.4966i − 0.389325i
\(873\) 28.7251i 0.972197i
\(874\) −19.0361 −0.643906
\(875\) 0 0
\(876\) −13.3889 −0.452369
\(877\) 41.8370i 1.41274i 0.707845 + 0.706368i \(0.249668\pi\)
−0.707845 + 0.706368i \(0.750332\pi\)
\(878\) 13.7073i 0.462598i
\(879\) −21.3190 −0.719071
\(880\) 0 0
\(881\) 2.10666 0.0709750 0.0354875 0.999370i \(-0.488702\pi\)
0.0354875 + 0.999370i \(0.488702\pi\)
\(882\) − 19.1323i − 0.644218i
\(883\) − 13.8389i − 0.465717i −0.972511 0.232859i \(-0.925192\pi\)
0.972511 0.232859i \(-0.0748080\pi\)
\(884\) −0.921039 −0.0309779
\(885\) 0 0
\(886\) 9.25410 0.310897
\(887\) 37.7795i 1.26851i 0.773123 + 0.634256i \(0.218693\pi\)
−0.773123 + 0.634256i \(0.781307\pi\)
\(888\) − 17.8898i − 0.600341i
\(889\) −30.2891 −1.01587
\(890\) 0 0
\(891\) −32.8328 −1.09994
\(892\) 5.37169i 0.179858i
\(893\) − 26.8683i − 0.899114i
\(894\) 4.68585 0.156718
\(895\) 0 0
\(896\) −3.83221 −0.128025
\(897\) − 21.8223i − 0.728627i
\(898\) 25.8971i 0.864197i
\(899\) −1.90383 −0.0634962
\(900\) 0 0
\(901\) −0.450654 −0.0150135
\(902\) − 27.6044i − 0.919125i
\(903\) 68.8156i 2.29004i
\(904\) 5.36435 0.178415
\(905\) 0 0
\(906\) 25.4292 0.844830
\(907\) − 20.8683i − 0.692921i −0.938064 0.346461i \(-0.887383\pi\)
0.938064 0.346461i \(-0.112617\pi\)
\(908\) − 28.3215i − 0.939882i
\(909\) −14.0288 −0.465305
\(910\) 0 0
\(911\) 30.5468 1.01206 0.506031 0.862515i \(-0.331112\pi\)
0.506031 + 0.862515i \(0.331112\pi\)
\(912\) − 5.48929i − 0.181769i
\(913\) − 9.89710i − 0.327546i
\(914\) −26.5829 −0.879286
\(915\) 0 0
\(916\) 10.0147 0.330895
\(917\) − 11.8933i − 0.392753i
\(918\) 0.961365i 0.0317298i
\(919\) −33.8898 −1.11792 −0.558960 0.829195i \(-0.688799\pi\)
−0.558960 + 0.829195i \(0.688799\pi\)
\(920\) 0 0
\(921\) 78.0466 2.57172
\(922\) − 0.527923i − 0.0173862i
\(923\) 9.31415i 0.306579i
\(924\) −28.7005 −0.944178
\(925\) 0 0
\(926\) 38.0575 1.25065
\(927\) − 43.8041i − 1.43871i
\(928\) 1.00000i 0.0328266i
\(929\) −44.5040 −1.46013 −0.730064 0.683379i \(-0.760510\pi\)
−0.730064 + 0.683379i \(0.760510\pi\)
\(930\) 0 0
\(931\) −18.0073 −0.590167
\(932\) − 23.3246i − 0.764024i
\(933\) − 46.3074i − 1.51604i
\(934\) −10.5181 −0.344161
\(935\) 0 0
\(936\) 2.85363 0.0932740
\(937\) − 36.1793i − 1.18193i −0.806698 0.590964i \(-0.798748\pi\)
0.806698 0.590964i \(-0.201252\pi\)
\(938\) 19.6399i 0.641264i
\(939\) −44.9603 −1.46722
\(940\) 0 0
\(941\) 11.1464 0.363361 0.181681 0.983358i \(-0.441846\pi\)
0.181681 + 0.983358i \(0.441846\pi\)
\(942\) 18.0246i 0.587272i
\(943\) − 70.1642i − 2.28486i
\(944\) −2.36435 −0.0769529
\(945\) 0 0
\(946\) 24.4998 0.796556
\(947\) 38.8255i 1.26166i 0.775922 + 0.630829i \(0.217285\pi\)
−0.775922 + 0.630829i \(0.782715\pi\)
\(948\) 34.9933i 1.13653i
\(949\) −6.55104 −0.212656
\(950\) 0 0
\(951\) −72.0968 −2.33790
\(952\) 3.07896i 0.0997897i
\(953\) 9.83329i 0.318531i 0.987236 + 0.159266i \(0.0509127\pi\)
−0.987236 + 0.159266i \(0.949087\pi\)
\(954\) 1.39625 0.0452053
\(955\) 0 0
\(956\) −21.9143 −0.708759
\(957\) 7.48929i 0.242094i
\(958\) 5.54935i 0.179291i
\(959\) −73.7858 −2.38267
\(960\) 0 0
\(961\) −27.3754 −0.883079
\(962\) − 8.75325i − 0.282216i
\(963\) − 3.88554i − 0.125210i
\(964\) −9.45065 −0.304385
\(965\) 0 0
\(966\) −72.9504 −2.34714
\(967\) 44.8500i 1.44228i 0.692789 + 0.721140i \(0.256382\pi\)
−0.692789 + 0.721140i \(0.743618\pi\)
\(968\) − 0.782020i − 0.0251351i
\(969\) −4.41033 −0.141680
\(970\) 0 0
\(971\) 48.4496 1.55482 0.777410 0.628994i \(-0.216533\pi\)
0.777410 + 0.628994i \(0.216533\pi\)
\(972\) − 20.4752i − 0.656743i
\(973\) − 24.6760i − 0.791076i
\(974\) −26.6858 −0.855070
\(975\) 0 0
\(976\) 10.7146 0.342966
\(977\) 33.2155i 1.06266i 0.847166 + 0.531328i \(0.178307\pi\)
−0.847166 + 0.531328i \(0.821693\pi\)
\(978\) − 3.78202i − 0.120936i
\(979\) 10.6174 0.339333
\(980\) 0 0
\(981\) 28.6184 0.913717
\(982\) − 24.0575i − 0.767707i
\(983\) − 26.2457i − 0.837107i −0.908192 0.418554i \(-0.862537\pi\)
0.908192 0.418554i \(-0.137463\pi\)
\(984\) 20.2327 0.644994
\(985\) 0 0
\(986\) 0.803442 0.0255868
\(987\) − 102.965i − 3.27742i
\(988\) − 2.68585i − 0.0854481i
\(989\) 62.2730 1.98017
\(990\) 0 0
\(991\) −40.5145 −1.28698 −0.643492 0.765453i \(-0.722515\pi\)
−0.643492 + 0.765453i \(0.722515\pi\)
\(992\) − 1.90383i − 0.0604466i
\(993\) 73.9693i 2.34735i
\(994\) 31.1365 0.987590
\(995\) 0 0
\(996\) 7.25410 0.229855
\(997\) − 14.6227i − 0.463104i −0.972823 0.231552i \(-0.925620\pi\)
0.972823 0.231552i \(-0.0743804\pi\)
\(998\) 3.87085i 0.122530i
\(999\) −9.13650 −0.289066
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1450.2.b.k.349.1 6
5.2 odd 4 1450.2.a.s.1.1 yes 3
5.3 odd 4 1450.2.a.q.1.3 3
5.4 even 2 inner 1450.2.b.k.349.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1450.2.a.q.1.3 3 5.3 odd 4
1450.2.a.s.1.1 yes 3 5.2 odd 4
1450.2.b.k.349.1 6 1.1 even 1 trivial
1450.2.b.k.349.6 6 5.4 even 2 inner