Defining parameters
Level: | \( N \) | \(=\) | \( 145 = 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 145.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(145))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 28 | 20 |
Cusp forms | 44 | 28 | 16 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(29\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(8\) |
\(+\) | \(-\) | \(-\) | \(6\) |
\(-\) | \(+\) | \(-\) | \(6\) |
\(-\) | \(-\) | \(+\) | \(8\) |
Plus space | \(+\) | \(16\) | |
Minus space | \(-\) | \(12\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(145))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | 29 | |||||||
145.4.a.a | $1$ | $8.555$ | \(\Q\) | None | \(1\) | \(-8\) | \(-5\) | \(-14\) | $+$ | $+$ | \(q+q^{2}-8q^{3}-7q^{4}-5q^{5}-8q^{6}+\cdots\) | |
145.4.a.b | $6$ | $8.555$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-7\) | \(-13\) | \(30\) | \(-79\) | $-$ | $+$ | \(q+(-1-\beta _{1})q^{2}+(-2+\beta _{1}+\beta _{4})q^{3}+\cdots\) | |
145.4.a.c | $6$ | $8.555$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-1\) | \(-1\) | \(-30\) | \(3\) | $+$ | $-$ | \(q-\beta _{1}q^{2}+(-\beta _{3}-\beta _{4})q^{3}+(4+2\beta _{1}+\cdots)q^{4}+\cdots\) | |
145.4.a.d | $7$ | $8.555$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(6\) | \(1\) | \(-35\) | \(17\) | $+$ | $+$ | \(q+(1-\beta _{4})q^{2}-\beta _{3}q^{3}+(8-\beta _{4}-\beta _{5}+\cdots)q^{4}+\cdots\) | |
145.4.a.e | $8$ | $8.555$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(5\) | \(17\) | \(40\) | \(33\) | $-$ | $-$ | \(q+(1-\beta _{1})q^{2}+(2-\beta _{3})q^{3}+(5+\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(145))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(145)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 2}\)