Properties

Label 145.2.c
Level $145$
Weight $2$
Character orbit 145.c
Rep. character $\chi_{145}(86,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $2$
Sturm bound $30$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 145.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(30\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(145, [\chi])\).

Total New Old
Modular forms 18 10 8
Cusp forms 14 10 4
Eisenstein series 4 0 4

Trace form

\( 10 q - 6 q^{4} + 2 q^{5} - 16 q^{6} - 4 q^{7} - 10 q^{9} + 4 q^{13} + 22 q^{16} - 6 q^{20} + 16 q^{22} - 20 q^{23} + 48 q^{24} + 10 q^{25} - 44 q^{28} - 6 q^{29} - 8 q^{30} + 16 q^{33} - 4 q^{34} + 4 q^{35}+ \cdots - 24 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(145, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
145.2.c.a 145.c 29.b $4$ $1.158$ \(\Q(\sqrt{-2}, \sqrt{3})\) None 145.2.c.a \(0\) \(0\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{3})q^{3}+\beta _{2}q^{4}-q^{5}+\cdots\)
145.2.c.b 145.c 29.b $6$ $1.158$ 6.0.16516096.1 None 145.2.c.b \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{5})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(145, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(145, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 2}\)