Defining parameters
Level: | \( N \) | \(=\) | \( 145 = 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 145.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(30\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(145, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 18 | 10 | 8 |
Cusp forms | 14 | 10 | 4 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(145, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
145.2.c.a | $4$ | $1.158$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | None | \(0\) | \(0\) | \(-4\) | \(-4\) | \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{3})q^{3}+\beta _{2}q^{4}-q^{5}+\cdots\) |
145.2.c.b | $6$ | $1.158$ | 6.0.16516096.1 | None | \(0\) | \(0\) | \(6\) | \(0\) | \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{5})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(145, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(145, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 2}\)