Properties

Label 145.2.b.c.59.5
Level $145$
Weight $2$
Character 145.59
Analytic conductor $1.158$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [145,2,Mod(59,145)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("145.59"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(145, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 145.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.15783082931\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.84345856.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 13x^{4} + 41x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.5
Root \(2.30229i\) of defining polynomial
Character \(\chi\) \(=\) 145.59
Dual form 145.2.b.c.59.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.30229i q^{2} -2.89028i q^{3} -3.30056 q^{4} +(2.17686 - 0.511167i) q^{5} +6.65427 q^{6} -3.91261i q^{7} -2.99427i q^{8} -5.35371 q^{9} +(1.17686 + 5.01177i) q^{10} +2.65427 q^{11} +9.53954i q^{12} +5.62692i q^{13} +9.00799 q^{14} +(-1.47742 - 6.29173i) q^{15} +0.292570 q^{16} +1.86794i q^{17} -12.3258i q^{18} -1.69944 q^{19} +(-7.18485 + 1.68714i) q^{20} -11.3085 q^{21} +6.11092i q^{22} +0.691975i q^{23} -8.65427 q^{24} +(4.47742 - 2.22548i) q^{25} -12.9548 q^{26} +6.80289i q^{27} +12.9138i q^{28} +1.00000 q^{29} +(14.4854 - 3.40145i) q^{30} -0.654273 q^{31} -5.31495i q^{32} -7.67159i q^{33} -4.30056 q^{34} +(-2.00000 - 8.51720i) q^{35} +17.6703 q^{36} +3.91261i q^{37} -3.91261i q^{38} +16.2634 q^{39} +(-1.53057 - 6.51810i) q^{40} -26.0356i q^{42} +10.7155i q^{43} -8.76059 q^{44} +(-11.6543 + 2.73664i) q^{45} -1.59313 q^{46} +4.93495i q^{47} -0.845610i q^{48} -8.30855 q^{49} +(5.12370 + 10.3083i) q^{50} +5.39888 q^{51} -18.5720i q^{52} -7.67159i q^{53} -15.6623 q^{54} +(5.77797 - 1.35678i) q^{55} -11.7154 q^{56} +4.91186i q^{57} +2.30229i q^{58} -10.0000 q^{59} +(4.87630 + 20.7662i) q^{60} -4.70743 q^{61} -1.50633i q^{62} +20.9470i q^{63} +12.8217 q^{64} +(2.87630 + 12.2490i) q^{65} +17.6623 q^{66} -6.47253i q^{67} -6.16526i q^{68} +2.00000 q^{69} +(19.6091 - 4.60459i) q^{70} +2.00000 q^{71} +16.0305i q^{72} +10.5619i q^{73} -9.00799 q^{74} +(-6.43225 - 12.9410i) q^{75} +5.60911 q^{76} -10.3851i q^{77} +37.4431i q^{78} +2.05316 q^{79} +(0.636884 - 0.149552i) q^{80} +3.60112 q^{81} -1.86794i q^{83} +37.3245 q^{84} +(0.954832 + 4.06625i) q^{85} -24.6703 q^{86} -2.89028i q^{87} -7.94761i q^{88} -3.30855 q^{89} +(-6.30056 - 26.8316i) q^{90} +22.0160 q^{91} -2.28390i q^{92} +1.89103i q^{93} -11.3617 q^{94} +(-3.69944 + 0.868699i) q^{95} -15.3617 q^{96} +0.384703i q^{97} -19.1287i q^{98} -14.2102 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{4} + 3 q^{5} + 14 q^{6} - 12 q^{9} - 3 q^{10} - 10 q^{11} + 8 q^{14} + 7 q^{15} + 42 q^{16} - 16 q^{19} + 13 q^{20} - 16 q^{21} - 26 q^{24} + 11 q^{25} - 46 q^{26} + 6 q^{29} + 25 q^{30} + 22 q^{31}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/145\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(117\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.30229i 1.62797i 0.580887 + 0.813984i \(0.302706\pi\)
−0.580887 + 0.813984i \(0.697294\pi\)
\(3\) 2.89028i 1.66870i −0.551232 0.834352i \(-0.685842\pi\)
0.551232 0.834352i \(-0.314158\pi\)
\(4\) −3.30056 −1.65028
\(5\) 2.17686 0.511167i 0.973520 0.228601i
\(6\) 6.65427 2.71660
\(7\) 3.91261i 1.47883i −0.673250 0.739415i \(-0.735102\pi\)
0.673250 0.739415i \(-0.264898\pi\)
\(8\) 2.99427i 1.05863i
\(9\) −5.35371 −1.78457
\(10\) 1.17686 + 5.01177i 0.372155 + 1.58486i
\(11\) 2.65427 0.800294 0.400147 0.916451i \(-0.368959\pi\)
0.400147 + 0.916451i \(0.368959\pi\)
\(12\) 9.53954i 2.75383i
\(13\) 5.62692i 1.56063i 0.625388 + 0.780314i \(0.284941\pi\)
−0.625388 + 0.780314i \(0.715059\pi\)
\(14\) 9.00799 2.40749
\(15\) −1.47742 6.29173i −0.381467 1.62452i
\(16\) 0.292570 0.0731426
\(17\) 1.86794i 0.453043i 0.974006 + 0.226522i \(0.0727354\pi\)
−0.974006 + 0.226522i \(0.927265\pi\)
\(18\) 12.3258i 2.90523i
\(19\) −1.69944 −0.389879 −0.194939 0.980815i \(-0.562451\pi\)
−0.194939 + 0.980815i \(0.562451\pi\)
\(20\) −7.18485 + 1.68714i −1.60658 + 0.377255i
\(21\) −11.3085 −2.46773
\(22\) 6.11092i 1.30285i
\(23\) 0.691975i 0.144287i 0.997394 + 0.0721433i \(0.0229839\pi\)
−0.997394 + 0.0721433i \(0.977016\pi\)
\(24\) −8.65427 −1.76655
\(25\) 4.47742 2.22548i 0.895483 0.445095i
\(26\) −12.9548 −2.54065
\(27\) 6.80289i 1.30922i
\(28\) 12.9138i 2.44048i
\(29\) 1.00000 0.185695
\(30\) 14.4854 3.40145i 2.64466 0.621016i
\(31\) −0.654273 −0.117511 −0.0587555 0.998272i \(-0.518713\pi\)
−0.0587555 + 0.998272i \(0.518713\pi\)
\(32\) 5.31495i 0.939560i
\(33\) 7.67159i 1.33545i
\(34\) −4.30056 −0.737540
\(35\) −2.00000 8.51720i −0.338062 1.43967i
\(36\) 17.6703 2.94504
\(37\) 3.91261i 0.643230i 0.946871 + 0.321615i \(0.104226\pi\)
−0.946871 + 0.321615i \(0.895774\pi\)
\(38\) 3.91261i 0.634710i
\(39\) 16.2634 2.60422
\(40\) −1.53057 6.51810i −0.242005 1.03060i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 26.0356i 4.01738i
\(43\) 10.7155i 1.63410i 0.576567 + 0.817050i \(0.304392\pi\)
−0.576567 + 0.817050i \(0.695608\pi\)
\(44\) −8.76059 −1.32071
\(45\) −11.6543 + 2.73664i −1.73732 + 0.407955i
\(46\) −1.59313 −0.234894
\(47\) 4.93495i 0.719836i 0.932984 + 0.359918i \(0.117195\pi\)
−0.932984 + 0.359918i \(0.882805\pi\)
\(48\) 0.845610i 0.122053i
\(49\) −8.30855 −1.18694
\(50\) 5.12370 + 10.3083i 0.724601 + 1.45782i
\(51\) 5.39888 0.755995
\(52\) 18.5720i 2.57547i
\(53\) 7.67159i 1.05377i −0.849935 0.526887i \(-0.823359\pi\)
0.849935 0.526887i \(-0.176641\pi\)
\(54\) −15.6623 −2.13136
\(55\) 5.77797 1.35678i 0.779102 0.182948i
\(56\) −11.7154 −1.56554
\(57\) 4.91186i 0.650592i
\(58\) 2.30229i 0.302306i
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 4.87630 + 20.7662i 0.629527 + 2.68091i
\(61\) −4.70743 −0.602725 −0.301362 0.953510i \(-0.597441\pi\)
−0.301362 + 0.953510i \(0.597441\pi\)
\(62\) 1.50633i 0.191304i
\(63\) 20.9470i 2.63908i
\(64\) 12.8217 1.60272
\(65\) 2.87630 + 12.2490i 0.356761 + 1.51930i
\(66\) 17.6623 2.17407
\(67\) 6.47253i 0.790746i −0.918521 0.395373i \(-0.870615\pi\)
0.918521 0.395373i \(-0.129385\pi\)
\(68\) 6.16526i 0.747648i
\(69\) 2.00000 0.240772
\(70\) 19.6091 4.60459i 2.34374 0.550354i
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 16.0305i 1.88921i
\(73\) 10.5619i 1.23617i 0.786110 + 0.618087i \(0.212092\pi\)
−0.786110 + 0.618087i \(0.787908\pi\)
\(74\) −9.00799 −1.04716
\(75\) −6.43225 12.9410i −0.742732 1.49430i
\(76\) 5.60911 0.643409
\(77\) 10.3851i 1.18350i
\(78\) 37.4431i 4.23959i
\(79\) 2.05316 0.230998 0.115499 0.993308i \(-0.463153\pi\)
0.115499 + 0.993308i \(0.463153\pi\)
\(80\) 0.636884 0.149552i 0.0712058 0.0167205i
\(81\) 3.60112 0.400124
\(82\) 0 0
\(83\) 1.86794i 0.205034i −0.994731 0.102517i \(-0.967310\pi\)
0.994731 0.102517i \(-0.0326895\pi\)
\(84\) 37.3245 4.07244
\(85\) 0.954832 + 4.06625i 0.103566 + 0.441047i
\(86\) −24.6703 −2.66026
\(87\) 2.89028i 0.309870i
\(88\) 7.94761i 0.847218i
\(89\) −3.30855 −0.350705 −0.175353 0.984506i \(-0.556107\pi\)
−0.175353 + 0.984506i \(0.556107\pi\)
\(90\) −6.30056 26.8316i −0.664137 2.82830i
\(91\) 22.0160 2.30790
\(92\) 2.28390i 0.238113i
\(93\) 1.89103i 0.196091i
\(94\) −11.3617 −1.17187
\(95\) −3.69944 + 0.868699i −0.379555 + 0.0891266i
\(96\) −15.3617 −1.56785
\(97\) 0.384703i 0.0390607i 0.999809 + 0.0195303i \(0.00621710\pi\)
−0.999809 + 0.0195303i \(0.993783\pi\)
\(98\) 19.1287i 1.93229i
\(99\) −14.2102 −1.42818
\(100\) −14.7780 + 7.34532i −1.47780 + 0.734532i
\(101\) 11.9097 1.18506 0.592528 0.805550i \(-0.298130\pi\)
0.592528 + 0.805550i \(0.298130\pi\)
\(102\) 12.4298i 1.23074i
\(103\) 14.9585i 1.47390i −0.675946 0.736951i \(-0.736265\pi\)
0.675946 0.736951i \(-0.263735\pi\)
\(104\) 16.8485 1.65213
\(105\) −24.6171 + 5.78056i −2.40238 + 0.564125i
\(106\) 17.6623 1.71551
\(107\) 3.91261i 0.378247i 0.981953 + 0.189123i \(0.0605646\pi\)
−0.981953 + 0.189123i \(0.939435\pi\)
\(108\) 22.4533i 2.16057i
\(109\) 7.55595 0.723729 0.361864 0.932231i \(-0.382140\pi\)
0.361864 + 0.932231i \(0.382140\pi\)
\(110\) 3.12370 + 13.3026i 0.297833 + 1.26835i
\(111\) 11.3085 1.07336
\(112\) 1.14472i 0.108165i
\(113\) 18.6944i 1.75862i −0.476251 0.879309i \(-0.658005\pi\)
0.476251 0.879309i \(-0.341995\pi\)
\(114\) −11.3085 −1.05914
\(115\) 0.353715 + 1.50633i 0.0329841 + 0.140466i
\(116\) −3.30056 −0.306449
\(117\) 30.1249i 2.78505i
\(118\) 23.0229i 2.11943i
\(119\) 7.30855 0.669973
\(120\) −18.8391 + 4.42378i −1.71977 + 0.403834i
\(121\) −3.95483 −0.359530
\(122\) 10.8379i 0.981216i
\(123\) 0 0
\(124\) 2.15947 0.193926
\(125\) 8.60911 7.13325i 0.770022 0.638018i
\(126\) −48.2262 −4.29633
\(127\) 4.98929i 0.442728i −0.975191 0.221364i \(-0.928949\pi\)
0.975191 0.221364i \(-0.0710509\pi\)
\(128\) 18.8895i 1.66961i
\(129\) 30.9708 2.72683
\(130\) −28.2008 + 6.62209i −2.47338 + 0.580795i
\(131\) 19.7154 1.72254 0.861272 0.508144i \(-0.169668\pi\)
0.861272 + 0.508144i \(0.169668\pi\)
\(132\) 25.3205i 2.20387i
\(133\) 6.64926i 0.576564i
\(134\) 14.9017 1.28731
\(135\) 3.47742 + 14.8089i 0.299288 + 1.27455i
\(136\) 5.59313 0.479607
\(137\) 6.26455i 0.535217i 0.963528 + 0.267608i \(0.0862334\pi\)
−0.963528 + 0.267608i \(0.913767\pi\)
\(138\) 4.60459i 0.391969i
\(139\) −21.9097 −1.85835 −0.929177 0.369636i \(-0.879482\pi\)
−0.929177 + 0.369636i \(0.879482\pi\)
\(140\) 6.60112 + 28.1115i 0.557896 + 2.37586i
\(141\) 14.2634 1.20119
\(142\) 4.60459i 0.386408i
\(143\) 14.9354i 1.24896i
\(144\) −1.56634 −0.130528
\(145\) 2.17686 0.511167i 0.180778 0.0424501i
\(146\) −24.3165 −2.01245
\(147\) 24.0140i 1.98064i
\(148\) 12.9138i 1.06151i
\(149\) −4.24740 −0.347961 −0.173980 0.984749i \(-0.555663\pi\)
−0.173980 + 0.984749i \(0.555663\pi\)
\(150\) 29.7940 14.8089i 2.43267 1.20914i
\(151\) −11.3085 −0.920277 −0.460138 0.887847i \(-0.652200\pi\)
−0.460138 + 0.887847i \(0.652200\pi\)
\(152\) 5.08858i 0.412739i
\(153\) 10.0004i 0.808488i
\(154\) 23.9097 1.92670
\(155\) −1.42426 + 0.334443i −0.114399 + 0.0268631i
\(156\) −53.6782 −4.29770
\(157\) 4.12059i 0.328859i 0.986389 + 0.164430i \(0.0525783\pi\)
−0.986389 + 0.164430i \(0.947422\pi\)
\(158\) 4.72697i 0.376057i
\(159\) −22.1730 −1.75844
\(160\) −2.71683 11.5699i −0.214784 0.914681i
\(161\) 2.70743 0.213375
\(162\) 8.29083i 0.651389i
\(163\) 3.19755i 0.250452i 0.992128 + 0.125226i \(0.0399655\pi\)
−0.992128 + 0.125226i \(0.960034\pi\)
\(164\) 0 0
\(165\) −3.92147 16.7000i −0.305286 1.30009i
\(166\) 4.30056 0.333788
\(167\) 14.6050i 1.13017i −0.825032 0.565086i \(-0.808843\pi\)
0.825032 0.565086i \(-0.191157\pi\)
\(168\) 33.8608i 2.61242i
\(169\) −18.6623 −1.43556
\(170\) −9.36170 + 2.19830i −0.718010 + 0.168602i
\(171\) 9.09832 0.695766
\(172\) 35.3672i 2.69672i
\(173\) 9.00120i 0.684348i −0.939637 0.342174i \(-0.888837\pi\)
0.939637 0.342174i \(-0.111163\pi\)
\(174\) 6.65427 0.504459
\(175\) −8.70743 17.5184i −0.658220 1.32427i
\(176\) 0.776562 0.0585356
\(177\) 28.9028i 2.17247i
\(178\) 7.61725i 0.570937i
\(179\) 21.3085 1.59268 0.796338 0.604852i \(-0.206768\pi\)
0.796338 + 0.604852i \(0.206768\pi\)
\(180\) 38.4656 9.03245i 2.86706 0.673239i
\(181\) −16.9708 −1.26143 −0.630715 0.776014i \(-0.717238\pi\)
−0.630715 + 0.776014i \(0.717238\pi\)
\(182\) 50.6873i 3.75719i
\(183\) 13.6058i 1.00577i
\(184\) 2.07196 0.152747
\(185\) 2.00000 + 8.51720i 0.147043 + 0.626197i
\(186\) −4.35371 −0.319230
\(187\) 4.95804i 0.362568i
\(188\) 16.2881i 1.18793i
\(189\) 26.6171 1.93611
\(190\) −2.00000 8.51720i −0.145095 0.617903i
\(191\) −8.40687 −0.608300 −0.304150 0.952624i \(-0.598372\pi\)
−0.304150 + 0.952624i \(0.598372\pi\)
\(192\) 37.0584i 2.67446i
\(193\) 0.791267i 0.0569567i 0.999594 + 0.0284783i \(0.00906616\pi\)
−0.999594 + 0.0284783i \(0.990934\pi\)
\(194\) −0.885700 −0.0635895
\(195\) 35.4031 8.31331i 2.53527 0.595328i
\(196\) 27.4228 1.95877
\(197\) 24.5062i 1.74599i −0.487726 0.872997i \(-0.662174\pi\)
0.487726 0.872997i \(-0.337826\pi\)
\(198\) 32.7161i 2.32503i
\(199\) −19.3085 −1.36875 −0.684373 0.729132i \(-0.739924\pi\)
−0.684373 + 0.729132i \(0.739924\pi\)
\(200\) −6.66367 13.4066i −0.471193 0.947989i
\(201\) −18.7074 −1.31952
\(202\) 27.4196i 1.92923i
\(203\) 3.91261i 0.274612i
\(204\) −17.8193 −1.24760
\(205\) 0 0
\(206\) 34.4388 2.39947
\(207\) 3.70463i 0.257490i
\(208\) 1.64627i 0.114148i
\(209\) −4.51078 −0.312017
\(210\) −13.3085 56.6758i −0.918377 3.91100i
\(211\) 19.2554 1.32560 0.662798 0.748798i \(-0.269369\pi\)
0.662798 + 0.748798i \(0.269369\pi\)
\(212\) 25.3205i 1.73902i
\(213\) 5.78056i 0.396077i
\(214\) −9.00799 −0.615773
\(215\) 5.47742 + 23.3261i 0.373557 + 1.59083i
\(216\) 20.3697 1.38598
\(217\) 2.55992i 0.173779i
\(218\) 17.3960i 1.17821i
\(219\) 30.5268 2.06281
\(220\) −19.0705 + 4.47812i −1.28574 + 0.301915i
\(221\) −10.5108 −0.707032
\(222\) 26.0356i 1.74740i
\(223\) 10.8691i 0.727852i 0.931428 + 0.363926i \(0.118564\pi\)
−0.931428 + 0.363926i \(0.881436\pi\)
\(224\) −20.7954 −1.38945
\(225\) −23.9708 + 11.9146i −1.59805 + 0.794304i
\(226\) 43.0399 2.86297
\(227\) 17.3104i 1.14893i −0.818528 0.574467i \(-0.805210\pi\)
0.818528 0.574467i \(-0.194790\pi\)
\(228\) 16.2119i 1.07366i
\(229\) −18.7074 −1.23622 −0.618111 0.786091i \(-0.712102\pi\)
−0.618111 + 0.786091i \(0.712102\pi\)
\(230\) −3.46802 + 0.814355i −0.228674 + 0.0536970i
\(231\) −30.0160 −1.97491
\(232\) 2.99427i 0.196583i
\(233\) 14.6281i 0.958320i 0.877728 + 0.479160i \(0.159059\pi\)
−0.877728 + 0.479160i \(0.840941\pi\)
\(234\) 69.3565 4.53397
\(235\) 2.52258 + 10.7427i 0.164555 + 0.700775i
\(236\) 33.0056 2.14848
\(237\) 5.93419i 0.385467i
\(238\) 16.8264i 1.09070i
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) −0.432248 1.84077i −0.0279015 0.118821i
\(241\) −5.55595 −0.357890 −0.178945 0.983859i \(-0.557268\pi\)
−0.178945 + 0.983859i \(0.557268\pi\)
\(242\) 9.10519i 0.585304i
\(243\) 10.0004i 0.641529i
\(244\) 15.5371 0.994664
\(245\) −18.0865 + 4.24706i −1.15551 + 0.271335i
\(246\) 0 0
\(247\) 9.56263i 0.608455i
\(248\) 1.95907i 0.124401i
\(249\) −5.39888 −0.342140
\(250\) 16.4228 + 19.8207i 1.03867 + 1.25357i
\(251\) −9.27137 −0.585204 −0.292602 0.956234i \(-0.594521\pi\)
−0.292602 + 0.956234i \(0.594521\pi\)
\(252\) 69.1369i 4.35521i
\(253\) 1.83669i 0.115472i
\(254\) 11.4868 0.720747
\(255\) 11.7526 2.75973i 0.735976 0.172821i
\(256\) −17.8457 −1.11536
\(257\) 14.1129i 0.880337i 0.897915 + 0.440168i \(0.145081\pi\)
−0.897915 + 0.440168i \(0.854919\pi\)
\(258\) 71.3039i 4.43919i
\(259\) 15.3085 0.951227
\(260\) −9.49339 40.4286i −0.588755 2.50727i
\(261\) −5.35371 −0.331387
\(262\) 45.3907i 2.80425i
\(263\) 6.97962i 0.430382i 0.976572 + 0.215191i \(0.0690373\pi\)
−0.976572 + 0.215191i \(0.930963\pi\)
\(264\) −22.9708 −1.41376
\(265\) −3.92147 16.7000i −0.240894 1.02587i
\(266\) −15.3085 −0.938627
\(267\) 9.56263i 0.585223i
\(268\) 21.3630i 1.30495i
\(269\) 7.29257 0.444636 0.222318 0.974974i \(-0.428638\pi\)
0.222318 + 0.974974i \(0.428638\pi\)
\(270\) −34.0945 + 8.00604i −2.07493 + 0.487232i
\(271\) −23.3617 −1.41912 −0.709561 0.704644i \(-0.751107\pi\)
−0.709561 + 0.704644i \(0.751107\pi\)
\(272\) 0.546506i 0.0331368i
\(273\) 63.6323i 3.85120i
\(274\) −14.4228 −0.871316
\(275\) 11.8843 5.90702i 0.716649 0.356207i
\(276\) −6.60112 −0.397341
\(277\) 2.91337i 0.175047i −0.996162 0.0875236i \(-0.972105\pi\)
0.996162 0.0875236i \(-0.0278953\pi\)
\(278\) 50.4425i 3.02534i
\(279\) 3.50279 0.209707
\(280\) −25.5028 + 5.98854i −1.52408 + 0.357884i
\(281\) 30.1730 1.79997 0.899986 0.435918i \(-0.143576\pi\)
0.899986 + 0.435918i \(0.143576\pi\)
\(282\) 32.8385i 1.95550i
\(283\) 2.01341i 0.119685i 0.998208 + 0.0598425i \(0.0190599\pi\)
−0.998208 + 0.0598425i \(0.980940\pi\)
\(284\) −6.60112 −0.391704
\(285\) 2.51078 + 10.6924i 0.148726 + 0.633364i
\(286\) −34.3857 −2.03327
\(287\) 0 0
\(288\) 28.4547i 1.67671i
\(289\) 13.5108 0.794752
\(290\) 1.17686 + 5.01177i 0.0691074 + 0.294301i
\(291\) 1.11190 0.0651807
\(292\) 34.8601i 2.04003i
\(293\) 10.8691i 0.634982i 0.948261 + 0.317491i \(0.102840\pi\)
−0.948261 + 0.317491i \(0.897160\pi\)
\(294\) −55.2873 −3.22442
\(295\) −21.7686 + 5.11167i −1.26742 + 0.297613i
\(296\) 11.7154 0.680945
\(297\) 18.0567i 1.04776i
\(298\) 9.77877i 0.566469i
\(299\) −3.89369 −0.225178
\(300\) 21.2300 + 42.7125i 1.22572 + 2.46601i
\(301\) 41.9256 2.41655
\(302\) 26.0356i 1.49818i
\(303\) 34.4223i 1.97751i
\(304\) −0.497206 −0.0285167
\(305\) −10.2474 + 2.40628i −0.586765 + 0.137783i
\(306\) 23.0240 1.31619
\(307\) 9.02429i 0.515043i −0.966273 0.257522i \(-0.917094\pi\)
0.966273 0.257522i \(-0.0829059\pi\)
\(308\) 34.2768i 1.95310i
\(309\) −43.2342 −2.45951
\(310\) −0.769987 3.27907i −0.0437323 0.186238i
\(311\) −11.1143 −0.630234 −0.315117 0.949053i \(-0.602044\pi\)
−0.315117 + 0.949053i \(0.602044\pi\)
\(312\) 48.6969i 2.75692i
\(313\) 25.7365i 1.45471i 0.686260 + 0.727356i \(0.259251\pi\)
−0.686260 + 0.727356i \(0.740749\pi\)
\(314\) −9.48682 −0.535372
\(315\) 10.7074 + 45.5987i 0.603295 + 2.56919i
\(316\) −6.77656 −0.381211
\(317\) 0.837444i 0.0470355i 0.999723 + 0.0235178i \(0.00748663\pi\)
−0.999723 + 0.0235178i \(0.992513\pi\)
\(318\) 51.0489i 2.86268i
\(319\) 2.65427 0.148611
\(320\) 27.9111 6.55405i 1.56028 0.366382i
\(321\) 11.3085 0.631182
\(322\) 6.23330i 0.347368i
\(323\) 3.17446i 0.176632i
\(324\) −11.8857 −0.660317
\(325\) 12.5226 + 25.1941i 0.694628 + 1.39752i
\(326\) −7.36170 −0.407727
\(327\) 21.8388i 1.20769i
\(328\) 0 0
\(329\) 19.3085 1.06451
\(330\) 38.4482 9.02837i 2.11651 0.496995i
\(331\) 22.0691 1.21303 0.606515 0.795072i \(-0.292567\pi\)
0.606515 + 0.795072i \(0.292567\pi\)
\(332\) 6.16526i 0.338363i
\(333\) 20.9470i 1.14789i
\(334\) 33.6251 1.83988
\(335\) −3.30855 14.0898i −0.180765 0.769807i
\(336\) −3.30855 −0.180496
\(337\) 7.74780i 0.422049i 0.977481 + 0.211025i \(0.0676800\pi\)
−0.977481 + 0.211025i \(0.932320\pi\)
\(338\) 42.9660i 2.33704i
\(339\) −54.0320 −2.93461
\(340\) −3.15148 13.4209i −0.170913 0.727850i
\(341\) −1.73662 −0.0940433
\(342\) 20.9470i 1.13269i
\(343\) 5.11984i 0.276445i
\(344\) 32.0851 1.72991
\(345\) 4.35371 1.02233i 0.234396 0.0550406i
\(346\) 20.7234 1.11410
\(347\) 9.33972i 0.501383i 0.968067 + 0.250691i \(0.0806579\pi\)
−0.968067 + 0.250691i \(0.919342\pi\)
\(348\) 9.53954i 0.511373i
\(349\) 21.6623 1.15955 0.579777 0.814775i \(-0.303140\pi\)
0.579777 + 0.814775i \(0.303140\pi\)
\(350\) 40.3325 20.0471i 2.15586 1.07156i
\(351\) −38.2794 −2.04320
\(352\) 14.1073i 0.751924i
\(353\) 20.5623i 1.09442i 0.836995 + 0.547211i \(0.184310\pi\)
−0.836995 + 0.547211i \(0.815690\pi\)
\(354\) −66.5427 −3.53671
\(355\) 4.35371 1.02233i 0.231071 0.0542599i
\(356\) 10.9201 0.578762
\(357\) 21.1237i 1.11799i
\(358\) 49.0585i 2.59282i
\(359\) −30.5639 −1.61310 −0.806551 0.591164i \(-0.798669\pi\)
−0.806551 + 0.591164i \(0.798669\pi\)
\(360\) 8.19425 + 34.8960i 0.431875 + 1.83918i
\(361\) −16.1119 −0.847995
\(362\) 39.0718i 2.05357i
\(363\) 11.4306i 0.599949i
\(364\) −72.6650 −3.80868
\(365\) 5.39888 + 22.9917i 0.282590 + 1.20344i
\(366\) −31.3245 −1.63736
\(367\) 13.7825i 0.719441i 0.933060 + 0.359721i \(0.117128\pi\)
−0.933060 + 0.359721i \(0.882872\pi\)
\(368\) 0.202451i 0.0105535i
\(369\) 0 0
\(370\) −19.6091 + 4.60459i −1.01943 + 0.239381i
\(371\) −30.0160 −1.55835
\(372\) 6.24147i 0.323605i
\(373\) 27.2659i 1.41178i −0.708324 0.705888i \(-0.750548\pi\)
0.708324 0.705888i \(-0.249452\pi\)
\(374\) −11.4149 −0.590248
\(375\) −20.6171 24.8827i −1.06466 1.28494i
\(376\) 14.7766 0.762043
\(377\) 5.62692i 0.289801i
\(378\) 61.2804i 3.15192i
\(379\) −16.4069 −0.842764 −0.421382 0.906883i \(-0.638455\pi\)
−0.421382 + 0.906883i \(0.638455\pi\)
\(380\) 12.2102 2.86719i 0.626371 0.147084i
\(381\) −14.4204 −0.738782
\(382\) 19.3551i 0.990293i
\(383\) 11.7378i 0.599776i −0.953974 0.299888i \(-0.903051\pi\)
0.953974 0.299888i \(-0.0969493\pi\)
\(384\) 54.5959 2.78608
\(385\) −5.30855 22.6070i −0.270549 1.15216i
\(386\) −1.82173 −0.0927236
\(387\) 57.3678i 2.91617i
\(388\) 1.26974i 0.0644610i
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 19.1397 + 81.5083i 0.969175 + 4.12733i
\(391\) −1.29257 −0.0653681
\(392\) 24.8780i 1.25653i
\(393\) 56.9831i 2.87442i
\(394\) 56.4204 2.84242
\(395\) 4.46943 1.04951i 0.224881 0.0528064i
\(396\) 46.9017 2.35690
\(397\) 6.03349i 0.302812i −0.988472 0.151406i \(-0.951620\pi\)
0.988472 0.151406i \(-0.0483801\pi\)
\(398\) 44.4540i 2.22828i
\(399\) 19.2182 0.962114
\(400\) 1.30996 0.651109i 0.0654980 0.0325554i
\(401\) −21.4656 −1.07194 −0.535971 0.844237i \(-0.680054\pi\)
−0.535971 + 0.844237i \(0.680054\pi\)
\(402\) 43.0700i 2.14814i
\(403\) 3.68155i 0.183391i
\(404\) −39.3085 −1.95567
\(405\) 7.83912 1.84077i 0.389529 0.0914688i
\(406\) 9.00799 0.447059
\(407\) 10.3851i 0.514773i
\(408\) 16.1657i 0.800322i
\(409\) 4.49481 0.222254 0.111127 0.993806i \(-0.464554\pi\)
0.111127 + 0.993806i \(0.464554\pi\)
\(410\) 0 0
\(411\) 18.1063 0.893119
\(412\) 49.3713i 2.43235i
\(413\) 39.1261i 1.92527i
\(414\) 8.52916 0.419185
\(415\) −0.954832 4.06625i −0.0468709 0.199604i
\(416\) 29.9068 1.46630
\(417\) 63.3251i 3.10104i
\(418\) 10.3851i 0.507954i
\(419\) −4.19665 −0.205020 −0.102510 0.994732i \(-0.532687\pi\)
−0.102510 + 0.994732i \(0.532687\pi\)
\(420\) 81.2502 19.0791i 3.96460 0.930963i
\(421\) −18.5108 −0.902160 −0.451080 0.892483i \(-0.648961\pi\)
−0.451080 + 0.892483i \(0.648961\pi\)
\(422\) 44.3316i 2.15803i
\(423\) 26.4203i 1.28460i
\(424\) −22.9708 −1.11556
\(425\) 4.15707 + 8.36357i 0.201647 + 0.405693i
\(426\) 13.3085 0.644801
\(427\) 18.4184i 0.891327i
\(428\) 12.9138i 0.624213i
\(429\) 43.1675 2.08414
\(430\) −53.7036 + 12.6106i −2.58982 + 0.608138i
\(431\) 37.1279 1.78839 0.894193 0.447681i \(-0.147750\pi\)
0.894193 + 0.447681i \(0.147750\pi\)
\(432\) 1.99033i 0.0957596i
\(433\) 16.8577i 0.810128i −0.914288 0.405064i \(-0.867249\pi\)
0.914288 0.405064i \(-0.132751\pi\)
\(434\) −5.89369 −0.282906
\(435\) −1.47742 6.29173i −0.0708367 0.301665i
\(436\) −24.9389 −1.19435
\(437\) 1.17597i 0.0562543i
\(438\) 70.2816i 3.35818i
\(439\) 9.21821 0.439961 0.219981 0.975504i \(-0.429401\pi\)
0.219981 + 0.975504i \(0.429401\pi\)
\(440\) −4.06256 17.3008i −0.193675 0.824784i
\(441\) 44.4816 2.11817
\(442\) 24.1989i 1.15102i
\(443\) 18.9023i 0.898078i 0.893512 + 0.449039i \(0.148234\pi\)
−0.893512 + 0.449039i \(0.851766\pi\)
\(444\) −37.3245 −1.77134
\(445\) −7.20223 + 1.69122i −0.341419 + 0.0801716i
\(446\) −25.0240 −1.18492
\(447\) 12.2762i 0.580643i
\(448\) 50.1665i 2.37014i
\(449\) 31.3245 1.47830 0.739148 0.673543i \(-0.235228\pi\)
0.739148 + 0.673543i \(0.235228\pi\)
\(450\) −27.4308 55.1879i −1.29310 2.60158i
\(451\) 0 0
\(452\) 61.7019i 2.90221i
\(453\) 32.6849i 1.53567i
\(454\) 39.8537 1.87043
\(455\) 47.9256 11.2538i 2.24679 0.527588i
\(456\) 14.7074 0.688738
\(457\) 36.6287i 1.71342i 0.515799 + 0.856710i \(0.327495\pi\)
−0.515799 + 0.856710i \(0.672505\pi\)
\(458\) 43.0700i 2.01253i
\(459\) −12.7074 −0.593132
\(460\) −1.16746 4.97173i −0.0544329 0.231808i
\(461\) 28.8297 1.34273 0.671367 0.741125i \(-0.265707\pi\)
0.671367 + 0.741125i \(0.265707\pi\)
\(462\) 69.1056i 3.21508i
\(463\) 29.6409i 1.37753i −0.724984 0.688766i \(-0.758153\pi\)
0.724984 0.688766i \(-0.241847\pi\)
\(464\) 0.292570 0.0135822
\(465\) 0.966634 + 4.11651i 0.0448266 + 0.190899i
\(466\) −33.6782 −1.56011
\(467\) 26.4746i 1.22510i −0.790432 0.612550i \(-0.790144\pi\)
0.790432 0.612550i \(-0.209856\pi\)
\(468\) 99.4291i 4.59611i
\(469\) −25.3245 −1.16938
\(470\) −24.7328 + 5.80773i −1.14084 + 0.267891i
\(471\) 11.9097 0.548768
\(472\) 29.9427i 1.37822i
\(473\) 28.4419i 1.30776i
\(474\) 13.6623 0.627528
\(475\) −7.60911 + 3.78207i −0.349130 + 0.173533i
\(476\) −24.1223 −1.10564
\(477\) 41.0715i 1.88054i
\(478\) 4.60459i 0.210609i
\(479\) −27.1810 −1.24193 −0.620967 0.783837i \(-0.713260\pi\)
−0.620967 + 0.783837i \(0.713260\pi\)
\(480\) −33.4402 + 7.85240i −1.52633 + 0.358411i
\(481\) −22.0160 −1.00384
\(482\) 12.7914i 0.582634i
\(483\) 7.82523i 0.356060i
\(484\) 13.0532 0.593325
\(485\) 0.196648 + 0.837444i 0.00892931 + 0.0380264i
\(486\) −23.0240 −1.04439
\(487\) 32.0922i 1.45424i −0.686513 0.727118i \(-0.740859\pi\)
0.686513 0.727118i \(-0.259141\pi\)
\(488\) 14.0953i 0.638065i
\(489\) 9.24182 0.417929
\(490\) −9.77797 41.6405i −0.441724 1.88113i
\(491\) −10.0691 −0.454414 −0.227207 0.973847i \(-0.572959\pi\)
−0.227207 + 0.973847i \(0.572959\pi\)
\(492\) 0 0
\(493\) 1.86794i 0.0841280i
\(494\) 22.0160 0.990546
\(495\) −30.9336 + 7.26380i −1.39036 + 0.326484i
\(496\) −0.191421 −0.00859506
\(497\) 7.82523i 0.351009i
\(498\) 12.4298i 0.556993i
\(499\) 29.9416 1.34037 0.670185 0.742194i \(-0.266215\pi\)
0.670185 + 0.742194i \(0.266215\pi\)
\(500\) −28.4149 + 23.5437i −1.27075 + 1.05291i
\(501\) −42.2126 −1.88592
\(502\) 21.3454i 0.952693i
\(503\) 24.0140i 1.07073i −0.844620 0.535366i \(-0.820174\pi\)
0.844620 0.535366i \(-0.179826\pi\)
\(504\) 62.7210 2.79382
\(505\) 25.9256 6.08783i 1.15368 0.270905i
\(506\) −4.22860 −0.187984
\(507\) 53.9391i 2.39552i
\(508\) 16.4674i 0.730625i
\(509\) 21.0771 0.934227 0.467113 0.884197i \(-0.345294\pi\)
0.467113 + 0.884197i \(0.345294\pi\)
\(510\) 6.35371 + 27.0579i 0.281347 + 1.19815i
\(511\) 41.3245 1.82809
\(512\) 3.30707i 0.146153i
\(513\) 11.5611i 0.510436i
\(514\) −32.4920 −1.43316
\(515\) −7.64629 32.5625i −0.336936 1.43487i
\(516\) −102.221 −4.50003
\(517\) 13.0987i 0.576080i
\(518\) 35.2448i 1.54857i
\(519\) −26.0160 −1.14197
\(520\) 36.6768 8.61241i 1.60839 0.377679i
\(521\) 11.6623 0.510933 0.255466 0.966818i \(-0.417771\pi\)
0.255466 + 0.966818i \(0.417771\pi\)
\(522\) 12.3258i 0.539487i
\(523\) 36.3895i 1.59120i −0.605821 0.795601i \(-0.707155\pi\)
0.605821 0.795601i \(-0.292845\pi\)
\(524\) −65.0719 −2.84268
\(525\) −50.6331 + 25.1669i −2.20981 + 1.09837i
\(526\) −16.0691 −0.700647
\(527\) 1.22215i 0.0532376i
\(528\) 2.24448i 0.0976785i
\(529\) 22.5212 0.979181
\(530\) 38.4482 9.02837i 1.67008 0.392167i
\(531\) 53.5371 2.32331
\(532\) 21.9463i 0.951491i
\(533\) 0 0
\(534\) −22.0160 −0.952724
\(535\) 2.00000 + 8.51720i 0.0864675 + 0.368231i
\(536\) −19.3805 −0.837110
\(537\) 61.5877i 2.65770i
\(538\) 16.7896i 0.723853i
\(539\) −22.0532 −0.949897
\(540\) −11.4774 48.8777i −0.493909 2.10336i
\(541\) 9.92564 0.426737 0.213368 0.976972i \(-0.431557\pi\)
0.213368 + 0.976972i \(0.431557\pi\)
\(542\) 53.7855i 2.31029i
\(543\) 49.0504i 2.10495i
\(544\) 9.92804 0.425661
\(545\) 16.4482 3.86235i 0.704565 0.165445i
\(546\) 146.500 6.26964
\(547\) 9.03245i 0.386200i −0.981179 0.193100i \(-0.938146\pi\)
0.981179 0.193100i \(-0.0618541\pi\)
\(548\) 20.6765i 0.883258i
\(549\) 25.2022 1.07561
\(550\) 13.5997 + 27.3611i 0.579893 + 1.16668i
\(551\) −1.69944 −0.0723986
\(552\) 5.98854i 0.254889i
\(553\) 8.03321i 0.341607i
\(554\) 6.70743 0.284971
\(555\) 24.6171 5.78056i 1.04494 0.245371i
\(556\) 72.3141 3.06680
\(557\) 13.7145i 0.581101i −0.956860 0.290550i \(-0.906162\pi\)
0.956860 0.290550i \(-0.0938384\pi\)
\(558\) 8.06446i 0.341396i
\(559\) −60.2953 −2.55022
\(560\) −0.585141 2.49188i −0.0247267 0.105301i
\(561\) 14.3301 0.605018
\(562\) 69.4672i 2.93030i
\(563\) 20.2781i 0.854621i −0.904105 0.427311i \(-0.859461\pi\)
0.904105 0.427311i \(-0.140539\pi\)
\(564\) −47.0771 −1.98230
\(565\) −9.55595 40.6950i −0.402022 1.71205i
\(566\) −4.63547 −0.194843
\(567\) 14.0898i 0.591715i
\(568\) 5.98854i 0.251273i
\(569\) −13.3085 −0.557923 −0.278962 0.960302i \(-0.589990\pi\)
−0.278962 + 0.960302i \(0.589990\pi\)
\(570\) −24.6171 + 5.78056i −1.03110 + 0.242121i
\(571\) −16.4204 −0.687174 −0.343587 0.939121i \(-0.611642\pi\)
−0.343587 + 0.939121i \(0.611642\pi\)
\(572\) 49.2951i 2.06113i
\(573\) 24.2982i 1.01507i
\(574\) 0 0
\(575\) 1.53997 + 3.09826i 0.0642213 + 0.129206i
\(576\) −68.6439 −2.86016
\(577\) 14.7505i 0.614071i 0.951698 + 0.307036i \(0.0993371\pi\)
−0.951698 + 0.307036i \(0.900663\pi\)
\(578\) 31.1058i 1.29383i
\(579\) 2.28698 0.0950438
\(580\) −7.18485 + 1.68714i −0.298334 + 0.0700546i
\(581\) −7.30855 −0.303210
\(582\) 2.55992i 0.106112i
\(583\) 20.3625i 0.843329i
\(584\) 31.6251 1.30866
\(585\) −15.3989 65.5777i −0.636665 2.71130i
\(586\) −25.0240 −1.03373
\(587\) 6.36385i 0.262664i 0.991338 + 0.131332i \(0.0419254\pi\)
−0.991338 + 0.131332i \(0.958075\pi\)
\(588\) 79.2597i 3.26861i
\(589\) 1.11190 0.0458150
\(590\) −11.7686 50.1177i −0.484505 2.06331i
\(591\) −70.8297 −2.91355
\(592\) 1.14472i 0.0470475i
\(593\) 30.0706i 1.23485i 0.786629 + 0.617426i \(0.211824\pi\)
−0.786629 + 0.617426i \(0.788176\pi\)
\(594\) −41.5719 −1.70572
\(595\) 15.9097 3.73589i 0.652233 0.153157i
\(596\) 14.0188 0.574233
\(597\) 55.8071i 2.28403i
\(598\) 8.96442i 0.366582i
\(599\) 25.0587 1.02387 0.511936 0.859023i \(-0.328928\pi\)
0.511936 + 0.859023i \(0.328928\pi\)
\(600\) −38.7488 + 19.2599i −1.58191 + 0.786281i
\(601\) 40.0320 1.63294 0.816469 0.577390i \(-0.195929\pi\)
0.816469 + 0.577390i \(0.195929\pi\)
\(602\) 96.5252i 3.93407i
\(603\) 34.6521i 1.41114i
\(604\) 37.3245 1.51871
\(605\) −8.60911 + 2.02158i −0.350010 + 0.0821889i
\(606\) 79.2502 3.21932
\(607\) 41.3557i 1.67858i 0.543687 + 0.839288i \(0.317028\pi\)
−0.543687 + 0.839288i \(0.682972\pi\)
\(608\) 9.03245i 0.366314i
\(609\) −11.3085 −0.458245
\(610\) −5.53997 23.5925i −0.224307 0.955234i
\(611\) −27.7686 −1.12340
\(612\) 33.0071i 1.33423i
\(613\) 40.5183i 1.63652i 0.574851 + 0.818258i \(0.305060\pi\)
−0.574851 + 0.818258i \(0.694940\pi\)
\(614\) 20.7766 0.838474
\(615\) 0 0
\(616\) −31.0959 −1.25289
\(617\) 1.76865i 0.0712033i −0.999366 0.0356016i \(-0.988665\pi\)
0.999366 0.0356016i \(-0.0113347\pi\)
\(618\) 99.5378i 4.00400i
\(619\) 0.249804 0.0100405 0.00502023 0.999987i \(-0.498402\pi\)
0.00502023 + 0.999987i \(0.498402\pi\)
\(620\) 4.70085 1.10385i 0.188791 0.0443317i
\(621\) −4.70743 −0.188903
\(622\) 25.5884i 1.02600i
\(623\) 12.9451i 0.518633i
\(624\) 4.75818 0.190480
\(625\) 15.0945 19.9288i 0.603780 0.797151i
\(626\) −59.2530 −2.36823
\(627\) 13.0374i 0.520664i
\(628\) 13.6003i 0.542709i
\(629\) −7.30855 −0.291411
\(630\) −104.982 + 24.6517i −4.18257 + 0.982145i
\(631\) 9.48922 0.377760 0.188880 0.982000i \(-0.439514\pi\)
0.188880 + 0.982000i \(0.439514\pi\)
\(632\) 6.14770i 0.244542i
\(633\) 55.6535i 2.21203i
\(634\) −1.92804 −0.0765723
\(635\) −2.55036 10.8610i −0.101208 0.431005i
\(636\) 73.1834 2.90191
\(637\) 46.7516i 1.85236i
\(638\) 6.11092i 0.241934i
\(639\) −10.7074 −0.423579
\(640\) 9.65569 + 41.1197i 0.381675 + 1.62540i
\(641\) −49.9416 −1.97258 −0.986288 0.165035i \(-0.947226\pi\)
−0.986288 + 0.165035i \(0.947226\pi\)
\(642\) 26.0356i 1.02754i
\(643\) 25.8589i 1.01977i 0.860241 + 0.509887i \(0.170313\pi\)
−0.860241 + 0.509887i \(0.829687\pi\)
\(644\) −8.93603 −0.352129
\(645\) 67.4190 15.8313i 2.65462 0.623355i
\(646\) 7.30855 0.287551
\(647\) 32.1384i 1.26349i 0.775177 + 0.631745i \(0.217661\pi\)
−0.775177 + 0.631745i \(0.782339\pi\)
\(648\) 10.7827i 0.423585i
\(649\) −26.5427 −1.04189
\(650\) −58.0042 + 28.8307i −2.27511 + 1.13083i
\(651\) 7.39888 0.289985
\(652\) 10.5537i 0.413315i
\(653\) 9.79247i 0.383209i −0.981472 0.191604i \(-0.938631\pi\)
0.981472 0.191604i \(-0.0613691\pi\)
\(654\) 50.2794 1.96608
\(655\) 42.9177 10.0779i 1.67693 0.393775i
\(656\) 0 0
\(657\) 56.5452i 2.20604i
\(658\) 44.4540i 1.73300i
\(659\) 7.55835 0.294432 0.147216 0.989104i \(-0.452969\pi\)
0.147216 + 0.989104i \(0.452969\pi\)
\(660\) 12.9430 + 55.1192i 0.503807 + 2.14551i
\(661\) −10.9041 −0.424119 −0.212060 0.977257i \(-0.568017\pi\)
−0.212060 + 0.977257i \(0.568017\pi\)
\(662\) 50.8096i 1.97477i
\(663\) 30.3791i 1.17983i
\(664\) −5.59313 −0.217056
\(665\) 3.39888 + 14.4745i 0.131803 + 0.561296i
\(666\) 48.2262 1.86873
\(667\) 0.691975i 0.0267934i
\(668\) 48.2048i 1.86510i
\(669\) 31.4149 1.21457
\(670\) 32.4388 7.61725i 1.25322 0.294280i
\(671\) −12.4948 −0.482357
\(672\) 60.1044i 2.31858i
\(673\) 12.6296i 0.486836i 0.969921 + 0.243418i \(0.0782687\pi\)
−0.969921 + 0.243418i \(0.921731\pi\)
\(674\) −17.8377 −0.687083
\(675\) 15.1397 + 30.4594i 0.582726 + 1.17238i
\(676\) 61.5959 2.36907
\(677\) 8.87065i 0.340927i 0.985364 + 0.170463i \(0.0545265\pi\)
−0.985364 + 0.170463i \(0.945474\pi\)
\(678\) 124.397i 4.77746i
\(679\) 1.50519 0.0577641
\(680\) 12.1754 2.85902i 0.466907 0.109639i
\(681\) −50.0320 −1.91723
\(682\) 3.99821i 0.153099i
\(683\) 24.4749i 0.936507i 0.883594 + 0.468254i \(0.155117\pi\)
−0.883594 + 0.468254i \(0.844883\pi\)
\(684\) −30.0296 −1.14821
\(685\) 3.20223 + 13.6370i 0.122351 + 0.521045i
\(686\) −11.7874 −0.450044
\(687\) 54.0697i 2.06289i
\(688\) 3.13504i 0.119522i
\(689\) 43.1675 1.64455
\(690\) 2.35371 + 10.0235i 0.0896044 + 0.381589i
\(691\) −3.30855 −0.125863 −0.0629315 0.998018i \(-0.520045\pi\)
−0.0629315 + 0.998018i \(0.520045\pi\)
\(692\) 29.7090i 1.12937i
\(693\) 55.5991i 2.11204i
\(694\) −21.5028 −0.816235
\(695\) −47.6942 + 11.1995i −1.80914 + 0.424821i
\(696\) −8.65427 −0.328039
\(697\) 0 0
\(698\) 49.8729i 1.88772i
\(699\) 42.2794 1.59915
\(700\) 28.7394 + 57.8205i 1.08625 + 2.18541i
\(701\) −10.8485 −0.409743 −0.204871 0.978789i \(-0.565678\pi\)
−0.204871 + 0.978789i \(0.565678\pi\)
\(702\) 88.1303i 3.32627i
\(703\) 6.64926i 0.250781i
\(704\) 34.0324 1.28264
\(705\) 31.0493 7.29097i 1.16939 0.274594i
\(706\) −47.3405 −1.78168
\(707\) 46.5979i 1.75250i
\(708\) 95.3954i 3.58518i
\(709\) 31.1675 1.17052 0.585259 0.810846i \(-0.300993\pi\)
0.585259 + 0.810846i \(0.300993\pi\)
\(710\) 2.35371 + 10.0235i 0.0883333 + 0.376176i
\(711\) −10.9920 −0.412233
\(712\) 9.90668i 0.371269i
\(713\) 0.452741i 0.0169553i
\(714\) 48.6331 1.82005
\(715\) 7.63448 + 32.5122i 0.285513 + 1.21589i
\(716\) −70.3301 −2.62836
\(717\) 5.78056i 0.215879i
\(718\) 70.3672i 2.62608i
\(719\) 13.0056 0.485027 0.242513 0.970148i \(-0.422028\pi\)
0.242513 + 0.970148i \(0.422028\pi\)
\(720\) −3.40970 + 0.800661i −0.127072 + 0.0298389i
\(721\) −58.5268 −2.17965
\(722\) 37.0943i 1.38051i
\(723\) 16.0582i 0.597213i
\(724\) 56.0132 2.08171
\(725\) 4.47742 2.22548i 0.166287 0.0826521i
\(726\) −26.3165 −0.976698
\(727\) 1.19089i 0.0441677i −0.999756 0.0220839i \(-0.992970\pi\)
0.999756 0.0220839i \(-0.00703008\pi\)
\(728\) 65.9218i 2.44322i
\(729\) 39.7074 1.47065
\(730\) −52.9336 + 12.4298i −1.95916 + 0.460048i
\(731\) −20.0160 −0.740318
\(732\) 44.9067i 1.65980i
\(733\) 34.5990i 1.27794i −0.769231 0.638971i \(-0.779360\pi\)
0.769231 0.638971i \(-0.220640\pi\)
\(734\) −31.7314 −1.17123
\(735\) 12.2752 + 52.2751i 0.452777 + 1.92820i
\(736\) 3.67781 0.135566
\(737\) 17.1799i 0.632829i
\(738\) 0 0
\(739\) 41.7821 1.53698 0.768491 0.639861i \(-0.221008\pi\)
0.768491 + 0.639861i \(0.221008\pi\)
\(740\) −6.60112 28.1115i −0.242662 1.03340i
\(741\) −27.6387 −1.01533
\(742\) 69.1056i 2.53695i
\(743\) 4.02130i 0.147527i 0.997276 + 0.0737636i \(0.0235010\pi\)
−0.997276 + 0.0737636i \(0.976499\pi\)
\(744\) 5.66226 0.207589
\(745\) −9.24599 + 2.17113i −0.338747 + 0.0795442i
\(746\) 62.7742 2.29833
\(747\) 10.0004i 0.365897i
\(748\) 16.3643i 0.598338i
\(749\) 15.3085 0.559362
\(750\) 57.2873 47.4666i 2.09184 1.73324i
\(751\) −0.497206 −0.0181433 −0.00907166 0.999959i \(-0.502888\pi\)
−0.00907166 + 0.999959i \(0.502888\pi\)
\(752\) 1.44382i 0.0526507i
\(753\) 26.7968i 0.976531i
\(754\) −12.9548 −0.471787
\(755\) −24.6171 + 5.78056i −0.895908 + 0.210376i
\(756\) −87.8513 −3.19512
\(757\) 18.6944i 0.679458i −0.940523 0.339729i \(-0.889665\pi\)
0.940523 0.339729i \(-0.110335\pi\)
\(758\) 37.7734i 1.37199i
\(759\) 5.30855 0.192688
\(760\) 2.60112 + 11.0771i 0.0943524 + 0.401809i
\(761\) −3.38291 −0.122630 −0.0613151 0.998118i \(-0.519529\pi\)
−0.0613151 + 0.998118i \(0.519529\pi\)
\(762\) 33.2001i 1.20271i
\(763\) 29.5635i 1.07027i
\(764\) 27.7474 1.00386
\(765\) −5.11190 21.7695i −0.184821 0.787079i
\(766\) 27.0240 0.976416
\(767\) 56.2692i 2.03176i
\(768\) 51.5790i 1.86120i
\(769\) 7.41486 0.267387 0.133693 0.991023i \(-0.457316\pi\)
0.133693 + 0.991023i \(0.457316\pi\)
\(770\) 52.0479 12.2218i 1.87568 0.440444i
\(771\) 40.7901 1.46902
\(772\) 2.61162i 0.0939944i
\(773\) 33.2775i 1.19691i 0.801156 + 0.598455i \(0.204218\pi\)
−0.801156 + 0.598455i \(0.795782\pi\)
\(774\) 132.077 4.74743
\(775\) −2.92945 + 1.45607i −0.105229 + 0.0523036i
\(776\) 1.15190 0.0413510
\(777\) 44.2460i 1.58732i
\(778\) 27.6275i 0.990495i
\(779\) 0 0
\(780\) −116.850 + 27.4386i −4.18390 + 0.982458i
\(781\) 5.30855 0.189955
\(782\) 2.97588i 0.106417i
\(783\) 6.80289i 0.243116i
\(784\) −2.43084 −0.0868156
\(785\) 2.10631 + 8.96994i 0.0751775 + 0.320151i
\(786\) 131.192 4.67946
\(787\) 18.2878i 0.651890i 0.945389 + 0.325945i \(0.105682\pi\)
−0.945389 + 0.325945i \(0.894318\pi\)
\(788\) 80.8841i 2.88138i
\(789\) 20.1730 0.718179
\(790\) 2.41627 + 10.2899i 0.0859671 + 0.366100i
\(791\) −73.1439 −2.60070
\(792\) 42.5492i 1.51192i
\(793\) 26.4883i 0.940629i
\(794\) 13.8909 0.492968
\(795\) −48.2676 + 11.3341i −1.71187 + 0.401980i
\(796\) 63.7290 2.25881
\(797\) 44.5845i 1.57926i −0.613581 0.789632i \(-0.710271\pi\)
0.613581 0.789632i \(-0.289729\pi\)
\(798\) 44.2460i 1.56629i
\(799\) −9.21821 −0.326117
\(800\) −11.8283 23.7973i −0.418194 0.841360i
\(801\) 17.7130 0.625859
\(802\) 49.4202i 1.74509i
\(803\) 28.0341i 0.989302i
\(804\) 61.7450 2.17758
\(805\) 5.89369 1.38395i 0.207725 0.0487778i
\(806\) 8.47600 0.298554
\(807\) 21.0776i 0.741965i
\(808\) 35.6607i 1.25454i
\(809\) −14.1063 −0.495952 −0.247976 0.968766i \(-0.579765\pi\)
−0.247976 + 0.968766i \(0.579765\pi\)
\(810\) 4.23800 + 18.0480i 0.148908 + 0.634141i
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 12.9138i 0.453186i
\(813\) 67.5218i 2.36809i
\(814\) −23.9097 −0.838033
\(815\) 1.63448 + 6.96061i 0.0572535 + 0.243820i
\(816\) 1.57955 0.0552954
\(817\) 18.2104i 0.637100i
\(818\) 10.3484i 0.361822i
\(819\) −117.867 −4.11862
\(820\) 0 0
\(821\) 18.1571 0.633686 0.316843 0.948478i \(-0.397377\pi\)
0.316843 + 0.948478i \(0.397377\pi\)
\(822\) 41.6861i 1.45397i
\(823\) 3.25189i 0.113354i −0.998393 0.0566770i \(-0.981949\pi\)
0.998393 0.0566770i \(-0.0180505\pi\)
\(824\) −44.7897 −1.56032
\(825\) −17.0729 34.3489i −0.594404 1.19588i
\(826\) −90.0799 −3.13428
\(827\) 10.7155i 0.372615i 0.982492 + 0.186307i \(0.0596520\pi\)
−0.982492 + 0.186307i \(0.940348\pi\)
\(828\) 12.2274i 0.424930i
\(829\) −52.3461 −1.81805 −0.909027 0.416736i \(-0.863174\pi\)
−0.909027 + 0.416736i \(0.863174\pi\)
\(830\) 9.36170 2.19830i 0.324949 0.0763043i
\(831\) −8.42045 −0.292102
\(832\) 72.1469i 2.50124i
\(833\) 15.5199i 0.537733i
\(834\) −145.793 −5.04840
\(835\) −7.46561 31.7931i −0.258358 1.10024i
\(836\) 14.8881 0.514916
\(837\) 4.45095i 0.153847i
\(838\) 9.66192i 0.333765i
\(839\) −24.6703 −0.851712 −0.425856 0.904791i \(-0.640027\pi\)
−0.425856 + 0.904791i \(0.640027\pi\)
\(840\) 17.3085 + 73.7102i 0.597202 + 2.54324i
\(841\) 1.00000 0.0344828
\(842\) 42.6173i 1.46869i
\(843\) 87.2085i 3.00362i
\(844\) −63.5535 −2.18760
\(845\) −40.6251 + 9.53954i −1.39755 + 0.328170i
\(846\) 60.8273 2.09129
\(847\) 15.4737i 0.531684i
\(848\) 2.24448i 0.0770758i
\(849\) 5.81933 0.199719
\(850\) −19.2554 + 9.57079i −0.660454 + 0.328275i
\(851\) −2.70743 −0.0928095
\(852\) 19.0791i 0.653638i
\(853\) 28.1115i 0.962520i 0.876578 + 0.481260i \(0.159821\pi\)
−0.876578 + 0.481260i \(0.840179\pi\)
\(854\) −42.4045 −1.45105
\(855\) 19.8058 4.65077i 0.677342 0.159053i
\(856\) 11.7154 0.400425
\(857\) 8.39482i 0.286762i 0.989668 + 0.143381i \(0.0457974\pi\)
−0.989668 + 0.143381i \(0.954203\pi\)
\(858\) 99.3842i 3.39292i
\(859\) −17.8405 −0.608711 −0.304356 0.952559i \(-0.598441\pi\)
−0.304356 + 0.952559i \(0.598441\pi\)
\(860\) −18.0785 76.9893i −0.616473 2.62531i
\(861\) 0 0
\(862\) 85.4793i 2.91144i
\(863\) 2.48249i 0.0845049i 0.999107 + 0.0422524i \(0.0134534\pi\)
−0.999107 + 0.0422524i \(0.986547\pi\)
\(864\) 36.1571 1.23009
\(865\) −4.60112 19.5943i −0.156443 0.666227i
\(866\) 38.8113 1.31886
\(867\) 39.0499i 1.32621i
\(868\) 8.44916i 0.286783i
\(869\) 5.44964 0.184866
\(870\) 14.4854 3.40145i 0.491101 0.115320i
\(871\) 36.4204 1.23406
\(872\) 22.6245i 0.766164i
\(873\) 2.05959i 0.0697066i
\(874\) 2.70743 0.0915802
\(875\) −27.9097 33.6841i −0.943519 1.13873i
\(876\) −100.755 −3.40421
\(877\) 25.9813i 0.877325i −0.898652 0.438662i \(-0.855452\pi\)
0.898652 0.438662i \(-0.144548\pi\)
\(878\) 21.2230i 0.716243i
\(879\) 31.4149 1.05960
\(880\) 1.69046 0.396953i 0.0569856 0.0133813i
\(881\) 25.1279 0.846580 0.423290 0.905994i \(-0.360875\pi\)
0.423290 + 0.905994i \(0.360875\pi\)
\(882\) 102.410i 3.44831i
\(883\) 10.9684i 0.369117i −0.982822 0.184559i \(-0.940914\pi\)
0.982822 0.184559i \(-0.0590856\pi\)
\(884\) 34.6915 1.16680
\(885\) 14.7742 + 62.9173i 0.496628 + 2.11494i
\(886\) −43.5188 −1.46204
\(887\) 2.99897i 0.100695i 0.998732 + 0.0503477i \(0.0160330\pi\)
−0.998732 + 0.0503477i \(0.983967\pi\)
\(888\) 33.8608i 1.13630i
\(889\) −19.5212 −0.654719
\(890\) −3.89369 16.5817i −0.130517 0.555819i
\(891\) 9.55835 0.320217
\(892\) 35.8742i 1.20116i
\(893\) 8.38665i 0.280649i
\(894\) −28.2634 −0.945269
\(895\) 46.3857 10.8922i 1.55050 0.364087i
\(896\) 73.9073 2.46907
\(897\) 11.2538i 0.375755i
\(898\) 72.1183i 2.40662i
\(899\) −0.654273 −0.0218212
\(900\) 79.1171 39.3247i 2.63724 1.31082i
\(901\) 14.3301 0.477405
\(902\) 0 0
\(903\) 121.177i 4.03251i
\(904\) −55.9760 −1.86173
\(905\) −36.9430 + 8.67492i −1.22803 + 0.288364i
\(906\) −75.2502 −2.50002
\(907\) 50.5567i 1.67871i 0.543585 + 0.839354i \(0.317066\pi\)
−0.543585 + 0.839354i \(0.682934\pi\)
\(908\) 57.1341i 1.89606i
\(909\) −63.7609 −2.11482
\(910\) 25.9097 + 110.339i 0.858897 + 3.65770i
\(911\) 35.9044 1.18957 0.594784 0.803886i \(-0.297238\pi\)
0.594784 + 0.803886i \(0.297238\pi\)
\(912\) 1.43707i 0.0475860i
\(913\) 4.95804i 0.164087i
\(914\) −84.3301 −2.78939
\(915\) 6.95483 + 29.6179i 0.229920 + 0.979136i
\(916\) 61.7450 2.04011
\(917\) 77.1388i 2.54735i
\(918\) 29.2562i 0.965600i
\(919\) −15.2022 −0.501475 −0.250738 0.968055i \(-0.580673\pi\)
−0.250738 + 0.968055i \(0.580673\pi\)
\(920\) 4.51036 1.05912i 0.148702 0.0349181i
\(921\) −26.0827 −0.859454
\(922\) 66.3745i 2.18593i
\(923\) 11.2538i 0.370425i
\(924\) 99.0695 3.25915
\(925\) 8.70743 + 17.5184i 0.286299 + 0.576001i
\(926\) 68.2422 2.24258
\(927\) 80.0834i 2.63029i
\(928\) 5.31495i 0.174472i
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) −9.47742 + 2.22548i −0.310777 + 0.0729762i
\(931\) 14.1199 0.462761
\(932\) 48.2810i 1.58150i
\(933\) 32.1234i 1.05167i
\(934\) 60.9524 1.99442
\(935\) 2.53439 + 10.7929i 0.0828833 + 0.352967i
\(936\) −90.2022 −2.94835
\(937\) 32.1859i 1.05147i −0.850649 0.525734i \(-0.823791\pi\)
0.850649 0.525734i \(-0.176209\pi\)
\(938\) 58.3045i 1.90371i
\(939\) 74.3857 2.42748
\(940\) −8.32594 35.4568i −0.271562 1.15647i
\(941\) 22.3697 0.729231 0.364616 0.931158i \(-0.381200\pi\)
0.364616 + 0.931158i \(0.381200\pi\)
\(942\) 27.4196i 0.893377i
\(943\) 0 0
\(944\) −2.92570 −0.0952236
\(945\) 57.9416 13.6058i 1.88484 0.442596i
\(946\) −65.4816 −2.12899
\(947\) 0.122381i 0.00397684i 0.999998 + 0.00198842i \(0.000632935\pi\)
−0.999998 + 0.00198842i \(0.999367\pi\)
\(948\) 19.5862i 0.636129i
\(949\) −59.4308 −1.92921
\(950\) −8.70743 17.5184i −0.282506 0.568372i
\(951\) 2.42045 0.0784884
\(952\) 21.8838i 0.709257i
\(953\) 55.4917i 1.79755i 0.438409 + 0.898776i \(0.355542\pi\)
−0.438409 + 0.898776i \(0.644458\pi\)
\(954\) −94.5587 −3.06145
\(955\) −18.3006 + 4.29732i −0.592192 + 0.139058i
\(956\) −6.60112 −0.213495
\(957\) 7.67159i 0.247987i
\(958\) 62.5787i 2.02183i
\(959\) 24.5108 0.791494
\(960\) −18.9430 80.6708i −0.611384 2.60364i
\(961\) −30.5719 −0.986191
\(962\) 50.6873i 1.63422i
\(963\) 20.9470i 0.675008i
\(964\) 18.3377 0.590619
\(965\) 0.404470 + 1.72248i 0.0130203 + 0.0554485i
\(966\) 18.0160 0.579655
\(967\) 49.0722i 1.57806i 0.614357 + 0.789028i \(0.289416\pi\)
−0.614357 + 0.789028i \(0.710584\pi\)
\(968\) 11.8418i 0.380611i
\(969\) −9.17508 −0.294746
\(970\) −1.92804 + 0.452741i −0.0619057 + 0.0145366i
\(971\) 2.08793 0.0670050 0.0335025 0.999439i \(-0.489334\pi\)
0.0335025 + 0.999439i \(0.489334\pi\)
\(972\) 33.0071i 1.05870i
\(973\) 85.7241i 2.74819i
\(974\) 73.8856 2.36745
\(975\) 72.8179 36.1938i 2.33204 1.15913i
\(976\) −1.37725 −0.0440849
\(977\) 36.5119i 1.16812i −0.811711 0.584059i \(-0.801464\pi\)
0.811711 0.584059i \(-0.198536\pi\)
\(978\) 21.2774i 0.680376i
\(979\) −8.78179 −0.280667
\(980\) 59.6956 14.0177i 1.90691 0.447778i
\(981\) −40.4524 −1.29155
\(982\) 23.1821i 0.739771i
\(983\) 32.8698i 1.04838i −0.851601 0.524191i \(-0.824368\pi\)
0.851601 0.524191i \(-0.175632\pi\)
\(984\) 0 0
\(985\) −12.5268 53.3465i −0.399136 1.69976i
\(986\) −4.30056 −0.136958
\(987\) 55.8071i 1.77636i
\(988\) 31.5620i 1.00412i
\(989\) −7.41486 −0.235779
\(990\) −16.7234 71.2183i −0.531505 2.26347i
\(991\) −36.0160 −1.14409 −0.572043 0.820224i \(-0.693849\pi\)
−0.572043 + 0.820224i \(0.693849\pi\)
\(992\) 3.47743i 0.110409i
\(993\) 63.7860i 2.02419i
\(994\) 18.0160 0.571432
\(995\) −42.0320 + 9.86990i −1.33250 + 0.312897i
\(996\) 17.8193 0.564627
\(997\) 56.8063i 1.79907i −0.436844 0.899537i \(-0.643904\pi\)
0.436844 0.899537i \(-0.356096\pi\)
\(998\) 68.9344i 2.18208i
\(999\) −26.6171 −0.842128
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 145.2.b.c.59.5 yes 6
3.2 odd 2 1305.2.c.h.784.2 6
4.3 odd 2 2320.2.d.g.929.6 6
5.2 odd 4 725.2.a.l.1.2 6
5.3 odd 4 725.2.a.l.1.5 6
5.4 even 2 inner 145.2.b.c.59.2 6
15.2 even 4 6525.2.a.bt.1.5 6
15.8 even 4 6525.2.a.bt.1.2 6
15.14 odd 2 1305.2.c.h.784.5 6
20.19 odd 2 2320.2.d.g.929.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.c.59.2 6 5.4 even 2 inner
145.2.b.c.59.5 yes 6 1.1 even 1 trivial
725.2.a.l.1.2 6 5.2 odd 4
725.2.a.l.1.5 6 5.3 odd 4
1305.2.c.h.784.2 6 3.2 odd 2
1305.2.c.h.784.5 6 15.14 odd 2
2320.2.d.g.929.1 6 20.19 odd 2
2320.2.d.g.929.6 6 4.3 odd 2
6525.2.a.bt.1.2 6 15.8 even 4
6525.2.a.bt.1.5 6 15.2 even 4