Properties

Label 145.2.b.c.59.4
Level $145$
Weight $2$
Character 145.59
Analytic conductor $1.158$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [145,2,Mod(59,145)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("145.59"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(145, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 145.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.15783082931\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.84345856.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 13x^{4} + 41x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.4
Root \(0.156785i\) of defining polynomial
Character \(\chi\) \(=\) 145.59
Dual form 145.2.b.c.59.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.156785i q^{2} +2.56387i q^{3} +1.97542 q^{4} +(1.28672 - 1.82876i) q^{5} -0.401976 q^{6} -1.09364i q^{7} +0.623285i q^{8} -3.57344 q^{9} +(0.286721 + 0.201738i) q^{10} -4.40198 q^{11} +5.06472i q^{12} +3.97108i q^{13} +0.171466 q^{14} +(4.68870 + 3.29899i) q^{15} +3.85312 q^{16} -6.22138i q^{17} -0.560261i q^{18} -6.97542 q^{19} +(2.54181 - 3.61256i) q^{20} +2.80395 q^{21} -0.690163i q^{22} -0.780070i q^{23} -1.59802 q^{24} +(-1.68870 - 4.70620i) q^{25} -0.622605 q^{26} -1.47023i q^{27} -2.16040i q^{28} +1.00000 q^{29} +(-0.517231 + 0.735116i) q^{30} +6.40198 q^{31} +1.85068i q^{32} -11.2861i q^{33} +0.975419 q^{34} +(-2.00000 - 1.40721i) q^{35} -7.05904 q^{36} +1.09364i q^{37} -1.09364i q^{38} -10.1813 q^{39} +(1.13984 + 0.801994i) q^{40} +0.439617i q^{42} -0.376593i q^{43} -8.69575 q^{44} +(-4.59802 + 6.53495i) q^{45} +0.122303 q^{46} +4.75115i q^{47} +9.87890i q^{48} +5.80395 q^{49} +(0.737860 - 0.264762i) q^{50} +15.9508 q^{51} +7.84455i q^{52} -11.2861i q^{53} +0.230510 q^{54} +(-5.66412 + 8.05014i) q^{55} +0.681649 q^{56} -17.8841i q^{57} +0.156785i q^{58} -10.0000 q^{59} +(9.26214 + 6.51688i) q^{60} -1.14688 q^{61} +1.00373i q^{62} +3.90806i q^{63} +7.41607 q^{64} +(7.26214 + 5.10967i) q^{65} +1.76949 q^{66} +5.90782i q^{67} -12.2898i q^{68} +2.00000 q^{69} +(0.220629 - 0.313570i) q^{70} +2.00000 q^{71} -2.22727i q^{72} +8.72223i q^{73} -0.171466 q^{74} +(12.0661 - 4.32960i) q^{75} -13.7794 q^{76} +4.81418i q^{77} -1.59628i q^{78} +5.54886 q^{79} +(4.95789 - 7.04641i) q^{80} -6.95084 q^{81} +6.22138i q^{83} +5.53898 q^{84} +(-11.3774 - 8.00519i) q^{85} +0.0590441 q^{86} +2.56387i q^{87} -2.74369i q^{88} +10.8040 q^{89} +(-1.02458 - 0.720900i) q^{90} +4.34293 q^{91} -1.54096i q^{92} +16.4139i q^{93} -0.744908 q^{94} +(-8.97542 + 12.7563i) q^{95} -4.74491 q^{96} +17.4176i q^{97} +0.909972i q^{98} +15.7302 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{4} + 3 q^{5} + 14 q^{6} - 12 q^{9} - 3 q^{10} - 10 q^{11} + 8 q^{14} + 7 q^{15} + 42 q^{16} - 16 q^{19} + 13 q^{20} - 16 q^{21} - 26 q^{24} + 11 q^{25} - 46 q^{26} + 6 q^{29} + 25 q^{30} + 22 q^{31}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/145\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(117\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.156785i 0.110864i 0.998462 + 0.0554318i \(0.0176535\pi\)
−0.998462 + 0.0554318i \(0.982346\pi\)
\(3\) 2.56387i 1.48025i 0.672468 + 0.740126i \(0.265234\pi\)
−0.672468 + 0.740126i \(0.734766\pi\)
\(4\) 1.97542 0.987709
\(5\) 1.28672 1.82876i 0.575439 0.817845i
\(6\) −0.401976 −0.164106
\(7\) 1.09364i 0.413357i −0.978409 0.206678i \(-0.933735\pi\)
0.978409 0.206678i \(-0.0662654\pi\)
\(8\) 0.623285i 0.220365i
\(9\) −3.57344 −1.19115
\(10\) 0.286721 + 0.201738i 0.0906692 + 0.0637953i
\(11\) −4.40198 −1.32725 −0.663623 0.748067i \(-0.730982\pi\)
−0.663623 + 0.748067i \(0.730982\pi\)
\(12\) 5.06472i 1.46206i
\(13\) 3.97108i 1.10138i 0.834710 + 0.550690i \(0.185635\pi\)
−0.834710 + 0.550690i \(0.814365\pi\)
\(14\) 0.171466 0.0458262
\(15\) 4.68870 + 3.29899i 1.21062 + 0.851795i
\(16\) 3.85312 0.963279
\(17\) 6.22138i 1.50891i −0.656353 0.754454i \(-0.727902\pi\)
0.656353 0.754454i \(-0.272098\pi\)
\(18\) 0.560261i 0.132055i
\(19\) −6.97542 −1.60027 −0.800135 0.599819i \(-0.795239\pi\)
−0.800135 + 0.599819i \(0.795239\pi\)
\(20\) 2.54181 3.61256i 0.568367 0.807793i
\(21\) 2.80395 0.611873
\(22\) 0.690163i 0.147143i
\(23\) 0.780070i 0.162656i −0.996687 0.0813279i \(-0.974084\pi\)
0.996687 0.0813279i \(-0.0259161\pi\)
\(24\) −1.59802 −0.326195
\(25\) −1.68870 4.70620i −0.337739 0.941240i
\(26\) −0.622605 −0.122103
\(27\) 1.47023i 0.282946i
\(28\) 2.16040i 0.408276i
\(29\) 1.00000 0.185695
\(30\) −0.517231 + 0.735116i −0.0944331 + 0.134213i
\(31\) 6.40198 1.14983 0.574914 0.818214i \(-0.305035\pi\)
0.574914 + 0.818214i \(0.305035\pi\)
\(32\) 1.85068i 0.327157i
\(33\) 11.2861i 1.96466i
\(34\) 0.975419 0.167283
\(35\) −2.00000 1.40721i −0.338062 0.237862i
\(36\) −7.05904 −1.17651
\(37\) 1.09364i 0.179793i 0.995951 + 0.0898966i \(0.0286537\pi\)
−0.995951 + 0.0898966i \(0.971346\pi\)
\(38\) 1.09364i 0.177412i
\(39\) −10.1813 −1.63032
\(40\) 1.13984 + 0.801994i 0.180224 + 0.126806i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0.439617i 0.0678344i
\(43\) 0.376593i 0.0574299i −0.999588 0.0287150i \(-0.990858\pi\)
0.999588 0.0287150i \(-0.00914152\pi\)
\(44\) −8.69575 −1.31093
\(45\) −4.59802 + 6.53495i −0.685433 + 0.974173i
\(46\) 0.122303 0.0180326
\(47\) 4.75115i 0.693027i 0.938045 + 0.346513i \(0.112634\pi\)
−0.938045 + 0.346513i \(0.887366\pi\)
\(48\) 9.87890i 1.42590i
\(49\) 5.80395 0.829136
\(50\) 0.737860 0.264762i 0.104349 0.0374430i
\(51\) 15.9508 2.23356
\(52\) 7.84455i 1.08784i
\(53\) 11.2861i 1.55027i −0.631798 0.775133i \(-0.717683\pi\)
0.631798 0.775133i \(-0.282317\pi\)
\(54\) 0.230510 0.0313685
\(55\) −5.66412 + 8.05014i −0.763749 + 1.08548i
\(56\) 0.681649 0.0910892
\(57\) 17.8841i 2.36880i
\(58\) 0.156785i 0.0205869i
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 9.26214 + 6.51688i 1.19574 + 0.841326i
\(61\) −1.14688 −0.146844 −0.0734218 0.997301i \(-0.523392\pi\)
−0.0734218 + 0.997301i \(0.523392\pi\)
\(62\) 1.00373i 0.127474i
\(63\) 3.90806i 0.492369i
\(64\) 7.41607 0.927009
\(65\) 7.26214 + 5.10967i 0.900758 + 0.633777i
\(66\) 1.76949 0.217809
\(67\) 5.90782i 0.721754i 0.932613 + 0.360877i \(0.117523\pi\)
−0.932613 + 0.360877i \(0.882477\pi\)
\(68\) 12.2898i 1.49036i
\(69\) 2.00000 0.240772
\(70\) 0.220629 0.313570i 0.0263702 0.0374787i
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 2.22727i 0.262487i
\(73\) 8.72223i 1.02086i 0.859919 + 0.510430i \(0.170514\pi\)
−0.859919 + 0.510430i \(0.829486\pi\)
\(74\) −0.171466 −0.0199325
\(75\) 12.0661 4.32960i 1.39327 0.499940i
\(76\) −13.7794 −1.58060
\(77\) 4.81418i 0.548626i
\(78\) 1.59628i 0.180743i
\(79\) 5.54886 0.624296 0.312148 0.950034i \(-0.398952\pi\)
0.312148 + 0.950034i \(0.398952\pi\)
\(80\) 4.95789 7.04641i 0.554308 0.787812i
\(81\) −6.95084 −0.772315
\(82\) 0 0
\(83\) 6.22138i 0.682886i 0.939903 + 0.341443i \(0.110916\pi\)
−0.939903 + 0.341443i \(0.889084\pi\)
\(84\) 5.53898 0.604352
\(85\) −11.3774 8.00519i −1.23405 0.868284i
\(86\) 0.0590441 0.00636689
\(87\) 2.56387i 0.274876i
\(88\) 2.74369i 0.292478i
\(89\) 10.8040 1.14522 0.572608 0.819829i \(-0.305932\pi\)
0.572608 + 0.819829i \(0.305932\pi\)
\(90\) −1.02458 0.720900i −0.108000 0.0759896i
\(91\) 4.34293 0.455263
\(92\) 1.54096i 0.160657i
\(93\) 16.4139i 1.70204i
\(94\) −0.744908 −0.0768314
\(95\) −8.97542 + 12.7563i −0.920859 + 1.30877i
\(96\) −4.74491 −0.484275
\(97\) 17.4176i 1.76849i 0.467026 + 0.884244i \(0.345326\pi\)
−0.467026 + 0.884244i \(0.654674\pi\)
\(98\) 0.909972i 0.0919210i
\(99\) 15.7302 1.58095
\(100\) −3.33588 9.29671i −0.333588 0.929671i
\(101\) −12.7548 −1.26915 −0.634574 0.772862i \(-0.718825\pi\)
−0.634574 + 0.772862i \(0.718825\pi\)
\(102\) 2.50085i 0.247621i
\(103\) 5.15463i 0.507901i −0.967217 0.253950i \(-0.918270\pi\)
0.967217 0.253950i \(-0.0817300\pi\)
\(104\) −2.47512 −0.242705
\(105\) 3.60790 5.12775i 0.352095 0.500417i
\(106\) 1.76949 0.171868
\(107\) 1.09364i 0.105726i 0.998602 + 0.0528631i \(0.0168347\pi\)
−0.998602 + 0.0528631i \(0.983165\pi\)
\(108\) 2.90433i 0.279469i
\(109\) −15.3282 −1.46818 −0.734089 0.679053i \(-0.762391\pi\)
−0.734089 + 0.679053i \(0.762391\pi\)
\(110\) −1.26214 0.888047i −0.120340 0.0846720i
\(111\) −2.80395 −0.266139
\(112\) 4.21392i 0.398178i
\(113\) 7.28814i 0.685611i 0.939406 + 0.342805i \(0.111377\pi\)
−0.939406 + 0.342805i \(0.888623\pi\)
\(114\) 2.80395 0.262614
\(115\) −1.42656 1.00373i −0.133027 0.0935985i
\(116\) 1.97542 0.183413
\(117\) 14.1904i 1.31191i
\(118\) 1.56785i 0.144332i
\(119\) −6.80395 −0.623717
\(120\) −2.05621 + 2.92240i −0.187706 + 0.266777i
\(121\) 8.37739 0.761581
\(122\) 0.179814i 0.0162796i
\(123\) 0 0
\(124\) 12.6466 1.13570
\(125\) −10.7794 2.96735i −0.964136 0.265408i
\(126\) −0.612724 −0.0545858
\(127\) 17.7312i 1.57339i −0.617345 0.786693i \(-0.711792\pi\)
0.617345 0.786693i \(-0.288208\pi\)
\(128\) 4.86409i 0.429929i
\(129\) 0.965537 0.0850108
\(130\) −0.801119 + 1.13859i −0.0702628 + 0.0998612i
\(131\) 7.31835 0.639407 0.319704 0.947518i \(-0.396417\pi\)
0.319704 + 0.947518i \(0.396417\pi\)
\(132\) 22.2948i 1.94051i
\(133\) 7.62859i 0.661483i
\(134\) −0.926256 −0.0800163
\(135\) −2.68870 1.89178i −0.231406 0.162818i
\(136\) 3.87770 0.332510
\(137\) 9.78899i 0.836330i −0.908371 0.418165i \(-0.862673\pi\)
0.908371 0.418165i \(-0.137327\pi\)
\(138\) 0.313570i 0.0266928i
\(139\) 2.75479 0.233658 0.116829 0.993152i \(-0.462727\pi\)
0.116829 + 0.993152i \(0.462727\pi\)
\(140\) −3.95084 2.77983i −0.333907 0.234938i
\(141\) −12.1813 −1.02585
\(142\) 0.313570i 0.0263142i
\(143\) 17.4806i 1.46180i
\(144\) −13.7689 −1.14741
\(145\) 1.28672 1.82876i 0.106856 0.151870i
\(146\) −1.36751 −0.113176
\(147\) 14.8806i 1.22733i
\(148\) 2.16040i 0.177583i
\(149\) 4.52428 0.370643 0.185322 0.982678i \(-0.440667\pi\)
0.185322 + 0.982678i \(0.440667\pi\)
\(150\) 0.678816 + 1.89178i 0.0554251 + 0.154463i
\(151\) 2.80395 0.228182 0.114091 0.993470i \(-0.463604\pi\)
0.114091 + 0.993470i \(0.463604\pi\)
\(152\) 4.34768i 0.352643i
\(153\) 22.2318i 1.79733i
\(154\) −0.754790 −0.0608227
\(155\) 8.23756 11.7077i 0.661657 0.940381i
\(156\) −20.1124 −1.61028
\(157\) 4.97481i 0.397033i 0.980098 + 0.198517i \(0.0636124\pi\)
−0.980098 + 0.198517i \(0.936388\pi\)
\(158\) 0.869977i 0.0692117i
\(159\) 28.9361 2.29478
\(160\) 3.38444 + 2.38131i 0.267564 + 0.188259i
\(161\) −0.853115 −0.0672349
\(162\) 1.08979i 0.0856216i
\(163\) 20.7615i 1.62617i −0.582146 0.813084i \(-0.697787\pi\)
0.582146 0.813084i \(-0.302213\pi\)
\(164\) 0 0
\(165\) −20.6395 14.5221i −1.60679 1.13054i
\(166\) −0.975419 −0.0757072
\(167\) 21.9182i 1.69608i 0.529932 + 0.848040i \(0.322217\pi\)
−0.529932 + 0.848040i \(0.677783\pi\)
\(168\) 1.74766i 0.134835i
\(169\) −2.76949 −0.213038
\(170\) 1.25509 1.78380i 0.0962611 0.136811i
\(171\) 24.9263 1.90616
\(172\) 0.743929i 0.0567241i
\(173\) 3.25404i 0.247400i 0.992320 + 0.123700i \(0.0394760\pi\)
−0.992320 + 0.123700i \(0.960524\pi\)
\(174\) −0.401976 −0.0304737
\(175\) −5.14688 + 1.84683i −0.389068 + 0.139607i
\(176\) −16.9613 −1.27851
\(177\) 25.6387i 1.92712i
\(178\) 1.69390i 0.126963i
\(179\) 7.19605 0.537858 0.268929 0.963160i \(-0.413330\pi\)
0.268929 + 0.963160i \(0.413330\pi\)
\(180\) −9.08302 + 12.9093i −0.677008 + 0.962200i
\(181\) 13.0345 0.968844 0.484422 0.874834i \(-0.339030\pi\)
0.484422 + 0.874834i \(0.339030\pi\)
\(182\) 0.680906i 0.0504721i
\(183\) 2.94047i 0.217365i
\(184\) 0.486206 0.0358436
\(185\) 2.00000 + 1.40721i 0.147043 + 0.103460i
\(186\) −2.57344 −0.188694
\(187\) 27.3864i 2.00269i
\(188\) 9.38551i 0.684509i
\(189\) −1.60790 −0.116958
\(190\) −2.00000 1.40721i −0.145095 0.102090i
\(191\) −10.1223 −0.732424 −0.366212 0.930531i \(-0.619346\pi\)
−0.366212 + 0.930531i \(0.619346\pi\)
\(192\) 19.0139i 1.37221i
\(193\) 22.8589i 1.64542i −0.568462 0.822710i \(-0.692461\pi\)
0.568462 0.822710i \(-0.307539\pi\)
\(194\) −2.73081 −0.196061
\(195\) −13.1006 + 18.6192i −0.938150 + 1.33335i
\(196\) 11.4652 0.818945
\(197\) 22.0711i 1.57250i 0.617907 + 0.786251i \(0.287981\pi\)
−0.617907 + 0.786251i \(0.712019\pi\)
\(198\) 2.46626i 0.175269i
\(199\) −5.19605 −0.368338 −0.184169 0.982895i \(-0.558959\pi\)
−0.184169 + 0.982895i \(0.558959\pi\)
\(200\) 2.93330 1.05254i 0.207416 0.0744258i
\(201\) −15.1469 −1.06838
\(202\) 1.99976i 0.140702i
\(203\) 1.09364i 0.0767585i
\(204\) 31.5096 2.20611
\(205\) 0 0
\(206\) 0.808167 0.0563077
\(207\) 2.78754i 0.193747i
\(208\) 15.3010i 1.06094i
\(209\) 30.7056 2.12395
\(210\) 0.803952 + 0.565665i 0.0554780 + 0.0390346i
\(211\) 1.64719 0.113397 0.0566985 0.998391i \(-0.481943\pi\)
0.0566985 + 0.998391i \(0.481943\pi\)
\(212\) 22.2948i 1.53121i
\(213\) 5.12775i 0.351347i
\(214\) −0.171466 −0.0117212
\(215\) −0.688697 0.484571i −0.0469688 0.0330474i
\(216\) 0.916374 0.0623514
\(217\) 7.00145i 0.475290i
\(218\) 2.40323i 0.162768i
\(219\) −22.3627 −1.51113
\(220\) −11.1890 + 15.9024i −0.754362 + 1.07214i
\(221\) 24.7056 1.66188
\(222\) 0.439617i 0.0295052i
\(223\) 9.47542i 0.634521i −0.948338 0.317261i \(-0.897237\pi\)
0.948338 0.317261i \(-0.102763\pi\)
\(224\) 2.02398 0.135233
\(225\) 6.03446 + 16.8173i 0.402298 + 1.12116i
\(226\) −1.14267 −0.0760093
\(227\) 5.72800i 0.380181i 0.981767 + 0.190090i \(0.0608781\pi\)
−0.981767 + 0.190090i \(0.939122\pi\)
\(228\) 35.3286i 2.33969i
\(229\) −15.1469 −1.00093 −0.500467 0.865756i \(-0.666838\pi\)
−0.500467 + 0.865756i \(0.666838\pi\)
\(230\) 0.157370 0.223663i 0.0103767 0.0147479i
\(231\) −12.3429 −0.812105
\(232\) 0.623285i 0.0409207i
\(233\) 0.717046i 0.0469753i 0.999724 + 0.0234876i \(0.00747703\pi\)
−0.999724 + 0.0234876i \(0.992523\pi\)
\(234\) 2.22484 0.145443
\(235\) 8.68870 + 6.11341i 0.566788 + 0.398795i
\(236\) −19.7542 −1.28589
\(237\) 14.2266i 0.924115i
\(238\) 1.06676i 0.0691475i
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 18.0661 + 12.7114i 1.16616 + 0.820516i
\(241\) 17.3282 1.11621 0.558105 0.829770i \(-0.311529\pi\)
0.558105 + 0.829770i \(0.311529\pi\)
\(242\) 1.31345i 0.0844316i
\(243\) 22.2318i 1.42617i
\(244\) −2.26558 −0.145039
\(245\) 7.46807 10.6140i 0.477117 0.678104i
\(246\) 0 0
\(247\) 27.7000i 1.76251i
\(248\) 3.99026i 0.253382i
\(249\) −15.9508 −1.01084
\(250\) 0.465235 1.69004i 0.0294241 0.106888i
\(251\) 26.0099 1.64173 0.820865 0.571123i \(-0.193492\pi\)
0.820865 + 0.571123i \(0.193492\pi\)
\(252\) 7.72005i 0.486317i
\(253\) 3.43385i 0.215884i
\(254\) 2.77998 0.174431
\(255\) 20.5243 29.1702i 1.28528 1.82671i
\(256\) 14.0695 0.879346
\(257\) 15.0335i 0.937766i 0.883260 + 0.468883i \(0.155343\pi\)
−0.883260 + 0.468883i \(0.844657\pi\)
\(258\) 0.151382i 0.00942461i
\(259\) 1.19605 0.0743188
\(260\) 14.3458 + 10.0937i 0.889687 + 0.625988i
\(261\) −3.57344 −0.221191
\(262\) 1.14741i 0.0708870i
\(263\) 12.0662i 0.744032i 0.928226 + 0.372016i \(0.121333\pi\)
−0.928226 + 0.372016i \(0.878667\pi\)
\(264\) 7.03446 0.432941
\(265\) −20.6395 14.5221i −1.26788 0.892084i
\(266\) −1.19605 −0.0733344
\(267\) 27.7000i 1.69521i
\(268\) 11.6704i 0.712884i
\(269\) 10.8531 0.661726 0.330863 0.943679i \(-0.392660\pi\)
0.330863 + 0.943679i \(0.392660\pi\)
\(270\) 0.296602 0.421547i 0.0180506 0.0256545i
\(271\) −12.7449 −0.774198 −0.387099 0.922038i \(-0.626523\pi\)
−0.387099 + 0.922038i \(0.626523\pi\)
\(272\) 23.9717i 1.45350i
\(273\) 11.1347i 0.673904i
\(274\) 1.53476 0.0927185
\(275\) 7.43361 + 20.7166i 0.448263 + 1.24926i
\(276\) 3.95084 0.237812
\(277\) 20.0714i 1.20597i −0.797752 0.602986i \(-0.793978\pi\)
0.797752 0.602986i \(-0.206022\pi\)
\(278\) 0.431909i 0.0259042i
\(279\) −22.8771 −1.36962
\(280\) 0.877093 1.24657i 0.0524163 0.0744968i
\(281\) −20.9361 −1.24895 −0.624473 0.781047i \(-0.714686\pi\)
−0.624473 + 0.781047i \(0.714686\pi\)
\(282\) 1.90985i 0.113730i
\(283\) 16.9703i 1.00878i 0.863477 + 0.504389i \(0.168282\pi\)
−0.863477 + 0.504389i \(0.831718\pi\)
\(284\) 3.95084 0.234439
\(285\) −32.7056 23.0118i −1.93731 1.36310i
\(286\) 2.74069 0.162061
\(287\) 0 0
\(288\) 6.61330i 0.389692i
\(289\) −21.7056 −1.27680
\(290\) 0.286721 + 0.201738i 0.0168368 + 0.0118465i
\(291\) −44.6565 −2.61781
\(292\) 17.2301i 1.00831i
\(293\) 9.47542i 0.553560i −0.960933 0.276780i \(-0.910733\pi\)
0.960933 0.276780i \(-0.0892673\pi\)
\(294\) −2.33305 −0.136066
\(295\) −12.8672 + 18.2876i −0.749158 + 1.06474i
\(296\) −0.681649 −0.0396201
\(297\) 6.47193i 0.375539i
\(298\) 0.709338i 0.0410909i
\(299\) 3.09772 0.179146
\(300\) 23.8356 8.55278i 1.37615 0.493795i
\(301\) −0.411857 −0.0237391
\(302\) 0.439617i 0.0252971i
\(303\) 32.7017i 1.87866i
\(304\) −26.8771 −1.54151
\(305\) −1.47572 + 2.09737i −0.0844995 + 0.120095i
\(306\) −3.48560 −0.199259
\(307\) 19.3812i 1.10614i −0.833134 0.553072i \(-0.813456\pi\)
0.833134 0.553072i \(-0.186544\pi\)
\(308\) 9.51001i 0.541883i
\(309\) 13.2158 0.751821
\(310\) 1.83558 + 1.29152i 0.104254 + 0.0733536i
\(311\) −9.26919 −0.525607 −0.262804 0.964849i \(-0.584647\pi\)
−0.262804 + 0.964849i \(0.584647\pi\)
\(312\) 6.34588i 0.359265i
\(313\) 14.5324i 0.821422i −0.911766 0.410711i \(-0.865281\pi\)
0.911766 0.410711i \(-0.134719\pi\)
\(314\) −0.779975 −0.0440165
\(315\) 7.14688 + 5.02858i 0.402681 + 0.283328i
\(316\) 10.9613 0.616623
\(317\) 22.4116i 1.25876i 0.777098 + 0.629380i \(0.216691\pi\)
−0.777098 + 0.629380i \(0.783309\pi\)
\(318\) 4.53675i 0.254408i
\(319\) −4.40198 −0.246463
\(320\) 9.54242 13.5622i 0.533437 0.758149i
\(321\) −2.80395 −0.156501
\(322\) 0.133756i 0.00745390i
\(323\) 43.3968i 2.41466i
\(324\) −13.7308 −0.762823
\(325\) 18.6887 6.70596i 1.03666 0.371979i
\(326\) 3.25509 0.180283
\(327\) 39.2996i 2.17327i
\(328\) 0 0
\(329\) 5.19605 0.286467
\(330\) 2.27684 3.23597i 0.125336 0.178134i
\(331\) 7.89179 0.433772 0.216886 0.976197i \(-0.430410\pi\)
0.216886 + 0.976197i \(0.430410\pi\)
\(332\) 12.2898i 0.674493i
\(333\) 3.90806i 0.214160i
\(334\) −3.43644 −0.188034
\(335\) 10.8040 + 7.60171i 0.590283 + 0.415326i
\(336\) 10.8040 0.589404
\(337\) 33.4280i 1.82094i −0.413579 0.910468i \(-0.635721\pi\)
0.413579 0.910468i \(-0.364279\pi\)
\(338\) 0.434214i 0.0236181i
\(339\) −18.6859 −1.01488
\(340\) −22.4751 15.8136i −1.21888 0.857613i
\(341\) −28.1813 −1.52611
\(342\) 3.90806i 0.211324i
\(343\) 14.0029i 0.756086i
\(344\) 0.234725 0.0126555
\(345\) 2.57344 3.65751i 0.138549 0.196914i
\(346\) −0.510183 −0.0274276
\(347\) 31.1069i 1.66991i −0.550320 0.834954i \(-0.685494\pi\)
0.550320 0.834954i \(-0.314506\pi\)
\(348\) 5.06472i 0.271498i
\(349\) 5.76949 0.308834 0.154417 0.988006i \(-0.450650\pi\)
0.154417 + 0.988006i \(0.450650\pi\)
\(350\) −0.289554 0.806953i −0.0154773 0.0431335i
\(351\) 5.83842 0.311632
\(352\) 8.14665i 0.434218i
\(353\) 13.5095i 0.719039i −0.933137 0.359520i \(-0.882941\pi\)
0.933137 0.359520i \(-0.117059\pi\)
\(354\) 4.01976 0.213648
\(355\) 2.57344 3.65751i 0.136584 0.194121i
\(356\) 21.3423 1.13114
\(357\) 17.4445i 0.923259i
\(358\) 1.12823i 0.0596289i
\(359\) 1.15677 0.0610518 0.0305259 0.999534i \(-0.490282\pi\)
0.0305259 + 0.999534i \(0.490282\pi\)
\(360\) −4.07314 2.86588i −0.214673 0.151045i
\(361\) 29.6565 1.56087
\(362\) 2.04361i 0.107410i
\(363\) 21.4786i 1.12733i
\(364\) 8.57911 0.449667
\(365\) 15.9508 + 11.2231i 0.834905 + 0.587443i
\(366\) 0.461020 0.0240979
\(367\) 10.5959i 0.553104i 0.960999 + 0.276552i \(0.0891918\pi\)
−0.960999 + 0.276552i \(0.910808\pi\)
\(368\) 3.00570i 0.156683i
\(369\) 0 0
\(370\) −0.220629 + 0.313570i −0.0114700 + 0.0163017i
\(371\) −12.3429 −0.640813
\(372\) 32.4242i 1.68112i
\(373\) 7.09907i 0.367576i −0.982966 0.183788i \(-0.941164\pi\)
0.982966 0.183788i \(-0.0588360\pi\)
\(374\) −4.29377 −0.222026
\(375\) 7.60790 27.6369i 0.392871 1.42717i
\(376\) −2.96132 −0.152719
\(377\) 3.97108i 0.204521i
\(378\) 0.252095i 0.0129664i
\(379\) −18.1223 −0.930880 −0.465440 0.885079i \(-0.654104\pi\)
−0.465440 + 0.885079i \(0.654104\pi\)
\(380\) −17.7302 + 25.1991i −0.909540 + 1.29269i
\(381\) 45.4604 2.32901
\(382\) 1.58702i 0.0811992i
\(383\) 3.28092i 0.167647i −0.996481 0.0838236i \(-0.973287\pi\)
0.996481 0.0838236i \(-0.0267132\pi\)
\(384\) −12.4709 −0.636403
\(385\) 8.80395 + 6.19450i 0.448691 + 0.315701i
\(386\) 3.58393 0.182417
\(387\) 1.34573i 0.0684075i
\(388\) 34.4070i 1.74675i
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) −2.91921 2.05397i −0.147820 0.104007i
\(391\) −4.85312 −0.245433
\(392\) 3.61752i 0.182712i
\(393\) 18.7633i 0.946484i
\(394\) −3.46042 −0.174333
\(395\) 7.13984 10.1475i 0.359244 0.510577i
\(396\) 31.0737 1.56151
\(397\) 36.3054i 1.82212i 0.412278 + 0.911058i \(0.364733\pi\)
−0.412278 + 0.911058i \(0.635267\pi\)
\(398\) 0.814661i 0.0408353i
\(399\) −19.5587 −0.979162
\(400\) −6.50675 18.1335i −0.325337 0.906676i
\(401\) 26.0830 1.30252 0.651262 0.758853i \(-0.274240\pi\)
0.651262 + 0.758853i \(0.274240\pi\)
\(402\) 2.37480i 0.118444i
\(403\) 25.4228i 1.26640i
\(404\) −25.1960 −1.25355
\(405\) −8.94379 + 12.7114i −0.444420 + 0.631634i
\(406\) 0.171466 0.00850972
\(407\) 4.81418i 0.238630i
\(408\) 9.94192i 0.492198i
\(409\) −13.0486 −0.645210 −0.322605 0.946534i \(-0.604558\pi\)
−0.322605 + 0.946534i \(0.604558\pi\)
\(410\) 0 0
\(411\) 25.0977 1.23798
\(412\) 10.1825i 0.501658i
\(413\) 10.9364i 0.538145i
\(414\) −0.437043 −0.0214795
\(415\) 11.3774 + 8.00519i 0.558494 + 0.392959i
\(416\) −7.34920 −0.360324
\(417\) 7.06293i 0.345873i
\(418\) 4.81418i 0.235469i
\(419\) −35.8525 −1.75151 −0.875755 0.482756i \(-0.839636\pi\)
−0.875755 + 0.482756i \(0.839636\pi\)
\(420\) 7.12712 10.1294i 0.347768 0.494266i
\(421\) 16.7056 0.814182 0.407091 0.913388i \(-0.366543\pi\)
0.407091 + 0.913388i \(0.366543\pi\)
\(422\) 0.258254i 0.0125716i
\(423\) 16.9780i 0.825497i
\(424\) 7.03446 0.341624
\(425\) −29.2791 + 10.5060i −1.42024 + 0.509618i
\(426\) −0.803952 −0.0389516
\(427\) 1.25428i 0.0606988i
\(428\) 2.16040i 0.104427i
\(429\) 44.8180 2.16384
\(430\) 0.0759733 0.107977i 0.00366376 0.00520713i
\(431\) −26.3135 −1.26748 −0.633739 0.773547i \(-0.718481\pi\)
−0.633739 + 0.773547i \(0.718481\pi\)
\(432\) 5.66498i 0.272556i
\(433\) 10.7220i 0.515266i 0.966243 + 0.257633i \(0.0829425\pi\)
−0.966243 + 0.257633i \(0.917057\pi\)
\(434\) 1.09772 0.0526923
\(435\) 4.68870 + 3.29899i 0.224806 + 0.158174i
\(436\) −30.2797 −1.45013
\(437\) 5.44131i 0.260293i
\(438\) 3.50613i 0.167529i
\(439\) −29.5587 −1.41076 −0.705381 0.708828i \(-0.749224\pi\)
−0.705381 + 0.708828i \(0.749224\pi\)
\(440\) −5.01753 3.53036i −0.239202 0.168303i
\(441\) −20.7401 −0.987623
\(442\) 3.87347i 0.184242i
\(443\) 3.40697i 0.161870i −0.996719 0.0809349i \(-0.974209\pi\)
0.996719 0.0809349i \(-0.0257906\pi\)
\(444\) −5.53898 −0.262868
\(445\) 13.9017 19.7578i 0.659003 0.936609i
\(446\) 1.48560 0.0703453
\(447\) 11.5997i 0.548646i
\(448\) 8.11051i 0.383186i
\(449\) −0.461020 −0.0217569 −0.0108784 0.999941i \(-0.503463\pi\)
−0.0108784 + 0.999941i \(0.503463\pi\)
\(450\) −2.63670 + 0.946112i −0.124295 + 0.0446001i
\(451\) 0 0
\(452\) 14.3971i 0.677184i
\(453\) 7.18898i 0.337768i
\(454\) −0.898063 −0.0421482
\(455\) 5.58814 7.94216i 0.261976 0.372334i
\(456\) 11.1469 0.522001
\(457\) 1.37262i 0.0642084i −0.999485 0.0321042i \(-0.989779\pi\)
0.999485 0.0321042i \(-0.0102208\pi\)
\(458\) 2.37480i 0.110967i
\(459\) −9.14688 −0.426940
\(460\) −2.81805 1.98279i −0.131392 0.0924481i
\(461\) 14.5875 0.679409 0.339705 0.940532i \(-0.389673\pi\)
0.339705 + 0.940532i \(0.389673\pi\)
\(462\) 1.93518i 0.0900329i
\(463\) 18.8517i 0.876112i −0.898948 0.438056i \(-0.855667\pi\)
0.898948 0.438056i \(-0.144333\pi\)
\(464\) 3.85312 0.178876
\(465\) 30.0169 + 21.1200i 1.39200 + 0.979419i
\(466\) −0.112422 −0.00520785
\(467\) 29.9580i 1.38629i −0.720798 0.693145i \(-0.756225\pi\)
0.720798 0.693145i \(-0.243775\pi\)
\(468\) 28.0320i 1.29578i
\(469\) 6.46102 0.298342
\(470\) −0.958489 + 1.36226i −0.0442118 + 0.0628362i
\(471\) −12.7548 −0.587710
\(472\) 6.23285i 0.286890i
\(473\) 1.65776i 0.0762237i
\(474\) −2.23051 −0.102451
\(475\) 11.7794 + 32.8277i 0.540475 + 1.50624i
\(476\) −13.4407 −0.616051
\(477\) 40.3302i 1.84660i
\(478\) 0.313570i 0.0143423i
\(479\) 32.7647 1.49706 0.748528 0.663103i \(-0.230761\pi\)
0.748528 + 0.663103i \(0.230761\pi\)
\(480\) −6.10537 + 8.67728i −0.278671 + 0.396062i
\(481\) −4.34293 −0.198021
\(482\) 2.71680i 0.123747i
\(483\) 2.18728i 0.0995246i
\(484\) 16.5489 0.752221
\(485\) 31.8525 + 22.4116i 1.44635 + 1.01766i
\(486\) 3.48560 0.158110
\(487\) 14.1098i 0.639375i 0.947523 + 0.319688i \(0.103578\pi\)
−0.947523 + 0.319688i \(0.896422\pi\)
\(488\) 0.714836i 0.0323591i
\(489\) 53.2299 2.40714
\(490\) 1.66412 + 1.17088i 0.0751771 + 0.0528949i
\(491\) 4.10821 0.185401 0.0927004 0.995694i \(-0.470450\pi\)
0.0927004 + 0.995694i \(0.470450\pi\)
\(492\) 0 0
\(493\) 6.22138i 0.280197i
\(494\) 4.34293 0.195398
\(495\) 20.2404 28.7667i 0.909738 1.29297i
\(496\) 24.6676 1.10761
\(497\) 2.18728i 0.0981129i
\(498\) 2.50085i 0.112066i
\(499\) −30.0689 −1.34607 −0.673035 0.739611i \(-0.735010\pi\)
−0.673035 + 0.739611i \(0.735010\pi\)
\(500\) −21.2938 5.86176i −0.952286 0.262146i
\(501\) −56.1954 −2.51063
\(502\) 4.07795i 0.182008i
\(503\) 14.8806i 0.663493i −0.943369 0.331746i \(-0.892362\pi\)
0.943369 0.331746i \(-0.107638\pi\)
\(504\) −2.43583 −0.108501
\(505\) −16.4119 + 23.3254i −0.730318 + 1.03797i
\(506\) −0.538375 −0.0239337
\(507\) 7.10062i 0.315350i
\(508\) 35.0264i 1.55405i
\(509\) −1.93674 −0.0858445 −0.0429223 0.999078i \(-0.513667\pi\)
−0.0429223 + 0.999078i \(0.513667\pi\)
\(510\) 4.57344 + 3.21789i 0.202515 + 0.142491i
\(511\) 9.53898 0.421980
\(512\) 11.9341i 0.527416i
\(513\) 10.2555i 0.452791i
\(514\) −2.35703 −0.103964
\(515\) −9.42656 6.63257i −0.415384 0.292266i
\(516\) 1.90734 0.0839660
\(517\) 20.9145i 0.919817i
\(518\) 0.187522i 0.00823925i
\(519\) −8.34293 −0.366214
\(520\) −3.18478 + 4.52638i −0.139662 + 0.198495i
\(521\) −4.23051 −0.185342 −0.0926710 0.995697i \(-0.529540\pi\)
−0.0926710 + 0.995697i \(0.529540\pi\)
\(522\) 0.560261i 0.0245220i
\(523\) 4.40144i 0.192462i −0.995359 0.0962308i \(-0.969321\pi\)
0.995359 0.0962308i \(-0.0306787\pi\)
\(524\) 14.4568 0.631548
\(525\) −4.73503 13.1960i −0.206654 0.575919i
\(526\) −1.89179 −0.0824861
\(527\) 39.8292i 1.73499i
\(528\) 43.4867i 1.89251i
\(529\) 22.3915 0.973543
\(530\) 2.27684 3.23597i 0.0988996 0.140561i
\(531\) 35.7344 1.55074
\(532\) 15.0697i 0.653353i
\(533\) 0 0
\(534\) −4.34293 −0.187937
\(535\) 2.00000 + 1.40721i 0.0864675 + 0.0608390i
\(536\) −3.68225 −0.159049
\(537\) 18.4497i 0.796165i
\(538\) 1.70160i 0.0733613i
\(539\) −25.5489 −1.10047
\(540\) −5.31130 3.73706i −0.228562 0.160817i
\(541\) −32.4119 −1.39349 −0.696747 0.717317i \(-0.745370\pi\)
−0.696747 + 0.717317i \(0.745370\pi\)
\(542\) 1.99821i 0.0858304i
\(543\) 33.4187i 1.43413i
\(544\) 11.5138 0.493650
\(545\) −19.7232 + 28.0316i −0.844847 + 1.20074i
\(546\) −1.74576 −0.0747114
\(547\) 12.9093i 0.551961i 0.961163 + 0.275980i \(0.0890024\pi\)
−0.961163 + 0.275980i \(0.910998\pi\)
\(548\) 19.3374i 0.826051i
\(549\) 4.09833 0.174912
\(550\) −3.24804 + 1.16548i −0.138497 + 0.0496961i
\(551\) −6.97542 −0.297163
\(552\) 1.24657i 0.0530576i
\(553\) 6.06845i 0.258057i
\(554\) 3.14688 0.133698
\(555\) −3.60790 + 5.12775i −0.153147 + 0.217661i
\(556\) 5.44186 0.230786
\(557\) 23.0195i 0.975369i −0.873020 0.487685i \(-0.837842\pi\)
0.873020 0.487685i \(-0.162158\pi\)
\(558\) 3.58678i 0.151841i
\(559\) 1.49548 0.0632522
\(560\) −7.70623 5.42214i −0.325648 0.229127i
\(561\) −70.2152 −2.96449
\(562\) 3.28247i 0.138463i
\(563\) 27.3234i 1.15154i −0.817611 0.575771i \(-0.804702\pi\)
0.817611 0.575771i \(-0.195298\pi\)
\(564\) −24.0633 −1.01325
\(565\) 13.3282 + 9.37781i 0.560723 + 0.394527i
\(566\) −2.66068 −0.111837
\(567\) 7.60171i 0.319242i
\(568\) 1.24657i 0.0523049i
\(569\) 0.803952 0.0337034 0.0168517 0.999858i \(-0.494636\pi\)
0.0168517 + 0.999858i \(0.494636\pi\)
\(570\) 3.60790 5.12775i 0.151119 0.214778i
\(571\) 43.4604 1.81876 0.909381 0.415964i \(-0.136556\pi\)
0.909381 + 0.415964i \(0.136556\pi\)
\(572\) 34.5315i 1.44384i
\(573\) 25.9523i 1.08417i
\(574\) 0 0
\(575\) −3.67116 + 1.31730i −0.153098 + 0.0549353i
\(576\) −26.5009 −1.10420
\(577\) 1.27345i 0.0530146i 0.999649 + 0.0265073i \(0.00843852\pi\)
−0.999649 + 0.0265073i \(0.991561\pi\)
\(578\) 3.40311i 0.141551i
\(579\) 58.6073 2.43564
\(580\) 2.54181 3.61256i 0.105543 0.150003i
\(581\) 6.80395 0.282276
\(582\) 7.00145i 0.290220i
\(583\) 49.6812i 2.05758i
\(584\) −5.43644 −0.224961
\(585\) −25.9508 18.2591i −1.07294 0.754922i
\(586\) 1.48560 0.0613696
\(587\) 31.8678i 1.31533i −0.753312 0.657663i \(-0.771545\pi\)
0.753312 0.657663i \(-0.228455\pi\)
\(588\) 29.3954i 1.21225i
\(589\) −44.6565 −1.84004
\(590\) −2.86721 2.01738i −0.118041 0.0830543i
\(591\) −56.5875 −2.32770
\(592\) 4.21392i 0.173191i
\(593\) 1.21043i 0.0497064i 0.999691 + 0.0248532i \(0.00791183\pi\)
−0.999691 + 0.0248532i \(0.992088\pi\)
\(594\) −1.01470 −0.0416337
\(595\) −8.75479 + 12.4428i −0.358911 + 0.510104i
\(596\) 8.93735 0.366088
\(597\) 13.3220i 0.545233i
\(598\) 0.485676i 0.0198608i
\(599\) −24.2053 −0.989003 −0.494501 0.869177i \(-0.664649\pi\)
−0.494501 + 0.869177i \(0.664649\pi\)
\(600\) 2.69858 + 7.52062i 0.110169 + 0.307028i
\(601\) 4.68586 0.191140 0.0955702 0.995423i \(-0.469533\pi\)
0.0955702 + 0.995423i \(0.469533\pi\)
\(602\) 0.0645730i 0.00263180i
\(603\) 21.1112i 0.859716i
\(604\) 5.53898 0.225378
\(605\) 10.7794 15.3202i 0.438244 0.622855i
\(606\) 5.12712 0.208275
\(607\) 0.502641i 0.0204016i −0.999948 0.0102008i \(-0.996753\pi\)
0.999948 0.0102008i \(-0.00324707\pi\)
\(608\) 12.9093i 0.523540i
\(609\) 2.80395 0.113622
\(610\) −0.328836 0.231371i −0.0133142 0.00936792i
\(611\) −18.8672 −0.763286
\(612\) 43.9170i 1.77524i
\(613\) 22.9142i 0.925496i −0.886490 0.462748i \(-0.846863\pi\)
0.886490 0.462748i \(-0.153137\pi\)
\(614\) 3.03868 0.122631
\(615\) 0 0
\(616\) −3.00060 −0.120898
\(617\) 15.8574i 0.638397i −0.947688 0.319198i \(-0.896586\pi\)
0.947688 0.319198i \(-0.103414\pi\)
\(618\) 2.07204i 0.0833496i
\(619\) 35.4014 1.42290 0.711451 0.702736i \(-0.248039\pi\)
0.711451 + 0.702736i \(0.248039\pi\)
\(620\) 16.2726 23.1275i 0.653524 0.928823i
\(621\) −1.14688 −0.0460229
\(622\) 1.45327i 0.0582707i
\(623\) 11.8156i 0.473383i
\(624\) −39.2299 −1.57045
\(625\) −19.2966 + 15.8947i −0.771864 + 0.635788i
\(626\) 2.27846 0.0910658
\(627\) 78.7253i 3.14399i
\(628\) 9.82734i 0.392154i
\(629\) 6.80395 0.271291
\(630\) −0.788405 + 1.12052i −0.0314108 + 0.0446427i
\(631\) 44.7056 1.77970 0.889851 0.456250i \(-0.150808\pi\)
0.889851 + 0.456250i \(0.150808\pi\)
\(632\) 3.45852i 0.137573i
\(633\) 4.22318i 0.167856i
\(634\) −3.51379 −0.139551
\(635\) −32.4260 22.8150i −1.28678 0.905388i
\(636\) 57.1610 2.26658
\(637\) 23.0480i 0.913194i
\(638\) 0.690163i 0.0273238i
\(639\) −7.14688 −0.282726
\(640\) 8.89523 + 6.25872i 0.351615 + 0.247398i
\(641\) 10.0689 0.397699 0.198849 0.980030i \(-0.436280\pi\)
0.198849 + 0.980030i \(0.436280\pi\)
\(642\) 0.439617i 0.0173503i
\(643\) 13.9760i 0.551161i −0.961278 0.275580i \(-0.911130\pi\)
0.961278 0.275580i \(-0.0888700\pi\)
\(644\) −1.68526 −0.0664085
\(645\) 1.24238 1.76573i 0.0489186 0.0695256i
\(646\) −6.80395 −0.267698
\(647\) 31.1607i 1.22505i 0.790450 + 0.612527i \(0.209847\pi\)
−0.790450 + 0.612527i \(0.790153\pi\)
\(648\) 4.33235i 0.170191i
\(649\) 44.0198 1.72793
\(650\) 1.05139 + 2.93010i 0.0412390 + 0.114928i
\(651\) 17.9508 0.703549
\(652\) 41.0127i 1.60618i
\(653\) 26.1129i 1.02188i 0.859617 + 0.510939i \(0.170702\pi\)
−0.859617 + 0.510939i \(0.829298\pi\)
\(654\) 6.16158 0.240937
\(655\) 9.41668 13.3835i 0.367940 0.522936i
\(656\) 0 0
\(657\) 31.1684i 1.21600i
\(658\) 0.814661i 0.0317588i
\(659\) 28.5974 1.11400 0.556999 0.830513i \(-0.311953\pi\)
0.556999 + 0.830513i \(0.311953\pi\)
\(660\) −40.7717 28.6872i −1.58704 1.11665i
\(661\) −38.9994 −1.51690 −0.758450 0.651731i \(-0.774043\pi\)
−0.758450 + 0.651731i \(0.774043\pi\)
\(662\) 1.23731i 0.0480895i
\(663\) 63.3421i 2.46000i
\(664\) −3.87770 −0.150484
\(665\) 13.9508 + 9.81587i 0.540990 + 0.380643i
\(666\) 0.612724 0.0237426
\(667\) 0.780070i 0.0302044i
\(668\) 43.2976i 1.67523i
\(669\) 24.2938 0.939251
\(670\) −1.19183 + 1.69390i −0.0460445 + 0.0654409i
\(671\) 5.04856 0.194897
\(672\) 5.18922i 0.200178i
\(673\) 38.6725i 1.49072i 0.666665 + 0.745358i \(0.267721\pi\)
−0.666665 + 0.745358i \(0.732279\pi\)
\(674\) 5.24100 0.201876
\(675\) −6.91921 + 2.48278i −0.266320 + 0.0955622i
\(676\) −5.47090 −0.210419
\(677\) 28.4800i 1.09458i 0.836944 + 0.547288i \(0.184340\pi\)
−0.836944 + 0.547288i \(0.815660\pi\)
\(678\) 2.92966i 0.112513i
\(679\) 19.0486 0.731017
\(680\) 4.98951 7.09136i 0.191339 0.271941i
\(681\) −14.6859 −0.562764
\(682\) 4.41841i 0.169190i
\(683\) 12.4159i 0.475081i −0.971378 0.237540i \(-0.923659\pi\)
0.971378 0.237540i \(-0.0763412\pi\)
\(684\) 49.2398 1.88273
\(685\) −17.9017 12.5957i −0.683988 0.481257i
\(686\) 2.19544 0.0838224
\(687\) 38.8347i 1.48164i
\(688\) 1.45106i 0.0553211i
\(689\) 44.8180 1.70743
\(690\) 0.573442 + 0.403477i 0.0218306 + 0.0153601i
\(691\) 10.8040 0.411002 0.205501 0.978657i \(-0.434118\pi\)
0.205501 + 0.978657i \(0.434118\pi\)
\(692\) 6.42808i 0.244359i
\(693\) 17.2032i 0.653495i
\(694\) 4.87709 0.185132
\(695\) 3.54465 5.03784i 0.134456 0.191096i
\(696\) −1.59802 −0.0605729
\(697\) 0 0
\(698\) 0.904568i 0.0342384i
\(699\) −1.83842 −0.0695352
\(700\) −10.1673 + 3.64825i −0.384286 + 0.137891i
\(701\) 8.47512 0.320101 0.160050 0.987109i \(-0.448834\pi\)
0.160050 + 0.987109i \(0.448834\pi\)
\(702\) 0.915375i 0.0345486i
\(703\) 7.62859i 0.287718i
\(704\) −32.6454 −1.23037
\(705\) −15.6740 + 22.2767i −0.590317 + 0.838990i
\(706\) 2.11809 0.0797153
\(707\) 13.9491i 0.524612i
\(708\) 50.6472i 1.90344i
\(709\) 32.8180 1.23251 0.616254 0.787548i \(-0.288650\pi\)
0.616254 + 0.787548i \(0.288650\pi\)
\(710\) 0.573442 + 0.403477i 0.0215209 + 0.0151422i
\(711\) −19.8285 −0.743628
\(712\) 6.73394i 0.252365i
\(713\) 4.99399i 0.187026i
\(714\) 2.73503 0.102356
\(715\) −31.9678 22.4927i −1.19553 0.841178i
\(716\) 14.2152 0.531247
\(717\) 5.12775i 0.191499i
\(718\) 0.181363i 0.00676842i
\(719\) −39.7542 −1.48258 −0.741290 0.671184i \(-0.765786\pi\)
−0.741290 + 0.671184i \(0.765786\pi\)
\(720\) −17.7167 + 25.1799i −0.660263 + 0.938401i
\(721\) −5.63731 −0.209944
\(722\) 4.64968i 0.173043i
\(723\) 44.4274i 1.65227i
\(724\) 25.7485 0.956936
\(725\) −1.68870 4.70620i −0.0627166 0.174784i
\(726\) −3.36751 −0.124980
\(727\) 49.4844i 1.83527i −0.397419 0.917637i \(-0.630094\pi\)
0.397419 0.917637i \(-0.369906\pi\)
\(728\) 2.70689i 0.100324i
\(729\) 36.1469 1.33877
\(730\) −1.75961 + 2.50085i −0.0651260 + 0.0925606i
\(731\) −2.34293 −0.0866565
\(732\) 5.80865i 0.214694i
\(733\) 46.2381i 1.70784i −0.520403 0.853921i \(-0.674218\pi\)
0.520403 0.853921i \(-0.325782\pi\)
\(734\) −1.66128 −0.0613191
\(735\) 27.2130 + 19.1472i 1.00377 + 0.706254i
\(736\) 1.44366 0.0532140
\(737\) 26.0061i 0.957946i
\(738\) 0 0
\(739\) −28.7155 −1.05632 −0.528159 0.849146i \(-0.677117\pi\)
−0.528159 + 0.849146i \(0.677117\pi\)
\(740\) 3.95084 + 2.77983i 0.145236 + 0.102188i
\(741\) 71.0192 2.60895
\(742\) 1.93518i 0.0710428i
\(743\) 27.0536i 0.992502i 0.868179 + 0.496251i \(0.165290\pi\)
−0.868179 + 0.496251i \(0.834710\pi\)
\(744\) −10.2305 −0.375069
\(745\) 5.82149 8.27380i 0.213283 0.303129i
\(746\) 1.11303 0.0407508
\(747\) 22.2318i 0.813418i
\(748\) 54.0996i 1.97808i
\(749\) 1.19605 0.0437026
\(750\) 4.33305 + 1.19280i 0.158221 + 0.0435550i
\(751\) −26.8771 −0.980759 −0.490380 0.871509i \(-0.663142\pi\)
−0.490380 + 0.871509i \(0.663142\pi\)
\(752\) 18.3067i 0.667578i
\(753\) 66.6860i 2.43017i
\(754\) −0.622605 −0.0226739
\(755\) 3.60790 5.12775i 0.131305 0.186618i
\(756\) −3.17629 −0.115520
\(757\) 7.28814i 0.264892i 0.991190 + 0.132446i \(0.0422831\pi\)
−0.991190 + 0.132446i \(0.957717\pi\)
\(758\) 2.84130i 0.103201i
\(759\) −8.80395 −0.319563
\(760\) −7.95084 5.59425i −0.288407 0.202925i
\(761\) −31.6079 −1.14579 −0.572893 0.819630i \(-0.694179\pi\)
−0.572893 + 0.819630i \(0.694179\pi\)
\(762\) 7.12750i 0.258202i
\(763\) 16.7636i 0.606882i
\(764\) −19.9958 −0.723422
\(765\) 40.6565 + 28.6061i 1.46994 + 1.03425i
\(766\) 0.514398 0.0185860
\(767\) 39.7108i 1.43387i
\(768\) 36.0725i 1.30165i
\(769\) 0.293769 0.0105936 0.00529679 0.999986i \(-0.498314\pi\)
0.00529679 + 0.999986i \(0.498314\pi\)
\(770\) −0.971204 + 1.38033i −0.0349997 + 0.0497435i
\(771\) −38.5440 −1.38813
\(772\) 45.1559i 1.62520i
\(773\) 28.4877i 1.02463i 0.858797 + 0.512316i \(0.171212\pi\)
−0.858797 + 0.512316i \(0.828788\pi\)
\(774\) −0.210991 −0.00758391
\(775\) −10.8110 30.1290i −0.388343 1.08226i
\(776\) −10.8561 −0.389712
\(777\) 3.06651i 0.110011i
\(778\) 1.88142i 0.0674521i
\(779\) 0 0
\(780\) −25.8791 + 36.7807i −0.926620 + 1.31696i
\(781\) −8.80395 −0.315030
\(782\) 0.760895i 0.0272095i
\(783\) 1.47023i 0.0525418i
\(784\) 22.3633 0.798689
\(785\) 9.09772 + 6.40120i 0.324712 + 0.228469i
\(786\) −2.94180 −0.104931
\(787\) 32.9883i 1.17591i 0.808895 + 0.587954i \(0.200066\pi\)
−0.808895 + 0.587954i \(0.799934\pi\)
\(788\) 43.5997i 1.55317i
\(789\) −30.9361 −1.10136
\(790\) 1.59098 + 1.11942i 0.0566044 + 0.0398271i
\(791\) 7.97060 0.283402
\(792\) 9.80441i 0.348384i
\(793\) 4.55437i 0.161731i
\(794\) −5.69213 −0.202006
\(795\) 37.2327 52.9171i 1.32051 1.87678i
\(796\) −10.2644 −0.363811
\(797\) 30.9194i 1.09522i 0.836733 + 0.547611i \(0.184463\pi\)
−0.836733 + 0.547611i \(0.815537\pi\)
\(798\) 3.06651i 0.108553i
\(799\) 29.5587 1.04571
\(800\) 8.70967 3.12524i 0.307933 0.110494i
\(801\) −38.6073 −1.36412
\(802\) 4.08942i 0.144402i
\(803\) 38.3951i 1.35493i
\(804\) −29.9214 −1.05525
\(805\) −1.09772 + 1.56014i −0.0386896 + 0.0549877i
\(806\) −3.98590 −0.140397
\(807\) 27.8260i 0.979522i
\(808\) 7.94987i 0.279675i
\(809\) −21.0977 −0.741756 −0.370878 0.928682i \(-0.620943\pi\)
−0.370878 + 0.928682i \(0.620943\pi\)
\(810\) −1.99295 1.40225i −0.0700252 0.0492700i
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 2.16040i 0.0758150i
\(813\) 32.6763i 1.14601i
\(814\) 0.754790 0.0264554
\(815\) −37.9678 26.7143i −1.32995 0.935761i
\(816\) 61.4604 2.15154
\(817\) 2.62690i 0.0919035i
\(818\) 2.04582i 0.0715303i
\(819\) −15.5192 −0.542285
\(820\) 0 0
\(821\) −15.2791 −0.533243 −0.266622 0.963801i \(-0.585907\pi\)
−0.266622 + 0.963801i \(0.585907\pi\)
\(822\) 3.93494i 0.137247i
\(823\) 7.78152i 0.271247i 0.990760 + 0.135623i \(0.0433037\pi\)
−0.990760 + 0.135623i \(0.956696\pi\)
\(824\) 3.21280 0.111923
\(825\) −53.1147 + 19.0588i −1.84921 + 0.663543i
\(826\) −1.71466 −0.0596607
\(827\) 0.376593i 0.0130954i −0.999979 0.00654772i \(-0.997916\pi\)
0.999979 0.00654772i \(-0.00208422\pi\)
\(828\) 5.50655i 0.191366i
\(829\) 49.8723 1.73214 0.866068 0.499927i \(-0.166640\pi\)
0.866068 + 0.499927i \(0.166640\pi\)
\(830\) −1.25509 + 1.78380i −0.0435649 + 0.0619167i
\(831\) 51.4604 1.78514
\(832\) 29.4498i 1.02099i
\(833\) 36.1086i 1.25109i
\(834\) −1.10736 −0.0383447
\(835\) 40.0830 + 28.2026i 1.38713 + 0.975991i
\(836\) 60.6565 2.09785
\(837\) 9.41240i 0.325340i
\(838\) 5.62113i 0.194179i
\(839\) 0.0590441 0.00203843 0.00101921 0.999999i \(-0.499676\pi\)
0.00101921 + 0.999999i \(0.499676\pi\)
\(840\) 3.19605 + 2.24875i 0.110274 + 0.0775894i
\(841\) 1.00000 0.0344828
\(842\) 2.61919i 0.0902632i
\(843\) 53.6776i 1.84875i
\(844\) 3.25388 0.112003
\(845\) −3.56356 + 5.06472i −0.122590 + 0.174232i
\(846\) 2.66189 0.0915176
\(847\) 9.16185i 0.314805i
\(848\) 43.4867i 1.49334i
\(849\) −43.5096 −1.49324
\(850\) −1.64719 4.59051i −0.0564980 0.157453i
\(851\) 0.853115 0.0292444
\(852\) 10.1294i 0.347029i
\(853\) 2.77983i 0.0951795i −0.998867 0.0475897i \(-0.984846\pi\)
0.998867 0.0475897i \(-0.0151540\pi\)
\(854\) −0.196652 −0.00672929
\(855\) 32.0731 45.5840i 1.09688 1.55894i
\(856\) −0.681649 −0.0232983
\(857\) 0.850802i 0.0290628i 0.999894 + 0.0145314i \(0.00462566\pi\)
−0.999894 + 0.0145314i \(0.995374\pi\)
\(858\) 7.02679i 0.239891i
\(859\) −7.35342 −0.250895 −0.125448 0.992100i \(-0.540037\pi\)
−0.125448 + 0.992100i \(0.540037\pi\)
\(860\) −1.36047 0.957230i −0.0463915 0.0326413i
\(861\) 0 0
\(862\) 4.12556i 0.140517i
\(863\) 42.6167i 1.45069i −0.688386 0.725345i \(-0.741680\pi\)
0.688386 0.725345i \(-0.258320\pi\)
\(864\) 2.72093 0.0925680
\(865\) 5.95084 + 4.18704i 0.202335 + 0.142364i
\(866\) −1.68105 −0.0571242
\(867\) 55.6505i 1.88999i
\(868\) 13.8308i 0.469448i
\(869\) −24.4260 −0.828594
\(870\) −0.517231 + 0.735116i −0.0175358 + 0.0249228i
\(871\) −23.4604 −0.794926
\(872\) 9.55386i 0.323535i
\(873\) 62.2407i 2.10653i
\(874\) −0.853115 −0.0288571
\(875\) −3.24521 + 11.7887i −0.109708 + 0.398532i
\(876\) −44.1757 −1.49256
\(877\) 13.4196i 0.453148i 0.973994 + 0.226574i \(0.0727526\pi\)
−0.973994 + 0.226574i \(0.927247\pi\)
\(878\) 4.63436i 0.156402i
\(879\) 24.2938 0.819408
\(880\) −21.8245 + 31.0181i −0.735703 + 1.04562i
\(881\) −38.3135 −1.29082 −0.645408 0.763838i \(-0.723313\pi\)
−0.645408 + 0.763838i \(0.723313\pi\)
\(882\) 3.25173i 0.109491i
\(883\) 31.5542i 1.06188i 0.847408 + 0.530942i \(0.178162\pi\)
−0.847408 + 0.530942i \(0.821838\pi\)
\(884\) 48.8040 1.64145
\(885\) −46.8870 32.9899i −1.57609 1.10894i
\(886\) 0.534161 0.0179455
\(887\) 23.3961i 0.785565i 0.919631 + 0.392783i \(0.128488\pi\)
−0.919631 + 0.392783i \(0.871512\pi\)
\(888\) 1.74766i 0.0586477i
\(889\) −19.3915 −0.650370
\(890\) 3.09772 + 2.17957i 0.103836 + 0.0730594i
\(891\) 30.5974 1.02505
\(892\) 18.7179i 0.626722i
\(893\) 33.1413i 1.10903i
\(894\) −1.81865 −0.0608248
\(895\) 9.25931 13.1598i 0.309504 0.439884i
\(896\) 5.31956 0.177714
\(897\) 7.94216i 0.265181i
\(898\) 0.0722810i 0.00241205i
\(899\) 6.40198 0.213518
\(900\) 11.9206 + 33.2213i 0.397353 + 1.10738i
\(901\) −70.2152 −2.33921
\(902\) 0 0
\(903\) 1.05595i 0.0351398i
\(904\) −4.54259 −0.151084
\(905\) 16.7717 23.8369i 0.557511 0.792364i
\(906\) −1.12712 −0.0374461
\(907\) 32.4150i 1.07632i 0.842842 + 0.538161i \(0.180881\pi\)
−0.842842 + 0.538161i \(0.819119\pi\)
\(908\) 11.3152i 0.375508i
\(909\) 45.5785 1.51174
\(910\) 1.24521 + 0.876136i 0.0412783 + 0.0290436i
\(911\) −45.2749 −1.50002 −0.750011 0.661425i \(-0.769952\pi\)
−0.750011 + 0.661425i \(0.769952\pi\)
\(912\) 68.9094i 2.28182i
\(913\) 27.3864i 0.906357i
\(914\) 0.215206 0.00711837
\(915\) −5.37739 3.78356i −0.177771 0.125081i
\(916\) −29.9214 −0.988632
\(917\) 8.00364i 0.264303i
\(918\) 1.43409i 0.0473321i
\(919\) 5.90167 0.194678 0.0973391 0.995251i \(-0.468967\pi\)
0.0973391 + 0.995251i \(0.468967\pi\)
\(920\) 0.625612 0.889152i 0.0206258 0.0293145i
\(921\) 49.6909 1.63737
\(922\) 2.28710i 0.0753218i
\(923\) 7.94216i 0.261419i
\(924\) −24.3825 −0.802124
\(925\) 5.14688 1.84683i 0.169229 0.0607233i
\(926\) 2.95566 0.0971289
\(927\) 18.4198i 0.604985i
\(928\) 1.85068i 0.0607516i
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) −3.31130 + 4.70620i −0.108582 + 0.154322i
\(931\) −40.4850 −1.32684
\(932\) 1.41647i 0.0463979i
\(933\) 23.7650i 0.778032i
\(934\) 4.69695 0.153689
\(935\) 50.0830 + 35.2386i 1.63789 + 1.15243i
\(936\) 8.84469 0.289098
\(937\) 43.0755i 1.40721i 0.710589 + 0.703607i \(0.248429\pi\)
−0.710589 + 0.703607i \(0.751571\pi\)
\(938\) 1.01299i 0.0330753i
\(939\) 37.2593 1.21591
\(940\) 17.1638 + 12.0765i 0.559822 + 0.393893i
\(941\) 2.91637 0.0950711 0.0475355 0.998870i \(-0.484863\pi\)
0.0475355 + 0.998870i \(0.484863\pi\)
\(942\) 1.99976i 0.0651556i
\(943\) 0 0
\(944\) −38.5312 −1.25408
\(945\) −2.06893 + 2.94047i −0.0673021 + 0.0956534i
\(946\) −0.259911 −0.00845043
\(947\) 0.556407i 0.0180808i 0.999959 + 0.00904041i \(0.00287769\pi\)
−0.999959 + 0.00904041i \(0.997122\pi\)
\(948\) 28.1034i 0.912757i
\(949\) −34.6367 −1.12435
\(950\) −5.14688 + 1.84683i −0.166987 + 0.0599190i
\(951\) −57.4604 −1.86328
\(952\) 4.24080i 0.137445i
\(953\) 37.1661i 1.20393i 0.798523 + 0.601964i \(0.205615\pi\)
−0.798523 + 0.601964i \(0.794385\pi\)
\(954\) −6.32317 −0.204720
\(955\) −13.0246 + 18.5112i −0.421466 + 0.599009i
\(956\) 3.95084 0.127779
\(957\) 11.2861i 0.364828i
\(958\) 5.13700i 0.165969i
\(959\) −10.7056 −0.345703
\(960\) 34.7717 + 24.4655i 1.12225 + 0.789622i
\(961\) 9.98530 0.322106
\(962\) 0.680906i 0.0219533i
\(963\) 3.90806i 0.125935i
\(964\) 34.2305 1.10249
\(965\) −41.8033 29.4130i −1.34570 0.946839i
\(966\) 0.342932 0.0110337
\(967\) 24.2754i 0.780643i −0.920679 0.390322i \(-0.872364\pi\)
0.920679 0.390322i \(-0.127636\pi\)
\(968\) 5.22151i 0.167826i
\(969\) −111.264 −3.57431
\(970\) −3.51379 + 4.99399i −0.112821 + 0.160347i
\(971\) −17.1709 −0.551039 −0.275520 0.961295i \(-0.588850\pi\)
−0.275520 + 0.961295i \(0.588850\pi\)
\(972\) 43.9170i 1.40864i
\(973\) 3.01275i 0.0965842i
\(974\) −2.21220 −0.0708834
\(975\) 17.1932 + 47.9154i 0.550624 + 1.53452i
\(976\) −4.41908 −0.141451
\(977\) 4.95785i 0.158616i −0.996850 0.0793078i \(-0.974729\pi\)
0.996850 0.0793078i \(-0.0252710\pi\)
\(978\) 8.34564i 0.266864i
\(979\) −47.5587 −1.51998
\(980\) 14.7526 20.9671i 0.471253 0.669770i
\(981\) 54.7746 1.74882
\(982\) 0.644104i 0.0205542i
\(983\) 11.5651i 0.368869i 0.982845 + 0.184434i \(0.0590453\pi\)
−0.982845 + 0.184434i \(0.940955\pi\)
\(984\) 0 0
\(985\) 40.3627 + 28.3994i 1.28606 + 0.904879i
\(986\) 0.975419 0.0310637
\(987\) 13.3220i 0.424044i
\(988\) 54.7190i 1.74084i
\(989\) −0.293769 −0.00934132
\(990\) 4.51018 + 3.17339i 0.143343 + 0.100857i
\(991\) −18.3429 −0.582682 −0.291341 0.956619i \(-0.594102\pi\)
−0.291341 + 0.956619i \(0.594102\pi\)
\(992\) 11.8480i 0.376175i
\(993\) 20.2336i 0.642092i
\(994\) 0.342932 0.0108771
\(995\) −6.68586 + 9.50230i −0.211956 + 0.301243i
\(996\) −31.5096 −0.998419
\(997\) 32.2997i 1.02294i 0.859300 + 0.511471i \(0.170899\pi\)
−0.859300 + 0.511471i \(0.829101\pi\)
\(998\) 4.71435i 0.149230i
\(999\) 1.60790 0.0508719
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 145.2.b.c.59.4 yes 6
3.2 odd 2 1305.2.c.h.784.3 6
4.3 odd 2 2320.2.d.g.929.2 6
5.2 odd 4 725.2.a.l.1.3 6
5.3 odd 4 725.2.a.l.1.4 6
5.4 even 2 inner 145.2.b.c.59.3 6
15.2 even 4 6525.2.a.bt.1.4 6
15.8 even 4 6525.2.a.bt.1.3 6
15.14 odd 2 1305.2.c.h.784.4 6
20.19 odd 2 2320.2.d.g.929.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.c.59.3 6 5.4 even 2 inner
145.2.b.c.59.4 yes 6 1.1 even 1 trivial
725.2.a.l.1.3 6 5.2 odd 4
725.2.a.l.1.4 6 5.3 odd 4
1305.2.c.h.784.3 6 3.2 odd 2
1305.2.c.h.784.4 6 15.14 odd 2
2320.2.d.g.929.2 6 4.3 odd 2
2320.2.d.g.929.5 6 20.19 odd 2
6525.2.a.bt.1.3 6 15.8 even 4
6525.2.a.bt.1.4 6 15.2 even 4