Properties

Label 145.2.b.c.59.1
Level $145$
Weight $2$
Character 145.59
Analytic conductor $1.158$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [145,2,Mod(59,145)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("145.59"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(145, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 145.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.15783082931\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.84345856.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 13x^{4} + 41x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.1
Root \(-2.77035i\) of defining polynomial
Character \(\chi\) \(=\) 145.59
Dual form 145.2.b.c.59.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.77035i q^{2} +0.269894i q^{3} -5.67486 q^{4} +(-1.96358 - 1.06975i) q^{5} +0.747703 q^{6} -1.86960i q^{7} +10.1807i q^{8} +2.92716 q^{9} +(-2.96358 + 5.43981i) q^{10} -3.25230 q^{11} -1.53161i q^{12} -3.40121i q^{13} -5.17945 q^{14} +(0.288719 - 0.529959i) q^{15} +16.8543 q^{16} -2.40939i q^{17} -8.10926i q^{18} +0.674860 q^{19} +(11.1430 + 6.07067i) q^{20} +0.504595 q^{21} +9.01001i q^{22} -7.41031i q^{23} -2.74770 q^{24} +(2.71128 + 4.20107i) q^{25} -9.42256 q^{26} +1.59971i q^{27} +10.6097i q^{28} +1.00000 q^{29} +(-1.46817 - 0.799853i) q^{30} +5.25230 q^{31} -26.3311i q^{32} -0.877777i q^{33} -6.67486 q^{34} +(-2.00000 + 3.67111i) q^{35} -16.6112 q^{36} +1.86960i q^{37} -1.86960i q^{38} +0.917968 q^{39} +(10.8907 - 19.9905i) q^{40} -1.39791i q^{42} +3.46931i q^{43} +18.4563 q^{44} +(-5.74770 - 3.13132i) q^{45} -20.5292 q^{46} +4.00910i q^{47} +4.54888i q^{48} +3.50459 q^{49} +(11.6384 - 7.51121i) q^{50} +0.650280 q^{51} +19.3014i q^{52} -0.877777i q^{53} +4.43175 q^{54} +(6.38614 + 3.47914i) q^{55} +19.0338 q^{56} +0.182141i q^{57} -2.77035i q^{58} -10.0000 q^{59} +(-1.63844 + 3.00744i) q^{60} +11.8543 q^{61} -14.5507i q^{62} -5.47261i q^{63} -39.2378 q^{64} +(-3.63844 + 6.67855i) q^{65} -2.43175 q^{66} +7.95010i q^{67} +13.6729i q^{68} +2.00000 q^{69} +(10.1703 + 5.54071i) q^{70} +2.00000 q^{71} +29.8004i q^{72} +0.607882i q^{73} +5.17945 q^{74} +(-1.13384 + 0.731759i) q^{75} -3.82973 q^{76} +6.08050i q^{77} -2.54310i q^{78} -8.60202 q^{79} +(-33.0948 - 18.0299i) q^{80} +8.34972 q^{81} +2.40939i q^{83} -2.86350 q^{84} +(-2.57744 + 4.73102i) q^{85} +9.61121 q^{86} +0.269894i q^{87} -33.1105i q^{88} +8.50459 q^{89} +(-8.67486 + 15.9232i) q^{90} -6.35891 q^{91} +42.0525i q^{92} +1.41757i q^{93} +11.1066 q^{94} +(-1.32514 - 0.721929i) q^{95} +7.10661 q^{96} -13.1332i q^{97} -9.70897i q^{98} -9.51998 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{4} + 3 q^{5} + 14 q^{6} - 12 q^{9} - 3 q^{10} - 10 q^{11} + 8 q^{14} + 7 q^{15} + 42 q^{16} - 16 q^{19} + 13 q^{20} - 16 q^{21} - 26 q^{24} + 11 q^{25} - 46 q^{26} + 6 q^{29} + 25 q^{30} + 22 q^{31}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/145\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(117\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.77035i 1.95894i −0.201600 0.979468i \(-0.564614\pi\)
0.201600 0.979468i \(-0.435386\pi\)
\(3\) 0.269894i 0.155824i 0.996960 + 0.0779118i \(0.0248252\pi\)
−0.996960 + 0.0779118i \(0.975175\pi\)
\(4\) −5.67486 −2.83743
\(5\) −1.96358 1.06975i −0.878139 0.478406i
\(6\) 0.747703 0.305248
\(7\) 1.86960i 0.706643i −0.935502 0.353321i \(-0.885052\pi\)
0.935502 0.353321i \(-0.114948\pi\)
\(8\) 10.1807i 3.59941i
\(9\) 2.92716 0.975719
\(10\) −2.96358 + 5.43981i −0.937166 + 1.72022i
\(11\) −3.25230 −0.980605 −0.490302 0.871552i \(-0.663114\pi\)
−0.490302 + 0.871552i \(0.663114\pi\)
\(12\) 1.53161i 0.442138i
\(13\) 3.40121i 0.943327i −0.881779 0.471663i \(-0.843654\pi\)
0.881779 0.471663i \(-0.156346\pi\)
\(14\) −5.17945 −1.38427
\(15\) 0.288719 0.529959i 0.0745469 0.136835i
\(16\) 16.8543 4.21358
\(17\) 2.40939i 0.584363i −0.956363 0.292181i \(-0.905619\pi\)
0.956363 0.292181i \(-0.0943811\pi\)
\(18\) 8.10926i 1.91137i
\(19\) 0.674860 0.154823 0.0774117 0.996999i \(-0.475334\pi\)
0.0774117 + 0.996999i \(0.475334\pi\)
\(20\) 11.1430 + 6.07067i 2.49166 + 1.35744i
\(21\) 0.504595 0.110112
\(22\) 9.01001i 1.92094i
\(23\) 7.41031i 1.54516i −0.634920 0.772578i \(-0.718967\pi\)
0.634920 0.772578i \(-0.281033\pi\)
\(24\) −2.74770 −0.560872
\(25\) 2.71128 + 4.20107i 0.542256 + 0.840213i
\(26\) −9.42256 −1.84792
\(27\) 1.59971i 0.307864i
\(28\) 10.6097i 2.00505i
\(29\) 1.00000 0.185695
\(30\) −1.46817 0.799853i −0.268050 0.146033i
\(31\) 5.25230 0.943340 0.471670 0.881775i \(-0.343651\pi\)
0.471670 + 0.881775i \(0.343651\pi\)
\(32\) 26.3311i 4.65472i
\(33\) 0.877777i 0.152801i
\(34\) −6.67486 −1.14473
\(35\) −2.00000 + 3.67111i −0.338062 + 0.620530i
\(36\) −16.6112 −2.76853
\(37\) 1.86960i 0.307360i 0.988121 + 0.153680i \(0.0491126\pi\)
−0.988121 + 0.153680i \(0.950887\pi\)
\(38\) 1.86960i 0.303289i
\(39\) 0.917968 0.146993
\(40\) 10.8907 19.9905i 1.72198 3.16078i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 1.39791i 0.215701i
\(43\) 3.46931i 0.529064i 0.964377 + 0.264532i \(0.0852175\pi\)
−0.964377 + 0.264532i \(0.914782\pi\)
\(44\) 18.4563 2.78240
\(45\) −5.74770 3.13132i −0.856817 0.466789i
\(46\) −20.5292 −3.02686
\(47\) 4.00910i 0.584787i 0.956298 + 0.292393i \(0.0944516\pi\)
−0.956298 + 0.292393i \(0.905548\pi\)
\(48\) 4.54888i 0.656575i
\(49\) 3.50459 0.500656
\(50\) 11.6384 7.51121i 1.64592 1.06225i
\(51\) 0.650280 0.0910575
\(52\) 19.3014i 2.67662i
\(53\) 0.877777i 0.120572i −0.998181 0.0602859i \(-0.980799\pi\)
0.998181 0.0602859i \(-0.0192013\pi\)
\(54\) 4.43175 0.603085
\(55\) 6.38614 + 3.47914i 0.861107 + 0.469127i
\(56\) 19.0338 2.54349
\(57\) 0.182141i 0.0241251i
\(58\) 2.77035i 0.363765i
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) −1.63844 + 3.00744i −0.211521 + 0.388259i
\(61\) 11.8543 1.51779 0.758895 0.651213i \(-0.225740\pi\)
0.758895 + 0.651213i \(0.225740\pi\)
\(62\) 14.5507i 1.84794i
\(63\) 5.47261i 0.689485i
\(64\) −39.2378 −4.90473
\(65\) −3.63844 + 6.67855i −0.451293 + 0.828372i
\(66\) −2.43175 −0.299328
\(67\) 7.95010i 0.971259i 0.874165 + 0.485629i \(0.161410\pi\)
−0.874165 + 0.485629i \(0.838590\pi\)
\(68\) 13.6729i 1.65809i
\(69\) 2.00000 0.240772
\(70\) 10.1703 + 5.54071i 1.21558 + 0.662241i
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 29.8004i 3.51201i
\(73\) 0.607882i 0.0711472i 0.999367 + 0.0355736i \(0.0113258\pi\)
−0.999367 + 0.0355736i \(0.988674\pi\)
\(74\) 5.17945 0.602099
\(75\) −1.13384 + 0.731759i −0.130925 + 0.0844963i
\(76\) −3.82973 −0.439301
\(77\) 6.08050i 0.692937i
\(78\) 2.54310i 0.287949i
\(79\) −8.60202 −0.967803 −0.483901 0.875123i \(-0.660781\pi\)
−0.483901 + 0.875123i \(0.660781\pi\)
\(80\) −33.0948 18.0299i −3.70011 2.01580i
\(81\) 8.34972 0.927747
\(82\) 0 0
\(83\) 2.40939i 0.264465i 0.991219 + 0.132232i \(0.0422145\pi\)
−0.991219 + 0.132232i \(0.957785\pi\)
\(84\) −2.86350 −0.312434
\(85\) −2.57744 + 4.73102i −0.279562 + 0.513152i
\(86\) 9.61121 1.03640
\(87\) 0.269894i 0.0289357i
\(88\) 33.1105i 3.52960i
\(89\) 8.50459 0.901485 0.450743 0.892654i \(-0.351159\pi\)
0.450743 + 0.892654i \(0.351159\pi\)
\(90\) −8.67486 + 15.9232i −0.914411 + 1.67845i
\(91\) −6.35891 −0.666595
\(92\) 42.0525i 4.38427i
\(93\) 1.41757i 0.146995i
\(94\) 11.1066 1.14556
\(95\) −1.32514 0.721929i −0.135957 0.0740684i
\(96\) 7.10661 0.725315
\(97\) 13.1332i 1.33347i −0.745295 0.666735i \(-0.767691\pi\)
0.745295 0.666735i \(-0.232309\pi\)
\(98\) 9.70897i 0.980754i
\(99\) −9.51998 −0.956794
\(100\) −15.3861 23.8405i −1.53861 2.38405i
\(101\) 4.84513 0.482108 0.241054 0.970512i \(-0.422507\pi\)
0.241054 + 0.970512i \(0.422507\pi\)
\(102\) 1.80151i 0.178376i
\(103\) 14.8887i 1.46703i −0.679674 0.733514i \(-0.737879\pi\)
0.679674 0.733514i \(-0.262121\pi\)
\(104\) 34.6266 3.39542
\(105\) −0.990811 0.539789i −0.0966932 0.0526780i
\(106\) −2.43175 −0.236193
\(107\) 1.86960i 0.180741i 0.995908 + 0.0903705i \(0.0288051\pi\)
−0.995908 + 0.0903705i \(0.971195\pi\)
\(108\) 9.07811i 0.873541i
\(109\) 8.77228 0.840232 0.420116 0.907470i \(-0.361989\pi\)
0.420116 + 0.907470i \(0.361989\pi\)
\(110\) 9.63844 17.6919i 0.918989 1.68685i
\(111\) −0.504595 −0.0478940
\(112\) 31.5108i 2.97749i
\(113\) 10.0699i 0.947299i −0.880713 0.473650i \(-0.842936\pi\)
0.880713 0.473650i \(-0.157064\pi\)
\(114\) 0.504595 0.0472596
\(115\) −7.92716 + 14.5507i −0.739211 + 1.35686i
\(116\) −5.67486 −0.526898
\(117\) 9.95588i 0.920422i
\(118\) 27.7035i 2.55032i
\(119\) −4.50459 −0.412936
\(120\) 5.39533 + 2.93935i 0.492524 + 0.268325i
\(121\) −0.422563 −0.0384148
\(122\) 32.8406i 2.97325i
\(123\) 0 0
\(124\) −29.8061 −2.67666
\(125\) −0.829735 11.1495i −0.0742137 0.997242i
\(126\) −15.1611 −1.35066
\(127\) 18.6739i 1.65704i 0.559961 + 0.828519i \(0.310816\pi\)
−0.559961 + 0.828519i \(0.689184\pi\)
\(128\) 56.0404i 4.95332i
\(129\) −0.936346 −0.0824407
\(130\) 18.5019 + 10.0798i 1.62273 + 0.884054i
\(131\) −11.0338 −0.964025 −0.482012 0.876164i \(-0.660094\pi\)
−0.482012 + 0.876164i \(0.660094\pi\)
\(132\) 4.98126i 0.433563i
\(133\) 1.26172i 0.109405i
\(134\) 22.0246 1.90263
\(135\) 1.71128 3.14115i 0.147284 0.270347i
\(136\) 24.5292 2.10336
\(137\) 11.8714i 1.01425i 0.861874 + 0.507123i \(0.169291\pi\)
−0.861874 + 0.507123i \(0.830709\pi\)
\(138\) 5.54071i 0.471656i
\(139\) −14.8451 −1.25915 −0.629574 0.776941i \(-0.716770\pi\)
−0.629574 + 0.776941i \(0.716770\pi\)
\(140\) 11.3497 20.8330i 0.959226 1.76071i
\(141\) −1.08203 −0.0911235
\(142\) 5.54071i 0.464966i
\(143\) 11.0618i 0.925030i
\(144\) 49.3352 4.11127
\(145\) −1.96358 1.06975i −0.163066 0.0888377i
\(146\) 1.68405 0.139373
\(147\) 0.945870i 0.0780141i
\(148\) 10.6097i 0.872114i
\(149\) −17.2769 −1.41538 −0.707688 0.706525i \(-0.750262\pi\)
−0.707688 + 0.706525i \(0.750262\pi\)
\(150\) 2.02723 + 3.14115i 0.165523 + 0.256474i
\(151\) 0.504595 0.0410633 0.0205317 0.999789i \(-0.493464\pi\)
0.0205317 + 0.999789i \(0.493464\pi\)
\(152\) 6.87052i 0.557273i
\(153\) 7.05266i 0.570174i
\(154\) 16.8451 1.35742
\(155\) −10.3133 5.61863i −0.828384 0.451299i
\(156\) −5.20934 −0.417081
\(157\) 17.9519i 1.43272i −0.697731 0.716360i \(-0.745807\pi\)
0.697731 0.716360i \(-0.254193\pi\)
\(158\) 23.8306i 1.89586i
\(159\) 0.236907 0.0187879
\(160\) −28.1676 + 51.7032i −2.22685 + 4.08749i
\(161\) −13.8543 −1.09187
\(162\) 23.1317i 1.81740i
\(163\) 5.45295i 0.427108i 0.976931 + 0.213554i \(0.0685040\pi\)
−0.976931 + 0.213554i \(0.931496\pi\)
\(164\) 0 0
\(165\) −0.938999 + 1.72358i −0.0731010 + 0.134181i
\(166\) 6.67486 0.518070
\(167\) 1.51195i 0.116998i −0.998287 0.0584992i \(-0.981368\pi\)
0.998287 0.0584992i \(-0.0186315\pi\)
\(168\) 5.13711i 0.396336i
\(169\) 1.43175 0.110135
\(170\) 13.1066 + 7.14041i 1.00523 + 0.547645i
\(171\) 1.97542 0.151064
\(172\) 19.6878i 1.50118i
\(173\) 8.74012i 0.664499i −0.943192 0.332249i \(-0.892192\pi\)
0.943192 0.332249i \(-0.107808\pi\)
\(174\) 0.747703 0.0566832
\(175\) 7.85431 5.06901i 0.593730 0.383181i
\(176\) −54.8152 −4.13185
\(177\) 2.69894i 0.202865i
\(178\) 23.5607i 1.76595i
\(179\) 9.49541 0.709720 0.354860 0.934919i \(-0.384529\pi\)
0.354860 + 0.934919i \(0.384529\pi\)
\(180\) 32.6174 + 17.7698i 2.43116 + 1.32448i
\(181\) 14.9363 1.11021 0.555105 0.831780i \(-0.312678\pi\)
0.555105 + 0.831780i \(0.312678\pi\)
\(182\) 17.6164i 1.30582i
\(183\) 3.19941i 0.236507i
\(184\) 75.4418 5.56165
\(185\) 2.00000 3.67111i 0.147043 0.269905i
\(186\) 3.92716 0.287953
\(187\) 7.83605i 0.573029i
\(188\) 22.7511i 1.65929i
\(189\) 2.99081 0.217549
\(190\) −2.00000 + 3.67111i −0.145095 + 0.266330i
\(191\) 10.5292 0.761864 0.380932 0.924603i \(-0.375603\pi\)
0.380932 + 0.924603i \(0.375603\pi\)
\(192\) 10.5901i 0.764272i
\(193\) 18.1341i 1.30532i 0.757651 + 0.652660i \(0.226347\pi\)
−0.757651 + 0.652660i \(0.773653\pi\)
\(194\) −36.3835 −2.61218
\(195\) −1.80250 0.981994i −0.129080 0.0703220i
\(196\) −19.8881 −1.42058
\(197\) 16.9798i 1.20976i 0.796317 + 0.604879i \(0.206779\pi\)
−0.796317 + 0.604879i \(0.793221\pi\)
\(198\) 26.3737i 1.87430i
\(199\) −7.49541 −0.531335 −0.265668 0.964065i \(-0.585592\pi\)
−0.265668 + 0.964065i \(0.585592\pi\)
\(200\) −42.7696 + 27.6026i −3.02427 + 1.95180i
\(201\) −2.14569 −0.151345
\(202\) 13.4227i 0.944419i
\(203\) 1.86960i 0.131220i
\(204\) −3.69025 −0.258369
\(205\) 0 0
\(206\) −41.2470 −2.87381
\(207\) 21.6911i 1.50764i
\(208\) 57.3251i 3.97478i
\(209\) −2.19484 −0.151821
\(210\) −1.49541 + 2.74490i −0.103193 + 0.189416i
\(211\) 18.0974 1.24588 0.622939 0.782270i \(-0.285938\pi\)
0.622939 + 0.782270i \(0.285938\pi\)
\(212\) 4.98126i 0.342114i
\(213\) 0.539789i 0.0369857i
\(214\) 5.17945 0.354060
\(215\) 3.71128 6.81226i 0.253107 0.464592i
\(216\) −16.2861 −1.10813
\(217\) 9.81970i 0.666604i
\(218\) 24.3023i 1.64596i
\(219\) −0.164064 −0.0110864
\(220\) −36.2405 19.7436i −2.44333 1.33111i
\(221\) −8.19484 −0.551245
\(222\) 1.39791i 0.0938213i
\(223\) 6.33073i 0.423937i 0.977276 + 0.211969i \(0.0679874\pi\)
−0.977276 + 0.211969i \(0.932013\pi\)
\(224\) −49.2286 −3.28923
\(225\) 7.93635 + 12.2972i 0.529090 + 0.819812i
\(226\) −27.8973 −1.85570
\(227\) 24.8905i 1.65204i −0.563638 0.826022i \(-0.690599\pi\)
0.563638 0.826022i \(-0.309401\pi\)
\(228\) 1.03362i 0.0684534i
\(229\) −2.14569 −0.141791 −0.0708955 0.997484i \(-0.522586\pi\)
−0.0708955 + 0.997484i \(0.522586\pi\)
\(230\) 40.3106 + 21.9610i 2.65801 + 1.44807i
\(231\) −1.64109 −0.107976
\(232\) 10.1807i 0.668393i
\(233\) 5.33891i 0.349763i 0.984589 + 0.174882i \(0.0559543\pi\)
−0.984589 + 0.174882i \(0.944046\pi\)
\(234\) −27.5813 −1.80305
\(235\) 4.28872 7.87217i 0.279765 0.513524i
\(236\) 56.7486 3.69402
\(237\) 2.32164i 0.150806i
\(238\) 12.4793i 0.808914i
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 4.86616 8.93209i 0.314109 0.576564i
\(241\) −6.77228 −0.436241 −0.218121 0.975922i \(-0.569993\pi\)
−0.218121 + 0.975922i \(0.569993\pi\)
\(242\) 1.17065i 0.0752521i
\(243\) 7.05266i 0.452428i
\(244\) −67.2716 −4.30662
\(245\) −6.88155 3.74903i −0.439646 0.239517i
\(246\) 0 0
\(247\) 2.29534i 0.146049i
\(248\) 53.4719i 3.39547i
\(249\) −0.650280 −0.0412098
\(250\) −30.8881 + 2.29866i −1.95353 + 0.145380i
\(251\) 20.2615 1.27889 0.639447 0.768835i \(-0.279163\pi\)
0.639447 + 0.768835i \(0.279163\pi\)
\(252\) 31.0563i 1.95636i
\(253\) 24.1005i 1.51519i
\(254\) 51.7332 3.24603
\(255\) −1.27688 0.695636i −0.0799611 0.0435624i
\(256\) 76.7762 4.79851
\(257\) 19.4376i 1.21248i 0.795280 + 0.606242i \(0.207324\pi\)
−0.795280 + 0.606242i \(0.792676\pi\)
\(258\) 2.59401i 0.161496i
\(259\) 3.49541 0.217194
\(260\) 20.6476 37.8998i 1.28051 2.35045i
\(261\) 2.92716 0.181186
\(262\) 30.5674i 1.88846i
\(263\) 8.28808i 0.511065i 0.966800 + 0.255533i \(0.0822508\pi\)
−0.966800 + 0.255533i \(0.917749\pi\)
\(264\) 8.93635 0.549994
\(265\) −0.938999 + 1.72358i −0.0576823 + 0.105879i
\(266\) −3.49541 −0.214317
\(267\) 2.29534i 0.140473i
\(268\) 45.1157i 2.75588i
\(269\) 23.8543 1.45442 0.727212 0.686413i \(-0.240816\pi\)
0.727212 + 0.686413i \(0.240816\pi\)
\(270\) −8.70209 4.74085i −0.529592 0.288519i
\(271\) −0.893389 −0.0542695 −0.0271347 0.999632i \(-0.508638\pi\)
−0.0271347 + 0.999632i \(0.508638\pi\)
\(272\) 40.6086i 2.46226i
\(273\) 1.71623i 0.103871i
\(274\) 32.8881 1.98684
\(275\) −8.81789 13.6631i −0.531739 0.823917i
\(276\) −11.3497 −0.683173
\(277\) 3.55706i 0.213723i −0.994274 0.106862i \(-0.965920\pi\)
0.994274 0.106862i \(-0.0340801\pi\)
\(278\) 41.1262i 2.46659i
\(279\) 15.3743 0.920435
\(280\) −37.3743 20.3613i −2.23354 1.21682i
\(281\) 7.76309 0.463107 0.231554 0.972822i \(-0.425619\pi\)
0.231554 + 0.972822i \(0.425619\pi\)
\(282\) 2.99761i 0.178505i
\(283\) 30.7889i 1.83021i 0.403215 + 0.915105i \(0.367893\pi\)
−0.403215 + 0.915105i \(0.632107\pi\)
\(284\) −11.3497 −0.673482
\(285\) 0.194845 0.357648i 0.0115416 0.0211852i
\(286\) 30.6450 1.81208
\(287\) 0 0
\(288\) 77.0752i 4.54170i
\(289\) 11.1948 0.658520
\(290\) −2.96358 + 5.43981i −0.174027 + 0.319436i
\(291\) 3.54456 0.207786
\(292\) 3.44965i 0.201875i
\(293\) 6.33073i 0.369845i 0.982753 + 0.184923i \(0.0592034\pi\)
−0.982753 + 0.184923i \(0.940797\pi\)
\(294\) 2.62039 0.152825
\(295\) 19.6358 + 10.6975i 1.14324 + 0.622831i
\(296\) −19.0338 −1.10632
\(297\) 5.20272i 0.301892i
\(298\) 47.8631i 2.77263i
\(299\) −25.2040 −1.45759
\(300\) 6.43440 4.15263i 0.371491 0.239752i
\(301\) 6.48622 0.373859
\(302\) 1.39791i 0.0804404i
\(303\) 1.30767i 0.0751238i
\(304\) 11.3743 0.652361
\(305\) −23.2769 12.6811i −1.33283 0.726119i
\(306\) −19.5384 −1.11693
\(307\) 12.5671i 0.717241i −0.933483 0.358620i \(-0.883247\pi\)
0.933483 0.358620i \(-0.116753\pi\)
\(308\) 34.5060i 1.96616i
\(309\) 4.01838 0.228598
\(310\) −15.5656 + 28.5715i −0.884066 + 1.62275i
\(311\) 24.3835 1.38266 0.691330 0.722539i \(-0.257025\pi\)
0.691330 + 0.722539i \(0.257025\pi\)
\(312\) 9.34552i 0.529086i
\(313\) 34.6618i 1.95920i −0.200954 0.979601i \(-0.564404\pi\)
0.200954 0.979601i \(-0.435596\pi\)
\(314\) −49.7332 −2.80661
\(315\) −5.85431 + 10.7459i −0.329853 + 0.605463i
\(316\) 48.8152 2.74607
\(317\) 25.7880i 1.44840i 0.689591 + 0.724199i \(0.257790\pi\)
−0.689591 + 0.724199i \(0.742210\pi\)
\(318\) 0.656316i 0.0368044i
\(319\) −3.25230 −0.182094
\(320\) 77.0465 + 41.9745i 4.30703 + 2.34645i
\(321\) −0.504595 −0.0281637
\(322\) 38.3814i 2.13891i
\(323\) 1.62600i 0.0904730i
\(324\) −47.3835 −2.63242
\(325\) 14.2887 9.22164i 0.792596 0.511525i
\(326\) 15.1066 0.836678
\(327\) 2.36759i 0.130928i
\(328\) 0 0
\(329\) 7.49541 0.413235
\(330\) 4.77494 + 2.60136i 0.262852 + 0.143200i
\(331\) −16.9609 −0.932257 −0.466128 0.884717i \(-0.654352\pi\)
−0.466128 + 0.884717i \(0.654352\pi\)
\(332\) 13.6729i 0.750400i
\(333\) 5.47261i 0.299897i
\(334\) −4.18864 −0.229192
\(335\) 8.50459 15.6106i 0.464656 0.852900i
\(336\) 8.50459 0.463964
\(337\) 22.5952i 1.23084i 0.788200 + 0.615420i \(0.211013\pi\)
−0.788200 + 0.615420i \(0.788987\pi\)
\(338\) 3.96646i 0.215747i
\(339\) 2.71782 0.147612
\(340\) 14.6266 26.8479i 0.793239 1.45603i
\(341\) −17.0820 −0.925044
\(342\) 5.47261i 0.295925i
\(343\) 19.6394i 1.06043i
\(344\) −35.3198 −1.90432
\(345\) −3.92716 2.13949i −0.211431 0.115187i
\(346\) −24.2132 −1.30171
\(347\) 12.0469i 0.646714i −0.946277 0.323357i \(-0.895189\pi\)
0.946277 0.323357i \(-0.104811\pi\)
\(348\) 1.53161i 0.0821030i
\(349\) 1.56825 0.0839464 0.0419732 0.999119i \(-0.486636\pi\)
0.0419732 + 0.999119i \(0.486636\pi\)
\(350\) −14.0430 21.7592i −0.750628 1.16308i
\(351\) 5.44094 0.290416
\(352\) 85.6365i 4.56444i
\(353\) 7.66054i 0.407730i 0.978999 + 0.203865i \(0.0653503\pi\)
−0.978999 + 0.203865i \(0.934650\pi\)
\(354\) −7.47703 −0.397400
\(355\) −3.92716 2.13949i −0.208432 0.113553i
\(356\) −48.2624 −2.55790
\(357\) 1.21576i 0.0643451i
\(358\) 26.3056i 1.39030i
\(359\) −17.5928 −0.928514 −0.464257 0.885701i \(-0.653679\pi\)
−0.464257 + 0.885701i \(0.653679\pi\)
\(360\) 31.8789 58.5154i 1.68017 3.08403i
\(361\) −18.5446 −0.976030
\(362\) 41.3790i 2.17483i
\(363\) 0.114047i 0.00598593i
\(364\) 36.0859 1.89142
\(365\) 0.650280 1.19362i 0.0340372 0.0624772i
\(366\) 8.86350 0.463303
\(367\) 9.88779i 0.516138i 0.966126 + 0.258069i \(0.0830863\pi\)
−0.966126 + 0.258069i \(0.916914\pi\)
\(368\) 124.896i 6.51064i
\(369\) 0 0
\(370\) −10.1703 5.54071i −0.528727 0.288048i
\(371\) −1.64109 −0.0852012
\(372\) 8.04448i 0.417087i
\(373\) 16.2841i 0.843161i 0.906791 + 0.421580i \(0.138524\pi\)
−0.906791 + 0.421580i \(0.861476\pi\)
\(374\) 21.7086 1.12253
\(375\) 3.00919 0.223941i 0.155394 0.0115642i
\(376\) −40.8152 −2.10489
\(377\) 3.40121i 0.175171i
\(378\) 8.28560i 0.426166i
\(379\) 2.52917 0.129915 0.0649575 0.997888i \(-0.479309\pi\)
0.0649575 + 0.997888i \(0.479309\pi\)
\(380\) 7.51998 + 4.09685i 0.385767 + 0.210164i
\(381\) −5.03997 −0.258205
\(382\) 29.1695i 1.49244i
\(383\) 5.60880i 0.286596i −0.989680 0.143298i \(-0.954229\pi\)
0.989680 0.143298i \(-0.0457708\pi\)
\(384\) −15.1250 −0.771844
\(385\) 6.50459 11.9395i 0.331505 0.608495i
\(386\) 50.2378 2.55704
\(387\) 10.1552i 0.516218i
\(388\) 74.5288i 3.78363i
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) −2.72047 + 4.99357i −0.137756 + 0.252859i
\(391\) −17.8543 −0.902931
\(392\) 35.6791i 1.80207i
\(393\) 2.97795i 0.150218i
\(394\) 47.0400 2.36984
\(395\) 16.8907 + 9.20198i 0.849865 + 0.463002i
\(396\) 54.0246 2.71484
\(397\) 27.8660i 1.39856i −0.714850 0.699278i \(-0.753505\pi\)
0.714850 0.699278i \(-0.246495\pi\)
\(398\) 20.7649i 1.04085i
\(399\) 0.340531 0.0170479
\(400\) 45.6968 + 70.8061i 2.28484 + 3.54030i
\(401\) −15.6174 −0.779896 −0.389948 0.920837i \(-0.627507\pi\)
−0.389948 + 0.920837i \(0.627507\pi\)
\(402\) 5.94431i 0.296475i
\(403\) 17.8642i 0.889878i
\(404\) −27.4954 −1.36795
\(405\) −16.3953 8.93209i −0.814691 0.443839i
\(406\) −5.17945 −0.257052
\(407\) 6.08050i 0.301399i
\(408\) 6.62028i 0.327753i
\(409\) 30.5538 1.51079 0.755393 0.655272i \(-0.227446\pi\)
0.755393 + 0.655272i \(0.227446\pi\)
\(410\) 0 0
\(411\) −3.20403 −0.158043
\(412\) 84.4913i 4.16259i
\(413\) 18.6960i 0.919970i
\(414\) −60.0921 −2.95337
\(415\) 2.57744 4.73102i 0.126521 0.232237i
\(416\) −89.5576 −4.39092
\(417\) 4.00661i 0.196205i
\(418\) 6.08050i 0.297407i
\(419\) 10.0492 0.490934 0.245467 0.969405i \(-0.421059\pi\)
0.245467 + 0.969405i \(0.421059\pi\)
\(420\) 5.62271 + 3.06322i 0.274360 + 0.149470i
\(421\) −16.1948 −0.789288 −0.394644 0.918834i \(-0.629132\pi\)
−0.394644 + 0.918834i \(0.629132\pi\)
\(422\) 50.1363i 2.44060i
\(423\) 11.7353i 0.570587i
\(424\) 8.93635 0.433987
\(425\) 10.1220 6.53253i 0.490989 0.316874i
\(426\) 1.49541 0.0724526
\(427\) 22.1628i 1.07253i
\(428\) 10.6097i 0.512840i
\(429\) −2.98550 −0.144142
\(430\) −18.8724 10.2816i −0.910106 0.495821i
\(431\) 11.1857 0.538794 0.269397 0.963029i \(-0.413176\pi\)
0.269397 + 0.963029i \(0.413176\pi\)
\(432\) 26.9619i 1.29721i
\(433\) 14.0306i 0.674267i 0.941457 + 0.337134i \(0.109457\pi\)
−0.941457 + 0.337134i \(0.890543\pi\)
\(434\) −27.2040 −1.30584
\(435\) 0.288719 0.529959i 0.0138430 0.0254096i
\(436\) −49.7815 −2.38410
\(437\) 5.00092i 0.239226i
\(438\) 0.454515i 0.0217176i
\(439\) −9.65947 −0.461021 −0.230511 0.973070i \(-0.574040\pi\)
−0.230511 + 0.973070i \(0.574040\pi\)
\(440\) −35.4199 + 65.0151i −1.68858 + 3.09948i
\(441\) 10.2585 0.488500
\(442\) 22.7026i 1.07985i
\(443\) 9.75160i 0.463313i −0.972798 0.231656i \(-0.925586\pi\)
0.972798 0.231656i \(-0.0744145\pi\)
\(444\) 2.86350 0.135896
\(445\) −16.6994 9.09777i −0.791629 0.431276i
\(446\) 17.5384 0.830466
\(447\) 4.66293i 0.220549i
\(448\) 73.3590i 3.46589i
\(449\) −8.86350 −0.418295 −0.209147 0.977884i \(-0.567069\pi\)
−0.209147 + 0.977884i \(0.567069\pi\)
\(450\) 34.0675 21.9865i 1.60596 1.03645i
\(451\) 0 0
\(452\) 57.1454i 2.68790i
\(453\) 0.136187i 0.00639863i
\(454\) −68.9556 −3.23625
\(455\) 12.4862 + 6.80243i 0.585363 + 0.318903i
\(456\) −1.85431 −0.0868362
\(457\) 24.5041i 1.14625i −0.819466 0.573127i \(-0.805730\pi\)
0.819466 0.573127i \(-0.194270\pi\)
\(458\) 5.94431i 0.277759i
\(459\) 3.85431 0.179904
\(460\) 44.9855 82.5733i 2.09746 3.85000i
\(461\) −37.4173 −1.74270 −0.871348 0.490666i \(-0.836753\pi\)
−0.871348 + 0.490666i \(0.836753\pi\)
\(462\) 4.54640i 0.211518i
\(463\) 2.45534i 0.114109i 0.998371 + 0.0570547i \(0.0181710\pi\)
−0.998371 + 0.0570547i \(0.981829\pi\)
\(464\) 16.8543 0.782442
\(465\) 1.51644 2.78350i 0.0703231 0.129082i
\(466\) 14.7907 0.685164
\(467\) 34.4182i 1.59268i 0.604846 + 0.796342i \(0.293235\pi\)
−0.604846 + 0.796342i \(0.706765\pi\)
\(468\) 56.4982i 2.61163i
\(469\) 14.8635 0.686333
\(470\) −21.8087 11.8813i −1.00596 0.548042i
\(471\) 4.84513 0.223252
\(472\) 101.807i 4.68603i
\(473\) 11.2832i 0.518803i
\(474\) −6.43175 −0.295420
\(475\) 1.82973 + 2.83513i 0.0839540 + 0.130085i
\(476\) 25.5629 1.17168
\(477\) 2.56939i 0.117644i
\(478\) 5.54071i 0.253426i
\(479\) 9.41636 0.430245 0.215122 0.976587i \(-0.430985\pi\)
0.215122 + 0.976587i \(0.430985\pi\)
\(480\) −13.9544 7.60228i −0.636928 0.346995i
\(481\) 6.35891 0.289941
\(482\) 18.7616i 0.854568i
\(483\) 3.73920i 0.170140i
\(484\) 2.39798 0.108999
\(485\) −14.0492 + 25.7880i −0.637939 + 1.17097i
\(486\) 19.5384 0.886278
\(487\) 33.0909i 1.49949i −0.661726 0.749745i \(-0.730176\pi\)
0.661726 0.749745i \(-0.269824\pi\)
\(488\) 120.685i 5.46314i
\(489\) −1.47172 −0.0665535
\(490\) −10.3861 + 19.0643i −0.469198 + 0.861238i
\(491\) 28.9609 1.30699 0.653494 0.756932i \(-0.273302\pi\)
0.653494 + 0.756932i \(0.273302\pi\)
\(492\) 0 0
\(493\) 2.40939i 0.108513i
\(494\) −6.35891 −0.286101
\(495\) 18.6932 + 10.1840i 0.840199 + 0.457736i
\(496\) 88.5239 3.97484
\(497\) 3.73920i 0.167726i
\(498\) 1.80151i 0.0807274i
\(499\) −33.8727 −1.51635 −0.758175 0.652051i \(-0.773909\pi\)
−0.758175 + 0.652051i \(0.773909\pi\)
\(500\) 4.70863 + 63.2719i 0.210576 + 2.82961i
\(501\) 0.408067 0.0182311
\(502\) 56.1315i 2.50527i
\(503\) 0.945870i 0.0421743i −0.999778 0.0210871i \(-0.993287\pi\)
0.999778 0.0210871i \(-0.00671274\pi\)
\(504\) 55.7148 2.48174
\(505\) −9.51378 5.18306i −0.423358 0.230643i
\(506\) 66.7670 2.96815
\(507\) 0.386422i 0.0171616i
\(508\) 105.972i 4.70173i
\(509\) −32.1404 −1.42460 −0.712299 0.701877i \(-0.752346\pi\)
−0.712299 + 0.701877i \(0.752346\pi\)
\(510\) −1.92716 + 3.53740i −0.0853359 + 0.156639i
\(511\) 1.13650 0.0502757
\(512\) 100.616i 4.44665i
\(513\) 1.07958i 0.0476645i
\(514\) 53.8490 2.37518
\(515\) −15.9272 + 29.2351i −0.701834 + 1.28825i
\(516\) 5.31363 0.233920
\(517\) 13.0388i 0.573444i
\(518\) 9.68351i 0.425469i
\(519\) 2.35891 0.103545
\(520\) −67.9920 37.0417i −2.98165 1.62439i
\(521\) −8.43175 −0.369402 −0.184701 0.982795i \(-0.559132\pi\)
−0.184701 + 0.982795i \(0.559132\pi\)
\(522\) 8.10926i 0.354933i
\(523\) 21.8273i 0.954442i −0.878783 0.477221i \(-0.841644\pi\)
0.878783 0.477221i \(-0.158356\pi\)
\(524\) 62.6151 2.73535
\(525\) 1.36810 + 2.11983i 0.0597087 + 0.0925172i
\(526\) 22.9609 1.00114
\(527\) 12.6548i 0.551253i
\(528\) 14.7943i 0.643840i
\(529\) −31.9127 −1.38751
\(530\) 4.77494 + 2.60136i 0.207410 + 0.112996i
\(531\) −29.2716 −1.27028
\(532\) 7.16007i 0.310429i
\(533\) 0 0
\(534\) 6.35891 0.275177
\(535\) 2.00000 3.67111i 0.0864675 0.158716i
\(536\) −80.9372 −3.49596
\(537\) 2.56276i 0.110591i
\(538\) 66.0849i 2.84912i
\(539\) −11.3980 −0.490946
\(540\) −9.71128 + 17.8256i −0.417907 + 0.767091i
\(541\) −25.5138 −1.09692 −0.548462 0.836176i \(-0.684786\pi\)
−0.548462 + 0.836176i \(0.684786\pi\)
\(542\) 2.47500i 0.106310i
\(543\) 4.03123i 0.172997i
\(544\) −63.4418 −2.72005
\(545\) −17.2251 9.38413i −0.737841 0.401972i
\(546\) −4.75457 −0.203477
\(547\) 17.7698i 0.759781i 0.925031 + 0.379891i \(0.124038\pi\)
−0.925031 + 0.379891i \(0.875962\pi\)
\(548\) 67.3687i 2.87785i
\(549\) 34.6994 1.48094
\(550\) −37.8517 + 24.4287i −1.61400 + 1.04164i
\(551\) 0.674860 0.0287500
\(552\) 20.3613i 0.866635i
\(553\) 16.0823i 0.683890i
\(554\) −9.85431 −0.418670
\(555\) 0.990811 + 0.539789i 0.0420576 + 0.0229128i
\(556\) 84.2440 3.57274
\(557\) 42.1665i 1.78665i 0.449409 + 0.893326i \(0.351635\pi\)
−0.449409 + 0.893326i \(0.648365\pi\)
\(558\) 42.5922i 1.80307i
\(559\) 11.7998 0.499080
\(560\) −33.7086 + 61.8740i −1.42445 + 2.61465i
\(561\) −2.11491 −0.0892914
\(562\) 21.5065i 0.907198i
\(563\) 5.76465i 0.242951i −0.992594 0.121475i \(-0.961237\pi\)
0.992594 0.121475i \(-0.0387626\pi\)
\(564\) 6.14038 0.258557
\(565\) −10.7723 + 19.7731i −0.453193 + 0.831861i
\(566\) 85.2961 3.58526
\(567\) 15.6106i 0.655585i
\(568\) 20.3613i 0.854342i
\(569\) −1.49541 −0.0626907 −0.0313453 0.999509i \(-0.509979\pi\)
−0.0313453 + 0.999509i \(0.509979\pi\)
\(570\) −0.990811 0.539789i −0.0415005 0.0226093i
\(571\) −7.03997 −0.294614 −0.147307 0.989091i \(-0.547060\pi\)
−0.147307 + 0.989091i \(0.547060\pi\)
\(572\) 62.7739i 2.62471i
\(573\) 2.84176i 0.118716i
\(574\) 0 0
\(575\) 31.1312 20.0914i 1.29826 0.837870i
\(576\) −114.855 −4.78563
\(577\) 34.7102i 1.44501i 0.691368 + 0.722503i \(0.257009\pi\)
−0.691368 + 0.722503i \(0.742991\pi\)
\(578\) 31.0137i 1.29000i
\(579\) −4.89428 −0.203399
\(580\) 11.1430 + 6.07067i 0.462689 + 0.252071i
\(581\) 4.50459 0.186882
\(582\) 9.81970i 0.407040i
\(583\) 2.85479i 0.118233i
\(584\) −6.18864 −0.256088
\(585\) −10.6503 + 19.5492i −0.440335 + 0.808258i
\(586\) 17.5384 0.724503
\(587\) 37.4158i 1.54432i 0.635430 + 0.772158i \(0.280823\pi\)
−0.635430 + 0.772158i \(0.719177\pi\)
\(588\) 5.36768i 0.221359i
\(589\) 3.54456 0.146051
\(590\) 29.6358 54.3981i 1.22009 2.23953i
\(591\) −4.58274 −0.188509
\(592\) 31.5108i 1.29509i
\(593\) 32.6388i 1.34032i 0.742218 + 0.670158i \(0.233774\pi\)
−0.742218 + 0.670158i \(0.766226\pi\)
\(594\) −14.4134 −0.591388
\(595\) 8.84513 + 4.81878i 0.362615 + 0.197551i
\(596\) 98.0439 4.01603
\(597\) 2.02297i 0.0827945i
\(598\) 69.8241i 2.85532i
\(599\) 38.1466 1.55863 0.779314 0.626634i \(-0.215568\pi\)
0.779314 + 0.626634i \(0.215568\pi\)
\(600\) −7.44979 11.5433i −0.304137 0.471252i
\(601\) −16.7178 −0.681934 −0.340967 0.940075i \(-0.610754\pi\)
−0.340967 + 0.940075i \(0.610754\pi\)
\(602\) 17.9691i 0.732366i
\(603\) 23.2712i 0.947676i
\(604\) −2.86350 −0.116514
\(605\) 0.829735 + 0.452035i 0.0337335 + 0.0183778i
\(606\) 3.62271 0.147163
\(607\) 0.673496i 0.0273364i −0.999907 0.0136682i \(-0.995649\pi\)
0.999907 0.0136682i \(-0.00435085\pi\)
\(608\) 17.7698i 0.720660i
\(609\) 0.504595 0.0204472
\(610\) −35.1312 + 64.4852i −1.42242 + 2.61093i
\(611\) 13.6358 0.551645
\(612\) 40.0229i 1.61783i
\(613\) 26.4615i 1.06877i −0.845241 0.534385i \(-0.820543\pi\)
0.845241 0.534385i \(-0.179457\pi\)
\(614\) −34.8152 −1.40503
\(615\) 0 0
\(616\) −61.9035 −2.49416
\(617\) 27.9538i 1.12538i 0.826669 + 0.562688i \(0.190233\pi\)
−0.826669 + 0.562688i \(0.809767\pi\)
\(618\) 11.1323i 0.447808i
\(619\) −24.6512 −0.990814 −0.495407 0.868661i \(-0.664981\pi\)
−0.495407 + 0.868661i \(0.664981\pi\)
\(620\) 58.5265 + 31.8849i 2.35048 + 1.28053i
\(621\) 11.8543 0.475697
\(622\) 67.5509i 2.70854i
\(623\) 15.9002i 0.637028i
\(624\) 15.4717 0.619365
\(625\) −10.2979 + 22.7805i −0.411916 + 0.911222i
\(626\) −96.0255 −3.83795
\(627\) 0.592376i 0.0236572i
\(628\) 101.875i 4.06524i
\(629\) 4.50459 0.179610
\(630\) 29.7700 + 16.2185i 1.18606 + 0.646161i
\(631\) 11.8052 0.469956 0.234978 0.972001i \(-0.424498\pi\)
0.234978 + 0.972001i \(0.424498\pi\)
\(632\) 87.5742i 3.48352i
\(633\) 4.88439i 0.194137i
\(634\) 71.4418 2.83732
\(635\) 19.9763 36.6676i 0.792736 1.45511i
\(636\) −1.34441 −0.0533095
\(637\) 11.9199i 0.472283i
\(638\) 9.01001i 0.356710i
\(639\) 5.85431 0.231593
\(640\) 59.9491 110.040i 2.36970 4.34970i
\(641\) 13.8727 0.547938 0.273969 0.961738i \(-0.411663\pi\)
0.273969 + 0.961738i \(0.411663\pi\)
\(642\) 1.39791i 0.0551709i
\(643\) 5.29047i 0.208636i −0.994544 0.104318i \(-0.966734\pi\)
0.994544 0.104318i \(-0.0332660\pi\)
\(644\) 78.6213 3.09811
\(645\) 1.83859 + 1.00165i 0.0723944 + 0.0394401i
\(646\) −4.50459 −0.177231
\(647\) 40.7448i 1.60184i 0.598769 + 0.800921i \(0.295657\pi\)
−0.598769 + 0.800921i \(0.704343\pi\)
\(648\) 85.0057i 3.33934i
\(649\) 32.5230 1.27664
\(650\) −25.5472 39.5848i −1.00204 1.55264i
\(651\) 2.65028 0.103873
\(652\) 30.9447i 1.21189i
\(653\) 26.8742i 1.05167i −0.850587 0.525834i \(-0.823753\pi\)
0.850587 0.525834i \(-0.176247\pi\)
\(654\) 6.55906 0.256480
\(655\) 21.6657 + 11.8033i 0.846548 + 0.461195i
\(656\) 0 0
\(657\) 1.77937i 0.0694197i
\(658\) 20.7649i 0.809501i
\(659\) −29.1558 −1.13575 −0.567874 0.823116i \(-0.692234\pi\)
−0.567874 + 0.823116i \(0.692234\pi\)
\(660\) 5.32869 9.78109i 0.207419 0.380729i
\(661\) 19.9035 0.774155 0.387078 0.922047i \(-0.373485\pi\)
0.387078 + 0.922047i \(0.373485\pi\)
\(662\) 46.9878i 1.82623i
\(663\) 2.21174i 0.0858969i
\(664\) −24.5292 −0.951917
\(665\) −1.34972 + 2.47748i −0.0523399 + 0.0960727i
\(666\) 15.1611 0.587480
\(667\) 7.41031i 0.286928i
\(668\) 8.58012i 0.331975i
\(669\) −1.70863 −0.0660594
\(670\) −43.2470 23.5607i −1.67078 0.910231i
\(671\) −38.5538 −1.48835
\(672\) 13.2865i 0.512539i
\(673\) 8.71383i 0.335893i 0.985796 + 0.167947i \(0.0537136\pi\)
−0.985796 + 0.167947i \(0.946286\pi\)
\(674\) 62.5967 2.41114
\(675\) −6.72047 + 4.33725i −0.258671 + 0.166941i
\(676\) −8.12499 −0.312500
\(677\) 9.70565i 0.373018i 0.982453 + 0.186509i \(0.0597174\pi\)
−0.982453 + 0.186509i \(0.940283\pi\)
\(678\) 7.52932i 0.289162i
\(679\) −24.5538 −0.942287
\(680\) −48.1650 26.2400i −1.84704 1.00626i
\(681\) 6.71782 0.257427
\(682\) 47.3233i 1.81210i
\(683\) 9.53014i 0.364661i 0.983237 + 0.182330i \(0.0583640\pi\)
−0.983237 + 0.182330i \(0.941636\pi\)
\(684\) −11.2102 −0.428634
\(685\) 12.6994 23.3105i 0.485221 0.890648i
\(686\) −54.4081 −2.07731
\(687\) 0.579108i 0.0220944i
\(688\) 58.4728i 2.22925i
\(689\) −2.98550 −0.113739
\(690\) −5.92716 + 10.8796i −0.225643 + 0.414180i
\(691\) 8.50459 0.323530 0.161765 0.986829i \(-0.448281\pi\)
0.161765 + 0.986829i \(0.448281\pi\)
\(692\) 49.5990i 1.88547i
\(693\) 17.7986i 0.676112i
\(694\) −33.3743 −1.26687
\(695\) 29.1496 + 15.8805i 1.10571 + 0.602383i
\(696\) −2.74770 −0.104151
\(697\) 0 0
\(698\) 4.34460i 0.164446i
\(699\) −1.44094 −0.0545014
\(700\) −44.5721 + 28.7659i −1.68467 + 1.08725i
\(701\) −28.6266 −1.08121 −0.540606 0.841276i \(-0.681805\pi\)
−0.540606 + 0.841276i \(0.681805\pi\)
\(702\) 15.0733i 0.568906i
\(703\) 1.26172i 0.0475866i
\(704\) 127.613 4.80960
\(705\) 2.12465 + 1.15750i 0.0800191 + 0.0435940i
\(706\) 21.2224 0.798716
\(707\) 9.05845i 0.340678i
\(708\) 15.3161i 0.575615i
\(709\) −14.9855 −0.562792 −0.281396 0.959592i \(-0.590798\pi\)
−0.281396 + 0.959592i \(0.590798\pi\)
\(710\) −5.92716 + 10.8796i −0.222442 + 0.408305i
\(711\) −25.1795 −0.944303
\(712\) 86.5824i 3.24481i
\(713\) 38.9211i 1.45761i
\(714\) −3.36810 −0.126048
\(715\) 11.8333 21.7206i 0.442540 0.812305i
\(716\) −53.8851 −2.01378
\(717\) 0.539789i 0.0201588i
\(718\) 48.7384i 1.81890i
\(719\) 36.7486 1.37049 0.685246 0.728312i \(-0.259695\pi\)
0.685246 + 0.728312i \(0.259695\pi\)
\(720\) −96.8736 52.7762i −3.61027 1.96685i
\(721\) −27.8359 −1.03666
\(722\) 51.3750i 1.91198i
\(723\) 1.82780i 0.0679766i
\(724\) −84.7617 −3.15014
\(725\) 2.71128 + 4.20107i 0.100694 + 0.156024i
\(726\) −0.315951 −0.0117260
\(727\) 39.1647i 1.45254i −0.687410 0.726270i \(-0.741252\pi\)
0.687410 0.726270i \(-0.258748\pi\)
\(728\) 64.7379i 2.39935i
\(729\) 23.1457 0.857248
\(730\) −3.30676 1.80151i −0.122389 0.0666768i
\(731\) 8.35891 0.309165
\(732\) 18.1562i 0.671073i
\(733\) 5.38071i 0.198741i −0.995051 0.0993705i \(-0.968317\pi\)
0.995051 0.0993705i \(-0.0316829\pi\)
\(734\) 27.3927 1.01108
\(735\) 1.01184 1.85729i 0.0373224 0.0685072i
\(736\) −195.121 −7.19227
\(737\) 25.8561i 0.952421i
\(738\) 0 0
\(739\) 9.93336 0.365404 0.182702 0.983168i \(-0.441516\pi\)
0.182702 + 0.983168i \(0.441516\pi\)
\(740\) −11.3497 + 20.8330i −0.417224 + 0.765837i
\(741\) 0.619500 0.0227579
\(742\) 4.54640i 0.166904i
\(743\) 43.4963i 1.59573i −0.602839 0.797863i \(-0.705964\pi\)
0.602839 0.797863i \(-0.294036\pi\)
\(744\) −14.4318 −0.529094
\(745\) 33.9245 + 18.4819i 1.24290 + 0.677124i
\(746\) 45.1128 1.65170
\(747\) 7.05266i 0.258043i
\(748\) 44.4685i 1.62593i
\(749\) 3.49541 0.127719
\(750\) −0.620395 8.33652i −0.0226536 0.304407i
\(751\) 11.3743 0.415054 0.207527 0.978229i \(-0.433459\pi\)
0.207527 + 0.978229i \(0.433459\pi\)
\(752\) 67.5705i 2.46404i
\(753\) 5.46846i 0.199282i
\(754\) −9.42256 −0.343149
\(755\) −0.990811 0.539789i −0.0360593 0.0196449i
\(756\) −16.9724 −0.617281
\(757\) 10.0699i 0.365998i −0.983113 0.182999i \(-0.941420\pi\)
0.983113 0.182999i \(-0.0585805\pi\)
\(758\) 7.00671i 0.254495i
\(759\) −6.50459 −0.236102
\(760\) 7.34972 13.4908i 0.266602 0.489363i
\(761\) −27.0092 −0.979082 −0.489541 0.871980i \(-0.662836\pi\)
−0.489541 + 0.871980i \(0.662836\pi\)
\(762\) 13.9625i 0.505808i
\(763\) 16.4007i 0.593744i
\(764\) −59.7516 −2.16174
\(765\) −7.54456 + 13.8485i −0.272774 + 0.500692i
\(766\) −15.5384 −0.561424
\(767\) 34.0121i 1.22811i
\(768\) 20.7215i 0.747721i
\(769\) −25.7086 −0.927077 −0.463538 0.886077i \(-0.653420\pi\)
−0.463538 + 0.886077i \(0.653420\pi\)
\(770\) −33.0767 18.0200i −1.19200 0.649397i
\(771\) −5.24610 −0.188934
\(772\) 102.908i 3.70375i
\(773\) 32.8185i 1.18040i −0.807257 0.590200i \(-0.799049\pi\)
0.807257 0.590200i \(-0.200951\pi\)
\(774\) 28.1335 1.01124
\(775\) 14.2405 + 22.0652i 0.511532 + 0.792607i
\(776\) 133.704 4.79970
\(777\) 0.943390i 0.0338439i
\(778\) 33.2442i 1.19186i
\(779\) 0 0
\(780\) 10.2289 + 5.57268i 0.366255 + 0.199534i
\(781\) −6.50459 −0.232753
\(782\) 49.4628i 1.76878i
\(783\) 1.59971i 0.0571688i
\(784\) 59.0675 2.10955
\(785\) −19.2040 + 35.2500i −0.685421 + 1.25813i
\(786\) −8.24998 −0.294267
\(787\) 21.1973i 0.755602i −0.925887 0.377801i \(-0.876680\pi\)
0.925887 0.377801i \(-0.123320\pi\)
\(788\) 96.3578i 3.43261i
\(789\) −2.23691 −0.0796360
\(790\) 25.4928 46.7933i 0.906991 1.66483i
\(791\) −18.8267 −0.669402
\(792\) 96.9197i 3.44389i
\(793\) 40.3190i 1.43177i
\(794\) −77.1987 −2.73968
\(795\) −0.465185 0.253431i −0.0164984 0.00898825i
\(796\) 42.5354 1.50763
\(797\) 21.7305i 0.769732i 0.922972 + 0.384866i \(0.125752\pi\)
−0.922972 + 0.384866i \(0.874248\pi\)
\(798\) 0.943390i 0.0333956i
\(799\) 9.65947 0.341727
\(800\) 110.619 71.3910i 3.91096 2.52405i
\(801\) 24.8943 0.879596
\(802\) 43.2657i 1.52777i
\(803\) 1.97701i 0.0697673i
\(804\) 12.1765 0.429431
\(805\) 27.2040 + 14.8206i 0.958816 + 0.522358i
\(806\) −49.4901 −1.74321
\(807\) 6.43814i 0.226633i
\(808\) 49.3266i 1.73530i
\(809\) 7.20403 0.253280 0.126640 0.991949i \(-0.459581\pi\)
0.126640 + 0.991949i \(0.459581\pi\)
\(810\) −24.7450 + 45.4209i −0.869452 + 1.59593i
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 10.6097i 0.372328i
\(813\) 0.241121i 0.00845647i
\(814\) −16.8451 −0.590421
\(815\) 5.83328 10.7073i 0.204331 0.375060i
\(816\) 10.9600 0.383678
\(817\) 2.34130i 0.0819116i
\(818\) 84.6447i 2.95953i
\(819\) −18.6135 −0.650409
\(820\) 0 0
\(821\) 24.1220 0.841864 0.420932 0.907092i \(-0.361703\pi\)
0.420932 + 0.907092i \(0.361703\pi\)
\(822\) 8.87631i 0.309597i
\(823\) 17.2300i 0.600600i 0.953845 + 0.300300i \(0.0970868\pi\)
−0.953845 + 0.300300i \(0.902913\pi\)
\(824\) 151.577 5.28043
\(825\) 3.68760 2.37990i 0.128386 0.0828575i
\(826\) 51.7945 1.80216
\(827\) 3.46931i 0.120640i 0.998179 + 0.0603198i \(0.0192121\pi\)
−0.998179 + 0.0603198i \(0.980788\pi\)
\(828\) 123.094i 4.27782i
\(829\) −7.52619 −0.261395 −0.130698 0.991422i \(-0.541722\pi\)
−0.130698 + 0.991422i \(0.541722\pi\)
\(830\) −13.1066 7.14041i −0.454937 0.247847i
\(831\) 0.960030 0.0333031
\(832\) 133.456i 4.62676i
\(833\) 8.44393i 0.292565i
\(834\) −11.0997 −0.384353
\(835\) −1.61741 + 2.96884i −0.0559727 + 0.102741i
\(836\) 12.4554 0.430780
\(837\) 8.40213i 0.290420i
\(838\) 27.8397i 0.961707i
\(839\) 9.61121 0.331816 0.165908 0.986141i \(-0.446945\pi\)
0.165908 + 0.986141i \(0.446945\pi\)
\(840\) 5.49541 10.0871i 0.189610 0.348038i
\(841\) 1.00000 0.0344828
\(842\) 44.8654i 1.54617i
\(843\) 2.09521i 0.0721630i
\(844\) −102.700 −3.53509
\(845\) −2.81136 1.53161i −0.0967136 0.0526891i
\(846\) 32.5108 1.11774
\(847\) 0.790023i 0.0271455i
\(848\) 14.7943i 0.508039i
\(849\) −8.30975 −0.285190
\(850\) −18.0974 28.0415i −0.620736 0.961816i
\(851\) 13.8543 0.474920
\(852\) 3.06322i 0.104944i
\(853\) 20.8330i 0.713309i −0.934236 0.356654i \(-0.883917\pi\)
0.934236 0.356654i \(-0.116083\pi\)
\(854\) −61.3989 −2.10103
\(855\) −3.87889 2.11320i −0.132655 0.0722699i
\(856\) −19.0338 −0.650561
\(857\) 33.0424i 1.12871i −0.825533 0.564354i \(-0.809125\pi\)
0.825533 0.564354i \(-0.190875\pi\)
\(858\) 8.27090i 0.282364i
\(859\) −49.8061 −1.69936 −0.849680 0.527298i \(-0.823205\pi\)
−0.849680 + 0.527298i \(0.823205\pi\)
\(860\) −21.0610 + 38.6586i −0.718174 + 1.31825i
\(861\) 0 0
\(862\) 30.9882i 1.05546i
\(863\) 9.03631i 0.307599i 0.988102 + 0.153800i \(0.0491511\pi\)
−0.988102 + 0.153800i \(0.950849\pi\)
\(864\) 42.1220 1.43302
\(865\) −9.34972 + 17.1619i −0.317900 + 0.583522i
\(866\) 38.8697 1.32085
\(867\) 3.02143i 0.102613i
\(868\) 55.7254i 1.89144i
\(869\) 27.9763 0.949032
\(870\) −1.46817 0.799853i −0.0497757 0.0271176i
\(871\) 27.0400 0.916214
\(872\) 89.3076i 3.02434i
\(873\) 38.4428i 1.30109i
\(874\) −13.8543 −0.468629
\(875\) −20.8451 + 1.55127i −0.704694 + 0.0524426i
\(876\) 0.931040 0.0314569
\(877\) 24.0809i 0.813153i −0.913617 0.406576i \(-0.866722\pi\)
0.913617 0.406576i \(-0.133278\pi\)
\(878\) 26.7601i 0.903111i
\(879\) −1.70863 −0.0576306
\(880\) 107.634 + 58.6385i 3.62834 + 1.97670i
\(881\) −0.814344 −0.0274360 −0.0137180 0.999906i \(-0.504367\pi\)
−0.0137180 + 0.999906i \(0.504367\pi\)
\(882\) 28.4197i 0.956940i
\(883\) 31.8751i 1.07268i −0.844001 0.536341i \(-0.819806\pi\)
0.844001 0.536341i \(-0.180194\pi\)
\(884\) 46.5046 1.56412
\(885\) −2.88719 + 5.29959i −0.0970517 + 0.178144i
\(886\) −27.0154 −0.907600
\(887\) 45.6358i 1.53230i −0.642661 0.766150i \(-0.722170\pi\)
0.642661 0.766150i \(-0.277830\pi\)
\(888\) 5.13711i 0.172390i
\(889\) 34.9127 1.17093
\(890\) −25.2040 + 46.2634i −0.844841 + 1.55075i
\(891\) −27.1558 −0.909753
\(892\) 35.9260i 1.20289i
\(893\) 2.70558i 0.0905387i
\(894\) −12.9180 −0.432041
\(895\) −18.6450 10.1577i −0.623233 0.339534i
\(896\) 104.773 3.50023
\(897\) 6.80243i 0.227126i
\(898\) 24.5550i 0.819412i
\(899\) 5.25230 0.175174
\(900\) −45.0377 69.7848i −1.50126 2.32616i
\(901\) −2.11491 −0.0704577
\(902\) 0 0
\(903\) 1.75059i 0.0582561i
\(904\) 102.519 3.40972
\(905\) −29.3287 15.9781i −0.974919 0.531131i
\(906\) 0.377287 0.0125345
\(907\) 18.5820i 0.617004i 0.951224 + 0.308502i \(0.0998276\pi\)
−0.951224 + 0.308502i \(0.900172\pi\)
\(908\) 141.250i 4.68756i
\(909\) 14.1824 0.470402
\(910\) 18.8451 34.5912i 0.624710 1.14669i
\(911\) −45.6296 −1.51178 −0.755888 0.654701i \(-0.772794\pi\)
−0.755888 + 0.654701i \(0.772794\pi\)
\(912\) 3.06986i 0.101653i
\(913\) 7.83605i 0.259335i
\(914\) −67.8851 −2.24544
\(915\) 3.42256 6.28230i 0.113146 0.207686i
\(916\) 12.1765 0.402322
\(917\) 20.6287i 0.681221i
\(918\) 10.6778i 0.352420i
\(919\) −24.6994 −0.814759 −0.407380 0.913259i \(-0.633557\pi\)
−0.407380 + 0.913259i \(0.633557\pi\)
\(920\) −148.136 80.7037i −4.88390 2.66072i
\(921\) 3.39178 0.111763
\(922\) 103.659i 3.41383i
\(923\) 6.80243i 0.223905i
\(924\) 9.31296 0.306374
\(925\) −7.85431 + 5.06901i −0.258248 + 0.166668i
\(926\) 6.80217 0.223533
\(927\) 43.5816i 1.43141i
\(928\) 26.3311i 0.864360i
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) −7.71128 4.20107i −0.252863 0.137758i
\(931\) 2.36511 0.0775133
\(932\) 30.2975i 0.992429i
\(933\) 6.58096i 0.215451i
\(934\) 95.3506 3.11997
\(935\) 8.38259 15.3867i 0.274140 0.503199i
\(936\) 101.357 3.31297
\(937\) 46.4389i 1.51709i 0.651620 + 0.758546i \(0.274090\pi\)
−0.651620 + 0.758546i \(0.725910\pi\)
\(938\) 41.1772i 1.34448i
\(939\) 9.35503 0.305290
\(940\) −24.3379 + 44.6735i −0.793814 + 1.45709i
\(941\) −14.2861 −0.465712 −0.232856 0.972511i \(-0.574807\pi\)
−0.232856 + 0.972511i \(0.574807\pi\)
\(942\) 13.4227i 0.437336i
\(943\) 0 0
\(944\) −168.543 −5.48561
\(945\) −5.87269 3.19941i −0.191039 0.104077i
\(946\) −31.2585 −1.01630
\(947\) 29.3713i 0.954440i 0.878784 + 0.477220i \(0.158356\pi\)
−0.878784 + 0.477220i \(0.841644\pi\)
\(948\) 13.1750i 0.427903i
\(949\) 2.06754 0.0671151
\(950\) 7.85431 5.06901i 0.254828 0.164460i
\(951\) −6.96003 −0.225694
\(952\) 45.8598i 1.48632i
\(953\) 22.5911i 0.731796i 0.930655 + 0.365898i \(0.119238\pi\)
−0.930655 + 0.365898i \(0.880762\pi\)
\(954\) −7.11812 −0.230458
\(955\) −20.6749 11.2636i −0.669023 0.364480i
\(956\) −11.3497 −0.367076
\(957\) 0.877777i 0.0283745i
\(958\) 26.0867i 0.842821i
\(959\) 22.1948 0.716709
\(960\) −11.3287 + 20.7944i −0.365632 + 0.671137i
\(961\) −3.41337 −0.110109
\(962\) 17.6164i 0.567976i
\(963\) 5.47261i 0.176353i
\(964\) 38.4318 1.23780
\(965\) 19.3989 35.6077i 0.624472 1.14625i
\(966\) −10.3589 −0.333292
\(967\) 48.4316i 1.55746i 0.627362 + 0.778728i \(0.284135\pi\)
−0.627362 + 0.778728i \(0.715865\pi\)
\(968\) 4.30197i 0.138270i
\(969\) 0.438848 0.0140978
\(970\) 71.4418 + 38.9211i 2.29386 + 1.24968i
\(971\) 47.0829 1.51096 0.755482 0.655170i \(-0.227403\pi\)
0.755482 + 0.655170i \(0.227403\pi\)
\(972\) 40.0229i 1.28373i
\(973\) 27.7545i 0.889767i
\(974\) −91.6734 −2.93741
\(975\) 2.48887 + 3.85644i 0.0797076 + 0.123505i
\(976\) 199.796 6.39532
\(977\) 51.1987i 1.63799i −0.573800 0.818995i \(-0.694532\pi\)
0.573800 0.818995i \(-0.305468\pi\)
\(978\) 4.07719i 0.130374i
\(979\) −27.6595 −0.884000
\(980\) 39.0518 + 21.2752i 1.24746 + 0.679612i
\(981\) 25.6778 0.819831
\(982\) 80.2320i 2.56031i
\(983\) 23.5123i 0.749926i 0.927040 + 0.374963i \(0.122345\pi\)
−0.927040 + 0.374963i \(0.877655\pi\)
\(984\) 0 0
\(985\) 18.1641 33.3411i 0.578755 1.06234i
\(986\) −6.67486 −0.212571
\(987\) 2.02297i 0.0643918i
\(988\) 13.0257i 0.414404i
\(989\) 25.7086 0.817487
\(990\) 28.2132 51.7869i 0.896675 1.64590i
\(991\) −7.64109 −0.242727 −0.121364 0.992608i \(-0.538727\pi\)
−0.121364 + 0.992608i \(0.538727\pi\)
\(992\) 138.299i 4.39099i
\(993\) 4.57766i 0.145268i
\(994\) −10.3589 −0.328565
\(995\) 14.7178 + 8.01819i 0.466586 + 0.254194i
\(996\) 3.69025 0.116930
\(997\) 3.71043i 0.117510i 0.998272 + 0.0587552i \(0.0187131\pi\)
−0.998272 + 0.0587552i \(0.981287\pi\)
\(998\) 93.8393i 2.97043i
\(999\) −2.99081 −0.0946251
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 145.2.b.c.59.1 6
3.2 odd 2 1305.2.c.h.784.6 6
4.3 odd 2 2320.2.d.g.929.3 6
5.2 odd 4 725.2.a.l.1.6 6
5.3 odd 4 725.2.a.l.1.1 6
5.4 even 2 inner 145.2.b.c.59.6 yes 6
15.2 even 4 6525.2.a.bt.1.1 6
15.8 even 4 6525.2.a.bt.1.6 6
15.14 odd 2 1305.2.c.h.784.1 6
20.19 odd 2 2320.2.d.g.929.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.c.59.1 6 1.1 even 1 trivial
145.2.b.c.59.6 yes 6 5.4 even 2 inner
725.2.a.l.1.1 6 5.3 odd 4
725.2.a.l.1.6 6 5.2 odd 4
1305.2.c.h.784.1 6 15.14 odd 2
1305.2.c.h.784.6 6 3.2 odd 2
2320.2.d.g.929.3 6 4.3 odd 2
2320.2.d.g.929.4 6 20.19 odd 2
6525.2.a.bt.1.1 6 15.2 even 4
6525.2.a.bt.1.6 6 15.8 even 4