Properties

Label 145.2.a.d.1.1
Level $145$
Weight $2$
Character 145.1
Self dual yes
Analytic conductor $1.158$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [145,2,Mod(1,145)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("145.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(145, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 145.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.15783082931\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 145.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.21432 q^{2} -2.90321 q^{3} -0.525428 q^{4} -1.00000 q^{5} +3.52543 q^{6} +1.52543 q^{7} +3.06668 q^{8} +5.42864 q^{9} +1.21432 q^{10} +4.90321 q^{11} +1.52543 q^{12} -6.42864 q^{13} -1.85236 q^{14} +2.90321 q^{15} -2.67307 q^{16} +2.14764 q^{17} -6.59210 q^{18} +2.28100 q^{19} +0.525428 q^{20} -4.42864 q^{21} -5.95407 q^{22} +6.90321 q^{23} -8.90321 q^{24} +1.00000 q^{25} +7.80642 q^{26} -7.05086 q^{27} -0.801502 q^{28} +1.00000 q^{29} -3.52543 q^{30} +1.71900 q^{31} -2.88739 q^{32} -14.2351 q^{33} -2.60793 q^{34} -1.52543 q^{35} -2.85236 q^{36} +7.95407 q^{37} -2.76986 q^{38} +18.6637 q^{39} -3.06668 q^{40} -3.37778 q^{41} +5.37778 q^{42} -1.09679 q^{43} -2.57628 q^{44} -5.42864 q^{45} -8.38271 q^{46} +12.7096 q^{47} +7.76049 q^{48} -4.67307 q^{49} -1.21432 q^{50} -6.23506 q^{51} +3.37778 q^{52} +3.37778 q^{53} +8.56199 q^{54} -4.90321 q^{55} +4.67799 q^{56} -6.62222 q^{57} -1.21432 q^{58} -3.18421 q^{59} -1.52543 q^{60} -2.42864 q^{61} -2.08742 q^{62} +8.28100 q^{63} +8.85236 q^{64} +6.42864 q^{65} +17.2859 q^{66} -1.09679 q^{67} -1.12843 q^{68} -20.0415 q^{69} +1.85236 q^{70} +3.57136 q^{71} +16.6479 q^{72} +14.1891 q^{73} -9.65878 q^{74} -2.90321 q^{75} -1.19850 q^{76} +7.47949 q^{77} -22.6637 q^{78} +0.341219 q^{79} +2.67307 q^{80} +4.18421 q^{81} +4.10171 q^{82} -7.33185 q^{83} +2.32693 q^{84} -2.14764 q^{85} +1.33185 q^{86} -2.90321 q^{87} +15.0366 q^{88} +2.94914 q^{89} +6.59210 q^{90} -9.80642 q^{91} -3.62714 q^{92} -4.99063 q^{93} -15.4336 q^{94} -2.28100 q^{95} +8.38271 q^{96} -18.5763 q^{97} +5.67460 q^{98} +26.6178 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - 2 q^{3} + 5 q^{4} - 3 q^{5} + 4 q^{6} - 2 q^{7} + 9 q^{8} + 3 q^{9} - 3 q^{10} + 8 q^{11} - 2 q^{12} - 6 q^{13} - 12 q^{14} + 2 q^{15} + 5 q^{16} - 13 q^{18} - 5 q^{20} + 2 q^{22} + 14 q^{23}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21432 −0.858654 −0.429327 0.903149i \(-0.641249\pi\)
−0.429327 + 0.903149i \(0.641249\pi\)
\(3\) −2.90321 −1.67617 −0.838085 0.545540i \(-0.816325\pi\)
−0.838085 + 0.545540i \(0.816325\pi\)
\(4\) −0.525428 −0.262714
\(5\) −1.00000 −0.447214
\(6\) 3.52543 1.43925
\(7\) 1.52543 0.576557 0.288279 0.957547i \(-0.406917\pi\)
0.288279 + 0.957547i \(0.406917\pi\)
\(8\) 3.06668 1.08423
\(9\) 5.42864 1.80955
\(10\) 1.21432 0.384002
\(11\) 4.90321 1.47837 0.739187 0.673500i \(-0.235210\pi\)
0.739187 + 0.673500i \(0.235210\pi\)
\(12\) 1.52543 0.440353
\(13\) −6.42864 −1.78298 −0.891492 0.453037i \(-0.850341\pi\)
−0.891492 + 0.453037i \(0.850341\pi\)
\(14\) −1.85236 −0.495063
\(15\) 2.90321 0.749606
\(16\) −2.67307 −0.668268
\(17\) 2.14764 0.520880 0.260440 0.965490i \(-0.416132\pi\)
0.260440 + 0.965490i \(0.416132\pi\)
\(18\) −6.59210 −1.55377
\(19\) 2.28100 0.523296 0.261648 0.965163i \(-0.415734\pi\)
0.261648 + 0.965163i \(0.415734\pi\)
\(20\) 0.525428 0.117489
\(21\) −4.42864 −0.966408
\(22\) −5.95407 −1.26941
\(23\) 6.90321 1.43942 0.719710 0.694275i \(-0.244275\pi\)
0.719710 + 0.694275i \(0.244275\pi\)
\(24\) −8.90321 −1.81736
\(25\) 1.00000 0.200000
\(26\) 7.80642 1.53097
\(27\) −7.05086 −1.35694
\(28\) −0.801502 −0.151470
\(29\) 1.00000 0.185695
\(30\) −3.52543 −0.643652
\(31\) 1.71900 0.308742 0.154371 0.988013i \(-0.450665\pi\)
0.154371 + 0.988013i \(0.450665\pi\)
\(32\) −2.88739 −0.510423
\(33\) −14.2351 −2.47801
\(34\) −2.60793 −0.447256
\(35\) −1.52543 −0.257844
\(36\) −2.85236 −0.475393
\(37\) 7.95407 1.30764 0.653820 0.756650i \(-0.273165\pi\)
0.653820 + 0.756650i \(0.273165\pi\)
\(38\) −2.76986 −0.449330
\(39\) 18.6637 2.98858
\(40\) −3.06668 −0.484884
\(41\) −3.37778 −0.527521 −0.263761 0.964588i \(-0.584963\pi\)
−0.263761 + 0.964588i \(0.584963\pi\)
\(42\) 5.37778 0.829810
\(43\) −1.09679 −0.167259 −0.0836293 0.996497i \(-0.526651\pi\)
−0.0836293 + 0.996497i \(0.526651\pi\)
\(44\) −2.57628 −0.388389
\(45\) −5.42864 −0.809254
\(46\) −8.38271 −1.23596
\(47\) 12.7096 1.85389 0.926945 0.375196i \(-0.122425\pi\)
0.926945 + 0.375196i \(0.122425\pi\)
\(48\) 7.76049 1.12013
\(49\) −4.67307 −0.667582
\(50\) −1.21432 −0.171731
\(51\) −6.23506 −0.873084
\(52\) 3.37778 0.468414
\(53\) 3.37778 0.463974 0.231987 0.972719i \(-0.425477\pi\)
0.231987 + 0.972719i \(0.425477\pi\)
\(54\) 8.56199 1.16514
\(55\) −4.90321 −0.661149
\(56\) 4.67799 0.625123
\(57\) −6.62222 −0.877134
\(58\) −1.21432 −0.159448
\(59\) −3.18421 −0.414549 −0.207274 0.978283i \(-0.566459\pi\)
−0.207274 + 0.978283i \(0.566459\pi\)
\(60\) −1.52543 −0.196932
\(61\) −2.42864 −0.310955 −0.155478 0.987839i \(-0.549692\pi\)
−0.155478 + 0.987839i \(0.549692\pi\)
\(62\) −2.08742 −0.265103
\(63\) 8.28100 1.04331
\(64\) 8.85236 1.10654
\(65\) 6.42864 0.797375
\(66\) 17.2859 2.12775
\(67\) −1.09679 −0.133994 −0.0669970 0.997753i \(-0.521342\pi\)
−0.0669970 + 0.997753i \(0.521342\pi\)
\(68\) −1.12843 −0.136842
\(69\) −20.0415 −2.41271
\(70\) 1.85236 0.221399
\(71\) 3.57136 0.423843 0.211921 0.977287i \(-0.432028\pi\)
0.211921 + 0.977287i \(0.432028\pi\)
\(72\) 16.6479 1.96197
\(73\) 14.1891 1.66071 0.830356 0.557233i \(-0.188137\pi\)
0.830356 + 0.557233i \(0.188137\pi\)
\(74\) −9.65878 −1.12281
\(75\) −2.90321 −0.335234
\(76\) −1.19850 −0.137477
\(77\) 7.47949 0.852368
\(78\) −22.6637 −2.56616
\(79\) 0.341219 0.0383902 0.0191951 0.999816i \(-0.493890\pi\)
0.0191951 + 0.999816i \(0.493890\pi\)
\(80\) 2.67307 0.298858
\(81\) 4.18421 0.464912
\(82\) 4.10171 0.452958
\(83\) −7.33185 −0.804775 −0.402388 0.915469i \(-0.631820\pi\)
−0.402388 + 0.915469i \(0.631820\pi\)
\(84\) 2.32693 0.253889
\(85\) −2.14764 −0.232945
\(86\) 1.33185 0.143617
\(87\) −2.90321 −0.311257
\(88\) 15.0366 1.60290
\(89\) 2.94914 0.312609 0.156304 0.987709i \(-0.450042\pi\)
0.156304 + 0.987709i \(0.450042\pi\)
\(90\) 6.59210 0.694869
\(91\) −9.80642 −1.02799
\(92\) −3.62714 −0.378155
\(93\) −4.99063 −0.517504
\(94\) −15.4336 −1.59185
\(95\) −2.28100 −0.234025
\(96\) 8.38271 0.855556
\(97\) −18.5763 −1.88614 −0.943068 0.332600i \(-0.892074\pi\)
−0.943068 + 0.332600i \(0.892074\pi\)
\(98\) 5.67460 0.573221
\(99\) 26.6178 2.67519
\(100\) −0.525428 −0.0525428
\(101\) 15.4193 1.53427 0.767137 0.641483i \(-0.221680\pi\)
0.767137 + 0.641483i \(0.221680\pi\)
\(102\) 7.57136 0.749676
\(103\) 7.76049 0.764664 0.382332 0.924025i \(-0.375121\pi\)
0.382332 + 0.924025i \(0.375121\pi\)
\(104\) −19.7146 −1.93317
\(105\) 4.42864 0.432191
\(106\) −4.10171 −0.398393
\(107\) −3.03657 −0.293556 −0.146778 0.989169i \(-0.546890\pi\)
−0.146778 + 0.989169i \(0.546890\pi\)
\(108\) 3.70471 0.356486
\(109\) −7.93978 −0.760493 −0.380246 0.924885i \(-0.624161\pi\)
−0.380246 + 0.924885i \(0.624161\pi\)
\(110\) 5.95407 0.567698
\(111\) −23.0923 −2.19183
\(112\) −4.07758 −0.385295
\(113\) 7.82071 0.735711 0.367855 0.929883i \(-0.380092\pi\)
0.367855 + 0.929883i \(0.380092\pi\)
\(114\) 8.04149 0.753154
\(115\) −6.90321 −0.643728
\(116\) −0.525428 −0.0487847
\(117\) −34.8988 −3.22639
\(118\) 3.86665 0.355954
\(119\) 3.27607 0.300317
\(120\) 8.90321 0.812748
\(121\) 13.0415 1.18559
\(122\) 2.94914 0.267003
\(123\) 9.80642 0.884215
\(124\) −0.903212 −0.0811108
\(125\) −1.00000 −0.0894427
\(126\) −10.0558 −0.895840
\(127\) −12.4429 −1.10413 −0.552066 0.833801i \(-0.686160\pi\)
−0.552066 + 0.833801i \(0.686160\pi\)
\(128\) −4.97481 −0.439715
\(129\) 3.18421 0.280354
\(130\) −7.80642 −0.684669
\(131\) 4.08742 0.357120 0.178560 0.983929i \(-0.442856\pi\)
0.178560 + 0.983929i \(0.442856\pi\)
\(132\) 7.47949 0.651006
\(133\) 3.47949 0.301710
\(134\) 1.33185 0.115054
\(135\) 7.05086 0.606841
\(136\) 6.58613 0.564756
\(137\) −19.9541 −1.70479 −0.852395 0.522898i \(-0.824851\pi\)
−0.852395 + 0.522898i \(0.824851\pi\)
\(138\) 24.3368 2.07168
\(139\) 7.90813 0.670759 0.335380 0.942083i \(-0.391135\pi\)
0.335380 + 0.942083i \(0.391135\pi\)
\(140\) 0.801502 0.0677393
\(141\) −36.8988 −3.10744
\(142\) −4.33677 −0.363934
\(143\) −31.5210 −2.63592
\(144\) −14.5111 −1.20926
\(145\) −1.00000 −0.0830455
\(146\) −17.2301 −1.42598
\(147\) 13.5669 1.11898
\(148\) −4.17929 −0.343535
\(149\) −16.1017 −1.31910 −0.659552 0.751659i \(-0.729254\pi\)
−0.659552 + 0.751659i \(0.729254\pi\)
\(150\) 3.52543 0.287850
\(151\) 5.67307 0.461668 0.230834 0.972993i \(-0.425855\pi\)
0.230834 + 0.972993i \(0.425855\pi\)
\(152\) 6.99508 0.567376
\(153\) 11.6588 0.942557
\(154\) −9.08250 −0.731889
\(155\) −1.71900 −0.138074
\(156\) −9.80642 −0.785142
\(157\) 1.89384 0.151145 0.0755726 0.997140i \(-0.475922\pi\)
0.0755726 + 0.997140i \(0.475922\pi\)
\(158\) −0.414349 −0.0329639
\(159\) −9.80642 −0.777700
\(160\) 2.88739 0.228268
\(161\) 10.5303 0.829908
\(162\) −5.08097 −0.399198
\(163\) −5.95407 −0.466359 −0.233179 0.972434i \(-0.574913\pi\)
−0.233179 + 0.972434i \(0.574913\pi\)
\(164\) 1.77478 0.138587
\(165\) 14.2351 1.10820
\(166\) 8.90321 0.691023
\(167\) 4.23951 0.328063 0.164032 0.986455i \(-0.447550\pi\)
0.164032 + 0.986455i \(0.447550\pi\)
\(168\) −13.5812 −1.04781
\(169\) 28.3274 2.17903
\(170\) 2.60793 0.200019
\(171\) 12.3827 0.946929
\(172\) 0.576283 0.0439411
\(173\) 24.4099 1.85585 0.927925 0.372766i \(-0.121591\pi\)
0.927925 + 0.372766i \(0.121591\pi\)
\(174\) 3.52543 0.267262
\(175\) 1.52543 0.115311
\(176\) −13.1066 −0.987950
\(177\) 9.24443 0.694854
\(178\) −3.58120 −0.268423
\(179\) −3.61285 −0.270037 −0.135018 0.990843i \(-0.543109\pi\)
−0.135018 + 0.990843i \(0.543109\pi\)
\(180\) 2.85236 0.212602
\(181\) 18.0415 1.34101 0.670507 0.741904i \(-0.266077\pi\)
0.670507 + 0.741904i \(0.266077\pi\)
\(182\) 11.9081 0.882690
\(183\) 7.05086 0.521214
\(184\) 21.1699 1.56067
\(185\) −7.95407 −0.584795
\(186\) 6.06022 0.444357
\(187\) 10.5303 0.770055
\(188\) −6.67799 −0.487043
\(189\) −10.7556 −0.782353
\(190\) 2.76986 0.200947
\(191\) 9.85236 0.712892 0.356446 0.934316i \(-0.383988\pi\)
0.356446 + 0.934316i \(0.383988\pi\)
\(192\) −25.7003 −1.85476
\(193\) 2.23951 0.161203 0.0806017 0.996746i \(-0.474316\pi\)
0.0806017 + 0.996746i \(0.474316\pi\)
\(194\) 22.5575 1.61954
\(195\) −18.6637 −1.33654
\(196\) 2.45536 0.175383
\(197\) −10.5620 −0.752511 −0.376255 0.926516i \(-0.622788\pi\)
−0.376255 + 0.926516i \(0.622788\pi\)
\(198\) −32.3225 −2.29706
\(199\) 3.18421 0.225723 0.112861 0.993611i \(-0.463998\pi\)
0.112861 + 0.993611i \(0.463998\pi\)
\(200\) 3.06668 0.216847
\(201\) 3.18421 0.224597
\(202\) −18.7239 −1.31741
\(203\) 1.52543 0.107064
\(204\) 3.27607 0.229371
\(205\) 3.37778 0.235915
\(206\) −9.42372 −0.656581
\(207\) 37.4750 2.60470
\(208\) 17.1842 1.19151
\(209\) 11.1842 0.773628
\(210\) −5.37778 −0.371102
\(211\) −5.76049 −0.396569 −0.198284 0.980145i \(-0.563537\pi\)
−0.198284 + 0.980145i \(0.563537\pi\)
\(212\) −1.77478 −0.121892
\(213\) −10.3684 −0.710432
\(214\) 3.68736 0.252063
\(215\) 1.09679 0.0748003
\(216\) −21.6227 −1.47124
\(217\) 2.62222 0.178008
\(218\) 9.64143 0.653000
\(219\) −41.1941 −2.78364
\(220\) 2.57628 0.173693
\(221\) −13.8064 −0.928721
\(222\) 28.0415 1.88202
\(223\) 8.14764 0.545607 0.272803 0.962070i \(-0.412049\pi\)
0.272803 + 0.962070i \(0.412049\pi\)
\(224\) −4.40451 −0.294288
\(225\) 5.42864 0.361909
\(226\) −9.49685 −0.631721
\(227\) 10.5161 0.697975 0.348988 0.937127i \(-0.386525\pi\)
0.348988 + 0.937127i \(0.386525\pi\)
\(228\) 3.47949 0.230435
\(229\) 8.48886 0.560960 0.280480 0.959860i \(-0.409506\pi\)
0.280480 + 0.959860i \(0.409506\pi\)
\(230\) 8.38271 0.552739
\(231\) −21.7146 −1.42871
\(232\) 3.06668 0.201337
\(233\) −20.5718 −1.34771 −0.673853 0.738866i \(-0.735362\pi\)
−0.673853 + 0.738866i \(0.735362\pi\)
\(234\) 42.3783 2.77035
\(235\) −12.7096 −0.829085
\(236\) 1.67307 0.108908
\(237\) −0.990632 −0.0643485
\(238\) −3.97820 −0.257869
\(239\) 0.815792 0.0527692 0.0263846 0.999652i \(-0.491601\pi\)
0.0263846 + 0.999652i \(0.491601\pi\)
\(240\) −7.76049 −0.500938
\(241\) −7.24443 −0.466655 −0.233327 0.972398i \(-0.574961\pi\)
−0.233327 + 0.972398i \(0.574961\pi\)
\(242\) −15.8365 −1.01801
\(243\) 9.00492 0.577666
\(244\) 1.27607 0.0816923
\(245\) 4.67307 0.298552
\(246\) −11.9081 −0.759235
\(247\) −14.6637 −0.933029
\(248\) 5.27163 0.334749
\(249\) 21.2859 1.34894
\(250\) 1.21432 0.0768003
\(251\) −20.4242 −1.28916 −0.644582 0.764535i \(-0.722969\pi\)
−0.644582 + 0.764535i \(0.722969\pi\)
\(252\) −4.35106 −0.274091
\(253\) 33.8479 2.12800
\(254\) 15.1097 0.948067
\(255\) 6.23506 0.390455
\(256\) −11.6637 −0.728981
\(257\) 3.08250 0.192281 0.0961405 0.995368i \(-0.469350\pi\)
0.0961405 + 0.995368i \(0.469350\pi\)
\(258\) −3.86665 −0.240727
\(259\) 12.1334 0.753930
\(260\) −3.37778 −0.209481
\(261\) 5.42864 0.336024
\(262\) −4.96343 −0.306642
\(263\) 20.0558 1.23669 0.618346 0.785906i \(-0.287803\pi\)
0.618346 + 0.785906i \(0.287803\pi\)
\(264\) −43.6543 −2.68674
\(265\) −3.37778 −0.207496
\(266\) −4.22522 −0.259065
\(267\) −8.56199 −0.523985
\(268\) 0.576283 0.0352021
\(269\) −23.4608 −1.43043 −0.715214 0.698906i \(-0.753671\pi\)
−0.715214 + 0.698906i \(0.753671\pi\)
\(270\) −8.56199 −0.521066
\(271\) −21.9353 −1.33248 −0.666238 0.745739i \(-0.732097\pi\)
−0.666238 + 0.745739i \(0.732097\pi\)
\(272\) −5.74080 −0.348087
\(273\) 28.4701 1.72309
\(274\) 24.2306 1.46383
\(275\) 4.90321 0.295675
\(276\) 10.5303 0.633853
\(277\) 18.3368 1.10175 0.550875 0.834588i \(-0.314294\pi\)
0.550875 + 0.834588i \(0.314294\pi\)
\(278\) −9.60300 −0.575950
\(279\) 9.33185 0.558683
\(280\) −4.67799 −0.279564
\(281\) 6.89877 0.411546 0.205773 0.978600i \(-0.434029\pi\)
0.205773 + 0.978600i \(0.434029\pi\)
\(282\) 44.8069 2.66821
\(283\) −29.0049 −1.72416 −0.862082 0.506769i \(-0.830840\pi\)
−0.862082 + 0.506769i \(0.830840\pi\)
\(284\) −1.87649 −0.111349
\(285\) 6.62222 0.392266
\(286\) 38.2766 2.26334
\(287\) −5.15257 −0.304146
\(288\) −15.6746 −0.923635
\(289\) −12.3876 −0.728684
\(290\) 1.21432 0.0713073
\(291\) 53.9309 3.16148
\(292\) −7.45536 −0.436292
\(293\) 7.79213 0.455221 0.227611 0.973752i \(-0.426909\pi\)
0.227611 + 0.973752i \(0.426909\pi\)
\(294\) −16.4746 −0.960817
\(295\) 3.18421 0.185392
\(296\) 24.3926 1.41779
\(297\) −34.5718 −2.00606
\(298\) 19.5526 1.13265
\(299\) −44.3783 −2.56646
\(300\) 1.52543 0.0880706
\(301\) −1.67307 −0.0964342
\(302\) −6.88892 −0.396413
\(303\) −44.7654 −2.57171
\(304\) −6.09726 −0.349702
\(305\) 2.42864 0.139063
\(306\) −14.1575 −0.809330
\(307\) 5.92549 0.338185 0.169093 0.985600i \(-0.445916\pi\)
0.169093 + 0.985600i \(0.445916\pi\)
\(308\) −3.92993 −0.223929
\(309\) −22.5303 −1.28171
\(310\) 2.08742 0.118557
\(311\) 8.94470 0.507207 0.253604 0.967308i \(-0.418384\pi\)
0.253604 + 0.967308i \(0.418384\pi\)
\(312\) 57.2355 3.24032
\(313\) −30.5116 −1.72462 −0.862309 0.506382i \(-0.830983\pi\)
−0.862309 + 0.506382i \(0.830983\pi\)
\(314\) −2.29973 −0.129781
\(315\) −8.28100 −0.466581
\(316\) −0.179286 −0.0100856
\(317\) −22.2306 −1.24860 −0.624298 0.781186i \(-0.714615\pi\)
−0.624298 + 0.781186i \(0.714615\pi\)
\(318\) 11.9081 0.667775
\(319\) 4.90321 0.274527
\(320\) −8.85236 −0.494862
\(321\) 8.81579 0.492050
\(322\) −12.7872 −0.712603
\(323\) 4.89877 0.272575
\(324\) −2.19850 −0.122139
\(325\) −6.42864 −0.356597
\(326\) 7.23014 0.400440
\(327\) 23.0509 1.27472
\(328\) −10.3586 −0.571956
\(329\) 19.3876 1.06887
\(330\) −17.2859 −0.951558
\(331\) −6.54770 −0.359894 −0.179947 0.983676i \(-0.557593\pi\)
−0.179947 + 0.983676i \(0.557593\pi\)
\(332\) 3.85236 0.211426
\(333\) 43.1798 2.36624
\(334\) −5.14812 −0.281693
\(335\) 1.09679 0.0599239
\(336\) 11.8381 0.645819
\(337\) 2.66815 0.145343 0.0726717 0.997356i \(-0.476847\pi\)
0.0726717 + 0.997356i \(0.476847\pi\)
\(338\) −34.3985 −1.87103
\(339\) −22.7052 −1.23318
\(340\) 1.12843 0.0611978
\(341\) 8.42864 0.456436
\(342\) −15.0366 −0.813084
\(343\) −17.8064 −0.961457
\(344\) −3.36349 −0.181347
\(345\) 20.0415 1.07900
\(346\) −29.6414 −1.59353
\(347\) 14.6780 0.787956 0.393978 0.919120i \(-0.371099\pi\)
0.393978 + 0.919120i \(0.371099\pi\)
\(348\) 1.52543 0.0817715
\(349\) −11.1240 −0.595453 −0.297727 0.954651i \(-0.596228\pi\)
−0.297727 + 0.954651i \(0.596228\pi\)
\(350\) −1.85236 −0.0990126
\(351\) 45.3274 2.41940
\(352\) −14.1575 −0.754597
\(353\) −13.4795 −0.717441 −0.358721 0.933445i \(-0.616787\pi\)
−0.358721 + 0.933445i \(0.616787\pi\)
\(354\) −11.2257 −0.596639
\(355\) −3.57136 −0.189548
\(356\) −1.54956 −0.0821266
\(357\) −9.51114 −0.503383
\(358\) 4.38715 0.231868
\(359\) 26.1891 1.38221 0.691105 0.722755i \(-0.257124\pi\)
0.691105 + 0.722755i \(0.257124\pi\)
\(360\) −16.6479 −0.877420
\(361\) −13.7971 −0.726161
\(362\) −21.9081 −1.15147
\(363\) −37.8622 −1.98725
\(364\) 5.15257 0.270068
\(365\) −14.1891 −0.742693
\(366\) −8.56199 −0.447543
\(367\) −22.9862 −1.19987 −0.599935 0.800049i \(-0.704807\pi\)
−0.599935 + 0.800049i \(0.704807\pi\)
\(368\) −18.4528 −0.961917
\(369\) −18.3368 −0.954574
\(370\) 9.65878 0.502136
\(371\) 5.15257 0.267508
\(372\) 2.62222 0.135956
\(373\) −24.2766 −1.25699 −0.628496 0.777813i \(-0.716329\pi\)
−0.628496 + 0.777813i \(0.716329\pi\)
\(374\) −12.7872 −0.661211
\(375\) 2.90321 0.149921
\(376\) 38.9763 2.01005
\(377\) −6.42864 −0.331092
\(378\) 13.0607 0.671770
\(379\) 29.7605 1.52869 0.764347 0.644805i \(-0.223062\pi\)
0.764347 + 0.644805i \(0.223062\pi\)
\(380\) 1.19850 0.0614817
\(381\) 36.1245 1.85071
\(382\) −11.9639 −0.612127
\(383\) 23.8020 1.21622 0.608112 0.793851i \(-0.291927\pi\)
0.608112 + 0.793851i \(0.291927\pi\)
\(384\) 14.4429 0.737038
\(385\) −7.47949 −0.381190
\(386\) −2.71948 −0.138418
\(387\) −5.95407 −0.302662
\(388\) 9.76049 0.495514
\(389\) −6.52051 −0.330603 −0.165301 0.986243i \(-0.552860\pi\)
−0.165301 + 0.986243i \(0.552860\pi\)
\(390\) 22.6637 1.14762
\(391\) 14.8256 0.749765
\(392\) −14.3308 −0.723815
\(393\) −11.8666 −0.598593
\(394\) 12.8256 0.646146
\(395\) −0.341219 −0.0171686
\(396\) −13.9857 −0.702808
\(397\) −14.7654 −0.741055 −0.370527 0.928822i \(-0.620823\pi\)
−0.370527 + 0.928822i \(0.620823\pi\)
\(398\) −3.86665 −0.193817
\(399\) −10.1017 −0.505718
\(400\) −2.67307 −0.133654
\(401\) 6.81579 0.340364 0.170182 0.985413i \(-0.445564\pi\)
0.170182 + 0.985413i \(0.445564\pi\)
\(402\) −3.86665 −0.192851
\(403\) −11.0509 −0.550482
\(404\) −8.10171 −0.403075
\(405\) −4.18421 −0.207915
\(406\) −1.85236 −0.0919309
\(407\) 39.0005 1.93318
\(408\) −19.1209 −0.946627
\(409\) −11.0825 −0.547994 −0.273997 0.961731i \(-0.588346\pi\)
−0.273997 + 0.961731i \(0.588346\pi\)
\(410\) −4.10171 −0.202569
\(411\) 57.9309 2.85752
\(412\) −4.07758 −0.200888
\(413\) −4.85728 −0.239011
\(414\) −45.5067 −2.23653
\(415\) 7.33185 0.359906
\(416\) 18.5620 0.910077
\(417\) −22.9590 −1.12431
\(418\) −13.5812 −0.664278
\(419\) 30.9719 1.51308 0.756538 0.653950i \(-0.226889\pi\)
0.756538 + 0.653950i \(0.226889\pi\)
\(420\) −2.32693 −0.113543
\(421\) 22.8988 1.11602 0.558009 0.829835i \(-0.311566\pi\)
0.558009 + 0.829835i \(0.311566\pi\)
\(422\) 6.99508 0.340515
\(423\) 68.9960 3.35470
\(424\) 10.3586 0.503057
\(425\) 2.14764 0.104176
\(426\) 12.5906 0.610015
\(427\) −3.70471 −0.179284
\(428\) 1.59549 0.0771212
\(429\) 91.5121 4.41825
\(430\) −1.33185 −0.0642276
\(431\) −28.0830 −1.35271 −0.676355 0.736576i \(-0.736441\pi\)
−0.676355 + 0.736576i \(0.736441\pi\)
\(432\) 18.8474 0.906798
\(433\) 23.0049 1.10555 0.552773 0.833332i \(-0.313570\pi\)
0.552773 + 0.833332i \(0.313570\pi\)
\(434\) −3.18421 −0.152847
\(435\) 2.90321 0.139198
\(436\) 4.17178 0.199792
\(437\) 15.7462 0.753243
\(438\) 50.0228 2.39018
\(439\) 11.7462 0.560616 0.280308 0.959910i \(-0.409563\pi\)
0.280308 + 0.959910i \(0.409563\pi\)
\(440\) −15.0366 −0.716840
\(441\) −25.3684 −1.20802
\(442\) 16.7654 0.797449
\(443\) 17.6874 0.840352 0.420176 0.907443i \(-0.361968\pi\)
0.420176 + 0.907443i \(0.361968\pi\)
\(444\) 12.1334 0.575823
\(445\) −2.94914 −0.139803
\(446\) −9.89384 −0.468487
\(447\) 46.7467 2.21104
\(448\) 13.5036 0.637987
\(449\) 1.57136 0.0741571 0.0370785 0.999312i \(-0.488195\pi\)
0.0370785 + 0.999312i \(0.488195\pi\)
\(450\) −6.59210 −0.310755
\(451\) −16.5620 −0.779874
\(452\) −4.10922 −0.193281
\(453\) −16.4701 −0.773834
\(454\) −12.7699 −0.599319
\(455\) 9.80642 0.459732
\(456\) −20.3082 −0.951018
\(457\) 1.47949 0.0692078 0.0346039 0.999401i \(-0.488983\pi\)
0.0346039 + 0.999401i \(0.488983\pi\)
\(458\) −10.3082 −0.481670
\(459\) −15.1427 −0.706802
\(460\) 3.62714 0.169116
\(461\) −41.2543 −1.92140 −0.960702 0.277583i \(-0.910467\pi\)
−0.960702 + 0.277583i \(0.910467\pi\)
\(462\) 26.3684 1.22677
\(463\) −34.4242 −1.59983 −0.799914 0.600115i \(-0.795122\pi\)
−0.799914 + 0.600115i \(0.795122\pi\)
\(464\) −2.67307 −0.124094
\(465\) 4.99063 0.231435
\(466\) 24.9808 1.15721
\(467\) 15.1699 0.701980 0.350990 0.936379i \(-0.385845\pi\)
0.350990 + 0.936379i \(0.385845\pi\)
\(468\) 18.3368 0.847618
\(469\) −1.67307 −0.0772552
\(470\) 15.4336 0.711897
\(471\) −5.49823 −0.253345
\(472\) −9.76494 −0.449468
\(473\) −5.37778 −0.247271
\(474\) 1.20294 0.0552531
\(475\) 2.28100 0.104659
\(476\) −1.72134 −0.0788975
\(477\) 18.3368 0.839583
\(478\) −0.990632 −0.0453105
\(479\) −18.9763 −0.867051 −0.433526 0.901141i \(-0.642731\pi\)
−0.433526 + 0.901141i \(0.642731\pi\)
\(480\) −8.38271 −0.382616
\(481\) −51.1338 −2.33150
\(482\) 8.79706 0.400695
\(483\) −30.5718 −1.39107
\(484\) −6.85236 −0.311471
\(485\) 18.5763 0.843506
\(486\) −10.9349 −0.496015
\(487\) −32.3926 −1.46785 −0.733923 0.679232i \(-0.762313\pi\)
−0.733923 + 0.679232i \(0.762313\pi\)
\(488\) −7.44785 −0.337148
\(489\) 17.2859 0.781696
\(490\) −5.67460 −0.256352
\(491\) 2.69673 0.121702 0.0608508 0.998147i \(-0.480619\pi\)
0.0608508 + 0.998147i \(0.480619\pi\)
\(492\) −5.15257 −0.232296
\(493\) 2.14764 0.0967250
\(494\) 17.8064 0.801149
\(495\) −26.6178 −1.19638
\(496\) −4.59502 −0.206322
\(497\) 5.44785 0.244370
\(498\) −25.8479 −1.15827
\(499\) 14.5718 0.652325 0.326163 0.945314i \(-0.394244\pi\)
0.326163 + 0.945314i \(0.394244\pi\)
\(500\) 0.525428 0.0234978
\(501\) −12.3082 −0.549890
\(502\) 24.8015 1.10695
\(503\) −22.2494 −0.992050 −0.496025 0.868308i \(-0.665208\pi\)
−0.496025 + 0.868308i \(0.665208\pi\)
\(504\) 25.3951 1.13119
\(505\) −15.4193 −0.686149
\(506\) −41.1022 −1.82722
\(507\) −82.2405 −3.65243
\(508\) 6.53786 0.290071
\(509\) −9.18421 −0.407083 −0.203541 0.979066i \(-0.565245\pi\)
−0.203541 + 0.979066i \(0.565245\pi\)
\(510\) −7.57136 −0.335265
\(511\) 21.6445 0.957496
\(512\) 24.1131 1.06566
\(513\) −16.0830 −0.710081
\(514\) −3.74314 −0.165103
\(515\) −7.76049 −0.341968
\(516\) −1.67307 −0.0736528
\(517\) 62.3180 2.74074
\(518\) −14.7338 −0.647365
\(519\) −70.8671 −3.11072
\(520\) 19.7146 0.864541
\(521\) 7.01921 0.307517 0.153759 0.988108i \(-0.450862\pi\)
0.153759 + 0.988108i \(0.450862\pi\)
\(522\) −6.59210 −0.288529
\(523\) −7.29036 −0.318785 −0.159393 0.987215i \(-0.550954\pi\)
−0.159393 + 0.987215i \(0.550954\pi\)
\(524\) −2.14764 −0.0938202
\(525\) −4.42864 −0.193282
\(526\) −24.3541 −1.06189
\(527\) 3.69181 0.160818
\(528\) 38.0513 1.65597
\(529\) 24.6543 1.07193
\(530\) 4.10171 0.178167
\(531\) −17.2859 −0.750145
\(532\) −1.82822 −0.0792635
\(533\) 21.7146 0.940562
\(534\) 10.3970 0.449922
\(535\) 3.03657 0.131282
\(536\) −3.36349 −0.145281
\(537\) 10.4889 0.452628
\(538\) 28.4889 1.22824
\(539\) −22.9131 −0.986935
\(540\) −3.70471 −0.159425
\(541\) 30.9491 1.33061 0.665304 0.746573i \(-0.268302\pi\)
0.665304 + 0.746573i \(0.268302\pi\)
\(542\) 26.6365 1.14414
\(543\) −52.3783 −2.24777
\(544\) −6.20108 −0.265869
\(545\) 7.93978 0.340103
\(546\) −34.5718 −1.47954
\(547\) −19.4237 −0.830498 −0.415249 0.909708i \(-0.636306\pi\)
−0.415249 + 0.909708i \(0.636306\pi\)
\(548\) 10.4844 0.447872
\(549\) −13.1842 −0.562688
\(550\) −5.95407 −0.253882
\(551\) 2.28100 0.0971737
\(552\) −61.4608 −2.61594
\(553\) 0.520505 0.0221341
\(554\) −22.2667 −0.946022
\(555\) 23.0923 0.980215
\(556\) −4.15515 −0.176218
\(557\) 30.3497 1.28596 0.642979 0.765884i \(-0.277698\pi\)
0.642979 + 0.765884i \(0.277698\pi\)
\(558\) −11.3319 −0.479716
\(559\) 7.05086 0.298219
\(560\) 4.07758 0.172309
\(561\) −30.5718 −1.29074
\(562\) −8.37731 −0.353375
\(563\) −33.1798 −1.39836 −0.699180 0.714946i \(-0.746451\pi\)
−0.699180 + 0.714946i \(0.746451\pi\)
\(564\) 19.3876 0.816366
\(565\) −7.82071 −0.329020
\(566\) 35.2212 1.48046
\(567\) 6.38271 0.268048
\(568\) 10.9522 0.459544
\(569\) −4.06022 −0.170213 −0.0851067 0.996372i \(-0.527123\pi\)
−0.0851067 + 0.996372i \(0.527123\pi\)
\(570\) −8.04149 −0.336821
\(571\) −31.5496 −1.32031 −0.660154 0.751130i \(-0.729509\pi\)
−0.660154 + 0.751130i \(0.729509\pi\)
\(572\) 16.5620 0.692492
\(573\) −28.6035 −1.19493
\(574\) 6.25686 0.261156
\(575\) 6.90321 0.287884
\(576\) 48.0563 2.00234
\(577\) 33.7891 1.40666 0.703329 0.710865i \(-0.251696\pi\)
0.703329 + 0.710865i \(0.251696\pi\)
\(578\) 15.0425 0.625687
\(579\) −6.50177 −0.270204
\(580\) 0.525428 0.0218172
\(581\) −11.1842 −0.463999
\(582\) −65.4893 −2.71462
\(583\) 16.5620 0.685928
\(584\) 43.5135 1.80060
\(585\) 34.8988 1.44289
\(586\) −9.46214 −0.390877
\(587\) −25.5669 −1.05526 −0.527630 0.849474i \(-0.676919\pi\)
−0.527630 + 0.849474i \(0.676919\pi\)
\(588\) −7.12843 −0.293972
\(589\) 3.92104 0.161564
\(590\) −3.86665 −0.159187
\(591\) 30.6637 1.26134
\(592\) −21.2618 −0.873854
\(593\) 7.96836 0.327221 0.163611 0.986525i \(-0.447686\pi\)
0.163611 + 0.986525i \(0.447686\pi\)
\(594\) 41.9813 1.72251
\(595\) −3.27607 −0.134306
\(596\) 8.46028 0.346547
\(597\) −9.24443 −0.378349
\(598\) 53.8894 2.20370
\(599\) 37.2815 1.52328 0.761640 0.648001i \(-0.224395\pi\)
0.761640 + 0.648001i \(0.224395\pi\)
\(600\) −8.90321 −0.363472
\(601\) −29.9496 −1.22167 −0.610835 0.791758i \(-0.709166\pi\)
−0.610835 + 0.791758i \(0.709166\pi\)
\(602\) 2.03164 0.0828036
\(603\) −5.95407 −0.242468
\(604\) −2.98079 −0.121287
\(605\) −13.0415 −0.530212
\(606\) 54.3595 2.20820
\(607\) −31.8435 −1.29249 −0.646243 0.763132i \(-0.723661\pi\)
−0.646243 + 0.763132i \(0.723661\pi\)
\(608\) −6.58613 −0.267103
\(609\) −4.42864 −0.179458
\(610\) −2.94914 −0.119407
\(611\) −81.7057 −3.30546
\(612\) −6.12584 −0.247623
\(613\) −2.65386 −0.107188 −0.0535942 0.998563i \(-0.517068\pi\)
−0.0535942 + 0.998563i \(0.517068\pi\)
\(614\) −7.19544 −0.290384
\(615\) −9.80642 −0.395433
\(616\) 22.9372 0.924166
\(617\) −18.3096 −0.737116 −0.368558 0.929605i \(-0.620148\pi\)
−0.368558 + 0.929605i \(0.620148\pi\)
\(618\) 27.3590 1.10054
\(619\) 12.8113 0.514931 0.257466 0.966287i \(-0.417113\pi\)
0.257466 + 0.966287i \(0.417113\pi\)
\(620\) 0.903212 0.0362739
\(621\) −48.6735 −1.95320
\(622\) −10.8617 −0.435515
\(623\) 4.49871 0.180237
\(624\) −49.8894 −1.99717
\(625\) 1.00000 0.0400000
\(626\) 37.0509 1.48085
\(627\) −32.4701 −1.29673
\(628\) −0.995078 −0.0397079
\(629\) 17.0825 0.681124
\(630\) 10.0558 0.400632
\(631\) 30.2766 1.20529 0.602645 0.798009i \(-0.294113\pi\)
0.602645 + 0.798009i \(0.294113\pi\)
\(632\) 1.04641 0.0416239
\(633\) 16.7239 0.664716
\(634\) 26.9951 1.07211
\(635\) 12.4429 0.493783
\(636\) 5.15257 0.204313
\(637\) 30.0415 1.19029
\(638\) −5.95407 −0.235724
\(639\) 19.3876 0.766963
\(640\) 4.97481 0.196647
\(641\) −4.50177 −0.177809 −0.0889046 0.996040i \(-0.528337\pi\)
−0.0889046 + 0.996040i \(0.528337\pi\)
\(642\) −10.7052 −0.422500
\(643\) −40.0272 −1.57852 −0.789259 0.614060i \(-0.789535\pi\)
−0.789259 + 0.614060i \(0.789535\pi\)
\(644\) −5.53294 −0.218028
\(645\) −3.18421 −0.125378
\(646\) −5.94867 −0.234047
\(647\) 27.3604 1.07565 0.537825 0.843057i \(-0.319246\pi\)
0.537825 + 0.843057i \(0.319246\pi\)
\(648\) 12.8316 0.504073
\(649\) −15.6128 −0.612858
\(650\) 7.80642 0.306193
\(651\) −7.61285 −0.298371
\(652\) 3.12843 0.122519
\(653\) 22.8430 0.893915 0.446958 0.894555i \(-0.352507\pi\)
0.446958 + 0.894555i \(0.352507\pi\)
\(654\) −27.9911 −1.09454
\(655\) −4.08742 −0.159709
\(656\) 9.02906 0.352525
\(657\) 77.0277 3.00514
\(658\) −23.5428 −0.917793
\(659\) 15.0178 0.585012 0.292506 0.956264i \(-0.405511\pi\)
0.292506 + 0.956264i \(0.405511\pi\)
\(660\) −7.47949 −0.291139
\(661\) −4.65080 −0.180895 −0.0904475 0.995901i \(-0.528830\pi\)
−0.0904475 + 0.995901i \(0.528830\pi\)
\(662\) 7.95100 0.309025
\(663\) 40.0830 1.55669
\(664\) −22.4844 −0.872565
\(665\) −3.47949 −0.134929
\(666\) −52.4340 −2.03178
\(667\) 6.90321 0.267293
\(668\) −2.22755 −0.0861867
\(669\) −23.6543 −0.914529
\(670\) −1.33185 −0.0514539
\(671\) −11.9081 −0.459708
\(672\) 12.7872 0.493277
\(673\) −44.8671 −1.72950 −0.864750 0.502202i \(-0.832523\pi\)
−0.864750 + 0.502202i \(0.832523\pi\)
\(674\) −3.23999 −0.124800
\(675\) −7.05086 −0.271388
\(676\) −14.8840 −0.572462
\(677\) 27.2212 1.04620 0.523099 0.852272i \(-0.324776\pi\)
0.523099 + 0.852272i \(0.324776\pi\)
\(678\) 27.5714 1.05887
\(679\) −28.3368 −1.08747
\(680\) −6.58613 −0.252566
\(681\) −30.5303 −1.16993
\(682\) −10.2351 −0.391921
\(683\) 12.0558 0.461301 0.230651 0.973037i \(-0.425915\pi\)
0.230651 + 0.973037i \(0.425915\pi\)
\(684\) −6.50622 −0.248771
\(685\) 19.9541 0.762406
\(686\) 21.6227 0.825558
\(687\) −24.6450 −0.940264
\(688\) 2.93179 0.111774
\(689\) −21.7146 −0.827259
\(690\) −24.3368 −0.926485
\(691\) 37.5812 1.42966 0.714828 0.699300i \(-0.246505\pi\)
0.714828 + 0.699300i \(0.246505\pi\)
\(692\) −12.8256 −0.487558
\(693\) 40.6035 1.54240
\(694\) −17.8238 −0.676581
\(695\) −7.90813 −0.299973
\(696\) −8.90321 −0.337475
\(697\) −7.25428 −0.274775
\(698\) 13.5081 0.511288
\(699\) 59.7244 2.25898
\(700\) −0.801502 −0.0302939
\(701\) 2.04149 0.0771059 0.0385530 0.999257i \(-0.487725\pi\)
0.0385530 + 0.999257i \(0.487725\pi\)
\(702\) −55.0420 −2.07743
\(703\) 18.1432 0.684284
\(704\) 43.4050 1.63589
\(705\) 36.8988 1.38969
\(706\) 16.3684 0.616033
\(707\) 23.5210 0.884598
\(708\) −4.85728 −0.182548
\(709\) −32.1432 −1.20716 −0.603582 0.797301i \(-0.706260\pi\)
−0.603582 + 0.797301i \(0.706260\pi\)
\(710\) 4.33677 0.162756
\(711\) 1.85236 0.0694688
\(712\) 9.04407 0.338941
\(713\) 11.8666 0.444409
\(714\) 11.5496 0.432231
\(715\) 31.5210 1.17882
\(716\) 1.89829 0.0709424
\(717\) −2.36842 −0.0884501
\(718\) −31.8020 −1.18684
\(719\) 1.01921 0.0380102 0.0190051 0.999819i \(-0.493950\pi\)
0.0190051 + 0.999819i \(0.493950\pi\)
\(720\) 14.5111 0.540798
\(721\) 11.8381 0.440873
\(722\) 16.7540 0.623521
\(723\) 21.0321 0.782193
\(724\) −9.47949 −0.352303
\(725\) 1.00000 0.0371391
\(726\) 45.9768 1.70636
\(727\) −24.1476 −0.895587 −0.447793 0.894137i \(-0.647790\pi\)
−0.447793 + 0.894137i \(0.647790\pi\)
\(728\) −30.0731 −1.11458
\(729\) −38.6958 −1.43318
\(730\) 17.2301 0.637716
\(731\) −2.35551 −0.0871217
\(732\) −3.70471 −0.136930
\(733\) 18.8845 0.697514 0.348757 0.937213i \(-0.386604\pi\)
0.348757 + 0.937213i \(0.386604\pi\)
\(734\) 27.9126 1.03027
\(735\) −13.5669 −0.500423
\(736\) −19.9323 −0.734713
\(737\) −5.37778 −0.198093
\(738\) 22.2667 0.819649
\(739\) −3.31312 −0.121875 −0.0609375 0.998142i \(-0.519409\pi\)
−0.0609375 + 0.998142i \(0.519409\pi\)
\(740\) 4.17929 0.153634
\(741\) 42.5718 1.56392
\(742\) −6.25686 −0.229697
\(743\) 2.99508 0.109879 0.0549394 0.998490i \(-0.482503\pi\)
0.0549394 + 0.998490i \(0.482503\pi\)
\(744\) −15.3047 −0.561096
\(745\) 16.1017 0.589921
\(746\) 29.4795 1.07932
\(747\) −39.8020 −1.45628
\(748\) −5.53294 −0.202304
\(749\) −4.63206 −0.169252
\(750\) −3.52543 −0.128730
\(751\) 11.9956 0.437724 0.218862 0.975756i \(-0.429766\pi\)
0.218862 + 0.975756i \(0.429766\pi\)
\(752\) −33.9738 −1.23890
\(753\) 59.2958 2.16086
\(754\) 7.80642 0.284293
\(755\) −5.67307 −0.206464
\(756\) 5.65127 0.205535
\(757\) 18.5763 0.675166 0.337583 0.941296i \(-0.390391\pi\)
0.337583 + 0.941296i \(0.390391\pi\)
\(758\) −36.1388 −1.31262
\(759\) −98.2677 −3.56689
\(760\) −6.99508 −0.253738
\(761\) 2.59057 0.0939082 0.0469541 0.998897i \(-0.485049\pi\)
0.0469541 + 0.998897i \(0.485049\pi\)
\(762\) −43.8666 −1.58912
\(763\) −12.1116 −0.438468
\(764\) −5.17670 −0.187286
\(765\) −11.6588 −0.421524
\(766\) −28.9032 −1.04432
\(767\) 20.4701 0.739133
\(768\) 33.8622 1.22190
\(769\) 32.7467 1.18088 0.590438 0.807083i \(-0.298955\pi\)
0.590438 + 0.807083i \(0.298955\pi\)
\(770\) 9.08250 0.327311
\(771\) −8.94914 −0.322296
\(772\) −1.17670 −0.0423504
\(773\) 28.2208 1.01503 0.507515 0.861643i \(-0.330564\pi\)
0.507515 + 0.861643i \(0.330564\pi\)
\(774\) 7.23014 0.259882
\(775\) 1.71900 0.0617484
\(776\) −56.9675 −2.04501
\(777\) −35.2257 −1.26371
\(778\) 7.91798 0.283873
\(779\) −7.70471 −0.276050
\(780\) 9.80642 0.351126
\(781\) 17.5111 0.626598
\(782\) −18.0031 −0.643788
\(783\) −7.05086 −0.251977
\(784\) 12.4914 0.446123
\(785\) −1.89384 −0.0675942
\(786\) 14.4099 0.513984
\(787\) 11.9857 0.427244 0.213622 0.976916i \(-0.431474\pi\)
0.213622 + 0.976916i \(0.431474\pi\)
\(788\) 5.54956 0.197695
\(789\) −58.2262 −2.07291
\(790\) 0.414349 0.0147419
\(791\) 11.9299 0.424180
\(792\) 81.6281 2.90053
\(793\) 15.6128 0.554428
\(794\) 17.9299 0.636309
\(795\) 9.80642 0.347798
\(796\) −1.67307 −0.0593004
\(797\) −33.0366 −1.17022 −0.585108 0.810956i \(-0.698948\pi\)
−0.585108 + 0.810956i \(0.698948\pi\)
\(798\) 12.2667 0.434237
\(799\) 27.2958 0.965655
\(800\) −2.88739 −0.102085
\(801\) 16.0098 0.565680
\(802\) −8.27655 −0.292255
\(803\) 69.5723 2.45515
\(804\) −1.67307 −0.0590047
\(805\) −10.5303 −0.371146
\(806\) 13.4193 0.472674
\(807\) 68.1116 2.39764
\(808\) 47.2859 1.66351
\(809\) −32.1303 −1.12964 −0.564820 0.825214i \(-0.691055\pi\)
−0.564820 + 0.825214i \(0.691055\pi\)
\(810\) 5.08097 0.178527
\(811\) 15.3176 0.537872 0.268936 0.963158i \(-0.413328\pi\)
0.268936 + 0.963158i \(0.413328\pi\)
\(812\) −0.801502 −0.0281272
\(813\) 63.6829 2.23346
\(814\) −47.3590 −1.65993
\(815\) 5.95407 0.208562
\(816\) 16.6668 0.583453
\(817\) −2.50177 −0.0875258
\(818\) 13.4577 0.470537
\(819\) −53.2355 −1.86020
\(820\) −1.77478 −0.0619780
\(821\) −17.1427 −0.598285 −0.299143 0.954208i \(-0.596701\pi\)
−0.299143 + 0.954208i \(0.596701\pi\)
\(822\) −70.3466 −2.45362
\(823\) −35.6400 −1.24233 −0.621167 0.783678i \(-0.713341\pi\)
−0.621167 + 0.783678i \(0.713341\pi\)
\(824\) 23.7989 0.829075
\(825\) −14.2351 −0.495601
\(826\) 5.89829 0.205228
\(827\) 4.70964 0.163770 0.0818850 0.996642i \(-0.473906\pi\)
0.0818850 + 0.996642i \(0.473906\pi\)
\(828\) −19.6904 −0.684290
\(829\) 2.25380 0.0782777 0.0391388 0.999234i \(-0.487539\pi\)
0.0391388 + 0.999234i \(0.487539\pi\)
\(830\) −8.90321 −0.309035
\(831\) −53.2355 −1.84672
\(832\) −56.9086 −1.97295
\(833\) −10.0361 −0.347730
\(834\) 27.8796 0.965390
\(835\) −4.23951 −0.146714
\(836\) −5.87649 −0.203243
\(837\) −12.1204 −0.418944
\(838\) −37.6098 −1.29921
\(839\) −8.42419 −0.290835 −0.145418 0.989370i \(-0.546453\pi\)
−0.145418 + 0.989370i \(0.546453\pi\)
\(840\) 13.5812 0.468596
\(841\) 1.00000 0.0344828
\(842\) −27.8064 −0.958273
\(843\) −20.0286 −0.689821
\(844\) 3.02672 0.104184
\(845\) −28.3274 −0.974492
\(846\) −83.7832 −2.88053
\(847\) 19.8938 0.683561
\(848\) −9.02906 −0.310059
\(849\) 84.2074 2.88999
\(850\) −2.60793 −0.0894511
\(851\) 54.9086 1.88224
\(852\) 5.44785 0.186640
\(853\) 51.8247 1.77444 0.887222 0.461342i \(-0.152632\pi\)
0.887222 + 0.461342i \(0.152632\pi\)
\(854\) 4.49871 0.153943
\(855\) −12.3827 −0.423480
\(856\) −9.31216 −0.318283
\(857\) −30.0415 −1.02620 −0.513099 0.858330i \(-0.671503\pi\)
−0.513099 + 0.858330i \(0.671503\pi\)
\(858\) −111.125 −3.79374
\(859\) 19.6874 0.671724 0.335862 0.941911i \(-0.390972\pi\)
0.335862 + 0.941911i \(0.390972\pi\)
\(860\) −0.576283 −0.0196511
\(861\) 14.9590 0.509801
\(862\) 34.1017 1.16151
\(863\) 19.5986 0.667143 0.333571 0.942725i \(-0.391746\pi\)
0.333571 + 0.942725i \(0.391746\pi\)
\(864\) 20.3586 0.692613
\(865\) −24.4099 −0.829962
\(866\) −27.9353 −0.949281
\(867\) 35.9639 1.22140
\(868\) −1.37778 −0.0467650
\(869\) 1.67307 0.0567550
\(870\) −3.52543 −0.119523
\(871\) 7.05086 0.238909
\(872\) −24.3487 −0.824552
\(873\) −100.844 −3.41305
\(874\) −19.1209 −0.646775
\(875\) −1.52543 −0.0515689
\(876\) 21.6445 0.731300
\(877\) −16.2351 −0.548219 −0.274110 0.961698i \(-0.588383\pi\)
−0.274110 + 0.961698i \(0.588383\pi\)
\(878\) −14.2636 −0.481375
\(879\) −22.6222 −0.763028
\(880\) 13.1066 0.441824
\(881\) −20.7052 −0.697576 −0.348788 0.937202i \(-0.613407\pi\)
−0.348788 + 0.937202i \(0.613407\pi\)
\(882\) 30.8054 1.03727
\(883\) 8.75112 0.294499 0.147249 0.989099i \(-0.452958\pi\)
0.147249 + 0.989099i \(0.452958\pi\)
\(884\) 7.25428 0.243988
\(885\) −9.24443 −0.310748
\(886\) −21.4781 −0.721571
\(887\) 0.414349 0.0139125 0.00695625 0.999976i \(-0.497786\pi\)
0.00695625 + 0.999976i \(0.497786\pi\)
\(888\) −70.8167 −2.37645
\(889\) −18.9808 −0.636595
\(890\) 3.58120 0.120042
\(891\) 20.5161 0.687314
\(892\) −4.28100 −0.143338
\(893\) 28.9906 0.970135
\(894\) −56.7654 −1.89852
\(895\) 3.61285 0.120764
\(896\) −7.58871 −0.253521
\(897\) 128.839 4.30183
\(898\) −1.90813 −0.0636753
\(899\) 1.71900 0.0573320
\(900\) −2.85236 −0.0950786
\(901\) 7.25428 0.241675
\(902\) 20.1116 0.669642
\(903\) 4.85728 0.161640
\(904\) 23.9836 0.797683
\(905\) −18.0415 −0.599719
\(906\) 20.0000 0.664455
\(907\) −46.9862 −1.56015 −0.780075 0.625686i \(-0.784819\pi\)
−0.780075 + 0.625686i \(0.784819\pi\)
\(908\) −5.52543 −0.183368
\(909\) 83.7057 2.77634
\(910\) −11.9081 −0.394751
\(911\) −12.1704 −0.403223 −0.201612 0.979466i \(-0.564618\pi\)
−0.201612 + 0.979466i \(0.564618\pi\)
\(912\) 17.7017 0.586160
\(913\) −35.9496 −1.18976
\(914\) −1.79658 −0.0594256
\(915\) −7.05086 −0.233094
\(916\) −4.46028 −0.147372
\(917\) 6.23506 0.205900
\(918\) 18.3881 0.606898
\(919\) −23.2672 −0.767514 −0.383757 0.923434i \(-0.625370\pi\)
−0.383757 + 0.923434i \(0.625370\pi\)
\(920\) −21.1699 −0.697952
\(921\) −17.2029 −0.566856
\(922\) 50.0959 1.64982
\(923\) −22.9590 −0.755704
\(924\) 11.4094 0.375343
\(925\) 7.95407 0.261528
\(926\) 41.8020 1.37370
\(927\) 42.1289 1.38369
\(928\) −2.88739 −0.0947832
\(929\) 44.7556 1.46838 0.734191 0.678943i \(-0.237562\pi\)
0.734191 + 0.678943i \(0.237562\pi\)
\(930\) −6.06022 −0.198723
\(931\) −10.6593 −0.349343
\(932\) 10.8090 0.354061
\(933\) −25.9684 −0.850166
\(934\) −18.4211 −0.602758
\(935\) −10.5303 −0.344379
\(936\) −107.023 −3.49816
\(937\) −22.7239 −0.742358 −0.371179 0.928561i \(-0.621046\pi\)
−0.371179 + 0.928561i \(0.621046\pi\)
\(938\) 2.03164 0.0663355
\(939\) 88.5817 2.89075
\(940\) 6.67799 0.217812
\(941\) 4.10171 0.133712 0.0668560 0.997763i \(-0.478703\pi\)
0.0668560 + 0.997763i \(0.478703\pi\)
\(942\) 6.67661 0.217536
\(943\) −23.3176 −0.759324
\(944\) 8.51161 0.277029
\(945\) 10.7556 0.349879
\(946\) 6.53035 0.212320
\(947\) 16.6178 0.540005 0.270002 0.962860i \(-0.412975\pi\)
0.270002 + 0.962860i \(0.412975\pi\)
\(948\) 0.520505 0.0169052
\(949\) −91.2168 −2.96102
\(950\) −2.76986 −0.0898661
\(951\) 64.5402 2.09286
\(952\) 10.0467 0.325614
\(953\) 2.85728 0.0925563 0.0462782 0.998929i \(-0.485264\pi\)
0.0462782 + 0.998929i \(0.485264\pi\)
\(954\) −22.2667 −0.720911
\(955\) −9.85236 −0.318815
\(956\) −0.428639 −0.0138632
\(957\) −14.2351 −0.460154
\(958\) 23.0433 0.744497
\(959\) −30.4385 −0.982910
\(960\) 25.7003 0.829473
\(961\) −28.0450 −0.904678
\(962\) 62.0928 2.00195
\(963\) −16.4844 −0.531203
\(964\) 3.80642 0.122597
\(965\) −2.23951 −0.0720923
\(966\) 37.1240 1.19444
\(967\) 16.8015 0.540300 0.270150 0.962818i \(-0.412927\pi\)
0.270150 + 0.962818i \(0.412927\pi\)
\(968\) 39.9940 1.28546
\(969\) −14.2222 −0.456881
\(970\) −22.5575 −0.724279
\(971\) 38.3640 1.23116 0.615579 0.788075i \(-0.288922\pi\)
0.615579 + 0.788075i \(0.288922\pi\)
\(972\) −4.73143 −0.151761
\(973\) 12.0633 0.386731
\(974\) 39.3349 1.26037
\(975\) 18.6637 0.597717
\(976\) 6.49193 0.207801
\(977\) 31.6356 1.01211 0.506056 0.862500i \(-0.331103\pi\)
0.506056 + 0.862500i \(0.331103\pi\)
\(978\) −20.9906 −0.671206
\(979\) 14.4603 0.462153
\(980\) −2.45536 −0.0784336
\(981\) −43.1022 −1.37615
\(982\) −3.27469 −0.104500
\(983\) −35.3733 −1.12823 −0.564117 0.825695i \(-0.690783\pi\)
−0.564117 + 0.825695i \(0.690783\pi\)
\(984\) 30.0731 0.958696
\(985\) 10.5620 0.336533
\(986\) −2.60793 −0.0830533
\(987\) −56.2864 −1.79162
\(988\) 7.70471 0.245120
\(989\) −7.57136 −0.240755
\(990\) 32.3225 1.02728
\(991\) 24.6953 0.784474 0.392237 0.919864i \(-0.371701\pi\)
0.392237 + 0.919864i \(0.371701\pi\)
\(992\) −4.96343 −0.157589
\(993\) 19.0094 0.603244
\(994\) −6.61543 −0.209829
\(995\) −3.18421 −0.100946
\(996\) −11.1842 −0.354385
\(997\) −11.4050 −0.361199 −0.180600 0.983557i \(-0.557804\pi\)
−0.180600 + 0.983557i \(0.557804\pi\)
\(998\) −17.6949 −0.560121
\(999\) −56.0830 −1.77439
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 145.2.a.d.1.1 3
3.2 odd 2 1305.2.a.o.1.3 3
4.3 odd 2 2320.2.a.s.1.3 3
5.2 odd 4 725.2.b.d.349.3 6
5.3 odd 4 725.2.b.d.349.4 6
5.4 even 2 725.2.a.d.1.3 3
7.6 odd 2 7105.2.a.p.1.1 3
8.3 odd 2 9280.2.a.bm.1.1 3
8.5 even 2 9280.2.a.bu.1.3 3
15.14 odd 2 6525.2.a.bh.1.1 3
29.28 even 2 4205.2.a.e.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.a.d.1.1 3 1.1 even 1 trivial
725.2.a.d.1.3 3 5.4 even 2
725.2.b.d.349.3 6 5.2 odd 4
725.2.b.d.349.4 6 5.3 odd 4
1305.2.a.o.1.3 3 3.2 odd 2
2320.2.a.s.1.3 3 4.3 odd 2
4205.2.a.e.1.3 3 29.28 even 2
6525.2.a.bh.1.1 3 15.14 odd 2
7105.2.a.p.1.1 3 7.6 odd 2
9280.2.a.bm.1.1 3 8.3 odd 2
9280.2.a.bu.1.3 3 8.5 even 2