Properties

Label 145.2.a.d
Level $145$
Weight $2$
Character orbit 145.a
Self dual yes
Analytic conductor $1.158$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [145,2,Mod(1,145)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(145, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("145.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 145.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.15783082931\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{2} + (\beta_{2} + \beta_1 - 1) q^{3} + (\beta_{2} - \beta_1 + 2) q^{4} - q^{5} + ( - \beta_{2} + \beta_1 + 1) q^{6} + ( - \beta_{2} + \beta_1 - 1) q^{7} + ( - 3 \beta_1 + 4) q^{8}+ \cdots + ( - 9 \beta_{2} - \beta_1 + 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - 2 q^{3} + 5 q^{4} - 3 q^{5} + 4 q^{6} - 2 q^{7} + 9 q^{8} + 3 q^{9} - 3 q^{10} + 8 q^{11} - 2 q^{12} - 6 q^{13} - 12 q^{14} + 2 q^{15} + 5 q^{16} - 13 q^{18} - 5 q^{20} + 2 q^{22} + 14 q^{23}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.311108
2.17009
−1.48119
−1.21432 −2.90321 −0.525428 −1.00000 3.52543 1.52543 3.06668 5.42864 1.21432
1.2 1.53919 1.70928 0.369102 −1.00000 2.63090 0.630898 −2.51026 −0.0783777 −1.53919
1.3 2.67513 −0.806063 5.15633 −1.00000 −2.15633 −4.15633 8.44358 −2.35026 −2.67513
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 145.2.a.d 3
3.b odd 2 1 1305.2.a.o 3
4.b odd 2 1 2320.2.a.s 3
5.b even 2 1 725.2.a.d 3
5.c odd 4 2 725.2.b.d 6
7.b odd 2 1 7105.2.a.p 3
8.b even 2 1 9280.2.a.bu 3
8.d odd 2 1 9280.2.a.bm 3
15.d odd 2 1 6525.2.a.bh 3
29.b even 2 1 4205.2.a.e 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.2.a.d 3 1.a even 1 1 trivial
725.2.a.d 3 5.b even 2 1
725.2.b.d 6 5.c odd 4 2
1305.2.a.o 3 3.b odd 2 1
2320.2.a.s 3 4.b odd 2 1
4205.2.a.e 3 29.b even 2 1
6525.2.a.bh 3 15.d odd 2 1
7105.2.a.p 3 7.b odd 2 1
9280.2.a.bm 3 8.d odd 2 1
9280.2.a.bu 3 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 3T_{2}^{2} - T_{2} + 5 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(145))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 3T^{2} - T + 5 \) Copy content Toggle raw display
$3$ \( T^{3} + 2 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 2 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{3} - 8 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$13$ \( T^{3} + 6 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$17$ \( T^{3} - 40T + 76 \) Copy content Toggle raw display
$19$ \( T^{3} - 28T + 52 \) Copy content Toggle raw display
$23$ \( T^{3} - 14 T^{2} + \cdots - 76 \) Copy content Toggle raw display
$29$ \( (T - 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 12 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$37$ \( T^{3} - 4 T^{2} + \cdots + 68 \) Copy content Toggle raw display
$41$ \( T^{3} + 10 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$43$ \( T^{3} + 10 T^{2} + \cdots + 20 \) Copy content Toggle raw display
$47$ \( T^{3} - 18 T^{2} + \cdots + 92 \) Copy content Toggle raw display
$53$ \( T^{3} - 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$59$ \( T^{3} - 4 T^{2} + \cdots - 80 \) Copy content Toggle raw display
$61$ \( T^{3} - 6 T^{2} + \cdots + 40 \) Copy content Toggle raw display
$67$ \( T^{3} + 10 T^{2} + \cdots + 20 \) Copy content Toggle raw display
$71$ \( T^{3} - 24 T^{2} + \cdots - 368 \) Copy content Toggle raw display
$73$ \( T^{3} + 4 T^{2} + \cdots - 1108 \) Copy content Toggle raw display
$79$ \( T^{3} - 8 T^{2} + \cdots + 20 \) Copy content Toggle raw display
$83$ \( T^{3} + 2 T^{2} + \cdots + 52 \) Copy content Toggle raw display
$89$ \( T^{3} - 22 T^{2} + \cdots - 200 \) Copy content Toggle raw display
$97$ \( T^{3} + 36 T^{2} + \cdots + 452 \) Copy content Toggle raw display
show more
show less