Properties

Label 145.1.h.a
Level 145
Weight 1
Character orbit 145.h
Analytic conductor 0.072
Analytic rank 0
Dimension 2
Projective image \(D_{4}\)
RM disc. 29
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 145 = 5 \cdot 29 \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 145.h (of order \(4\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(0.0723644268318\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Projective image \(D_{4}\)
Projective field Galois closure of 4.0.3625.1
Artin image size \(32\)
Artin image $C_4\wr C_2$
Artin field Galois closure of 8.4.88410125.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q\) \( -i q^{4} \) \( -i q^{5} \) \( + ( -1 + i ) q^{7} \) \( + i q^{9} \) \(+O(q^{10})\) \( q\) \( -i q^{4} \) \( -i q^{5} \) \( + ( -1 + i ) q^{7} \) \( + i q^{9} \) \( + ( 1 + i ) q^{13} \) \(- q^{16}\) \(- q^{20}\) \( + ( -1 - i ) q^{23} \) \(- q^{25}\) \( + ( 1 + i ) q^{28} \) \( -i q^{29} \) \( + ( 1 + i ) q^{35} \) \(+ q^{36}\) \(+ q^{45}\) \( -i q^{49} \) \( + ( 1 - i ) q^{52} \) \( + ( -1 - i ) q^{53} \) \( + 2 i q^{59} \) \( + ( -1 - i ) q^{63} \) \( + i q^{64} \) \( + ( 1 - i ) q^{65} \) \( + ( 1 - i ) q^{67} \) \( + i q^{80} \) \(- q^{81}\) \( + ( 1 + i ) q^{83} \) \( -2 q^{91} \) \( + ( -1 + i ) q^{92} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(2q \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 2q^{13} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 2q^{20} \) \(\mathstrut -\mathstrut 2q^{23} \) \(\mathstrut -\mathstrut 2q^{25} \) \(\mathstrut +\mathstrut 2q^{28} \) \(\mathstrut +\mathstrut 2q^{35} \) \(\mathstrut +\mathstrut 2q^{36} \) \(\mathstrut +\mathstrut 2q^{45} \) \(\mathstrut +\mathstrut 2q^{52} \) \(\mathstrut -\mathstrut 2q^{53} \) \(\mathstrut -\mathstrut 2q^{63} \) \(\mathstrut +\mathstrut 2q^{65} \) \(\mathstrut +\mathstrut 2q^{67} \) \(\mathstrut -\mathstrut 2q^{81} \) \(\mathstrut +\mathstrut 2q^{83} \) \(\mathstrut -\mathstrut 4q^{91} \) \(\mathstrut -\mathstrut 2q^{92} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/145\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(117\)
\(\chi(n)\) \(-1\) \(-i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
1.00000i
1.00000i
0 0 1.00000i 1.00000i 0 −1.00000 + 1.00000i 0 1.00000i 0
57.1 0 0 1.00000i 1.00000i 0 −1.00000 1.00000i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
29.b Even 1 RM by \(\Q(\sqrt{29}) \) yes
5.c Odd 1 yes
145.h Odd 1 yes

Hecke kernels

There are no other newforms in \(S_{1}^{\mathrm{new}}(145, [\chi])\).