# Properties

 Label 145.1.f.a Level $145$ Weight $1$ Character orbit 145.f Analytic conductor $0.072$ Analytic rank $0$ Dimension $2$ Projective image $D_{4}$ RM discriminant 5 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [145,1,Mod(99,145)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(145, base_ring=CyclotomicField(4))

chi = DirichletCharacter(H, H._module([2, 1]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("145.99");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$145 = 5 \cdot 29$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 145.f (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.0723644268318$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{4}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$D_{4}$$ Projective field: Galois closure of 4.0.121945.1 Artin image: $C_4\wr C_2$ Artin field: Galois closure of 8.4.15243125.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q + i q^{4} - i q^{5} + i q^{9} +O(q^{10})$$ q + z * q^4 - z * q^5 + z * q^9 $$q + i q^{4} - i q^{5} + i q^{9} + ( - i - 1) q^{11} - q^{16} + ( - i - 1) q^{19} + q^{20} - q^{25} + i q^{29} + (i + 1) q^{31} - q^{36} + ( - i + 1) q^{41} + ( - i + 1) q^{44} + q^{45} + q^{49} + (i - 1) q^{55} + (i + 1) q^{61} - i q^{64} + i q^{71} + ( - i + 1) q^{76} + ( - i - 1) q^{79} + i q^{80} - q^{81} + ( - i - 1) q^{89} + (i - 1) q^{95} + ( - i + 1) q^{99} +O(q^{100})$$ q + z * q^4 - z * q^5 + z * q^9 + (-z - 1) * q^11 - q^16 + (-z - 1) * q^19 + q^20 - q^25 + z * q^29 + (z + 1) * q^31 - q^36 + (-z + 1) * q^41 + (-z + 1) * q^44 + q^45 + q^49 + (z - 1) * q^55 + (z + 1) * q^61 - z * q^64 + z * q^71 + (-z + 1) * q^76 + (-z - 1) * q^79 + z * q^80 - q^81 + (-z - 1) * q^89 + (z - 1) * q^95 + (-z + 1) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q+O(q^{10})$$ 2 * q $$2 q - 2 q^{11} - 2 q^{16} - 2 q^{19} + 2 q^{20} - 2 q^{25} + 2 q^{31} - 2 q^{36} + 2 q^{41} + 2 q^{44} + 2 q^{45} + 2 q^{49} - 2 q^{55} + 2 q^{61} + 2 q^{76} - 2 q^{79} - 2 q^{81} - 2 q^{89} - 2 q^{95} + 2 q^{99}+O(q^{100})$$ 2 * q - 2 * q^11 - 2 * q^16 - 2 * q^19 + 2 * q^20 - 2 * q^25 + 2 * q^31 - 2 * q^36 + 2 * q^41 + 2 * q^44 + 2 * q^45 + 2 * q^49 - 2 * q^55 + 2 * q^61 + 2 * q^76 - 2 * q^79 - 2 * q^81 - 2 * q^89 - 2 * q^95 + 2 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/145\mathbb{Z}\right)^\times$$.

 $$n$$ $$31$$ $$117$$ $$\chi(n)$$ $$i$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
99.1
 1.00000i − 1.00000i
0 0 1.00000i 1.00000i 0 0 0 1.00000i 0
104.1 0 0 1.00000i 1.00000i 0 0 0 1.00000i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 RM by $$\Q(\sqrt{5})$$
29.c odd 4 1 inner
145.f odd 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 145.1.f.a 2
3.b odd 2 1 1305.1.l.a 2
4.b odd 2 1 2320.1.bj.a 2
5.b even 2 1 RM 145.1.f.a 2
5.c odd 4 2 725.1.g.a 2
15.d odd 2 1 1305.1.l.a 2
20.d odd 2 1 2320.1.bj.a 2
29.c odd 4 1 inner 145.1.f.a 2
87.f even 4 1 1305.1.l.a 2
116.e even 4 1 2320.1.bj.a 2
145.e even 4 1 725.1.g.a 2
145.f odd 4 1 inner 145.1.f.a 2
145.j even 4 1 725.1.g.a 2
435.l even 4 1 1305.1.l.a 2
580.r even 4 1 2320.1.bj.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.1.f.a 2 1.a even 1 1 trivial
145.1.f.a 2 5.b even 2 1 RM
145.1.f.a 2 29.c odd 4 1 inner
145.1.f.a 2 145.f odd 4 1 inner
725.1.g.a 2 5.c odd 4 2
725.1.g.a 2 145.e even 4 1
725.1.g.a 2 145.j even 4 1
1305.1.l.a 2 3.b odd 2 1
1305.1.l.a 2 15.d odd 2 1
1305.1.l.a 2 87.f even 4 1
1305.1.l.a 2 435.l even 4 1
2320.1.bj.a 2 4.b odd 2 1
2320.1.bj.a 2 20.d odd 2 1
2320.1.bj.a 2 116.e even 4 1
2320.1.bj.a 2 580.r even 4 1

## Hecke kernels

This newform subspace is the entire newspace $$S_{1}^{\mathrm{new}}(145, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2} + 1$$
$7$ $$T^{2}$$
$11$ $$T^{2} + 2T + 2$$
$13$ $$T^{2}$$
$17$ $$T^{2}$$
$19$ $$T^{2} + 2T + 2$$
$23$ $$T^{2}$$
$29$ $$T^{2} + 1$$
$31$ $$T^{2} - 2T + 2$$
$37$ $$T^{2}$$
$41$ $$T^{2} - 2T + 2$$
$43$ $$T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$T^{2} - 2T + 2$$
$67$ $$T^{2}$$
$71$ $$T^{2} + 4$$
$73$ $$T^{2}$$
$79$ $$T^{2} + 2T + 2$$
$83$ $$T^{2}$$
$89$ $$T^{2} + 2T + 2$$
$97$ $$T^{2}$$