Defining parameters

 Level: $$N$$ = $$145 = 5 \cdot 29$$ Weight: $$k$$ = $$1$$ Nonzero newspaces: $$2$$ Newform subspaces: $$2$$ Sturm bound: $$1680$$ Trace bound: $$7$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{1}(\Gamma_1(145))$$.

Total New Old
Modular forms 116 84 32
Cusp forms 4 4 0
Eisenstein series 112 80 32

The following table gives the dimensions of subspaces with specified projective image type.

$$D_n$$ $$A_4$$ $$S_4$$ $$A_5$$
Dimension 4 0 0 0

Trace form

 $$4 q - 2 q^{7} + O(q^{10})$$ $$4 q - 2 q^{7} - 2 q^{11} + 2 q^{13} - 4 q^{16} - 2 q^{19} - 2 q^{23} - 4 q^{25} + 2 q^{28} + 2 q^{31} + 2 q^{35} + 2 q^{41} + 2 q^{44} + 4 q^{45} + 2 q^{49} + 2 q^{52} - 2 q^{53} - 2 q^{55} + 2 q^{61} - 2 q^{63} + 2 q^{65} + 2 q^{67} + 2 q^{76} - 2 q^{79} - 4 q^{81} + 2 q^{83} - 2 q^{89} - 4 q^{91} - 2 q^{92} - 2 q^{95} + 2 q^{99} + O(q^{100})$$

Decomposition of $$S_{1}^{\mathrm{new}}(\Gamma_1(145))$$

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
145.1.f $$\chi_{145}(99, \cdot)$$ 145.1.f.a 2 2
145.1.g $$\chi_{145}(41, \cdot)$$ None 0 2
145.1.h $$\chi_{145}(28, \cdot)$$ 145.1.h.a 2 2
145.1.i $$\chi_{145}(88, \cdot)$$ None 0 2
145.1.p $$\chi_{145}(7, \cdot)$$ None 0 12
145.1.q $$\chi_{145}(13, \cdot)$$ None 0 12
145.1.r $$\chi_{145}(11, \cdot)$$ None 0 12
145.1.s $$\chi_{145}(14, \cdot)$$ None 0 12