Properties

Label 145.1
Level 145
Weight 1
Dimension 4
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 1680
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 145 = 5 \cdot 29 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(1680\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(145))\).

Total New Old
Modular forms 116 84 32
Cusp forms 4 4 0
Eisenstein series 112 80 32

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4q - 2q^{7} + O(q^{10}) \) \( 4q - 2q^{7} - 2q^{11} + 2q^{13} - 4q^{16} - 2q^{19} - 2q^{23} - 4q^{25} + 2q^{28} + 2q^{31} + 2q^{35} + 2q^{41} + 2q^{44} + 4q^{45} + 2q^{49} + 2q^{52} - 2q^{53} - 2q^{55} + 2q^{61} - 2q^{63} + 2q^{65} + 2q^{67} + 2q^{76} - 2q^{79} - 4q^{81} + 2q^{83} - 2q^{89} - 4q^{91} - 2q^{92} - 2q^{95} + 2q^{99} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(145))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
145.1.f \(\chi_{145}(99, \cdot)\) 145.1.f.a 2 2
145.1.g \(\chi_{145}(41, \cdot)\) None 0 2
145.1.h \(\chi_{145}(28, \cdot)\) 145.1.h.a 2 2
145.1.i \(\chi_{145}(88, \cdot)\) None 0 2
145.1.p \(\chi_{145}(7, \cdot)\) None 0 12
145.1.q \(\chi_{145}(13, \cdot)\) None 0 12
145.1.r \(\chi_{145}(11, \cdot)\) None 0 12
145.1.s \(\chi_{145}(14, \cdot)\) None 0 12