Properties

Label 1445.4.a.a
Level $1445$
Weight $4$
Character orbit 1445.a
Self dual yes
Analytic conductor $85.258$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(85.2577599583\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 4q^{2} - 2q^{3} + 8q^{4} + 5q^{5} + 8q^{6} - 6q^{7} - 23q^{9} + O(q^{10}) \) \( q - 4q^{2} - 2q^{3} + 8q^{4} + 5q^{5} + 8q^{6} - 6q^{7} - 23q^{9} - 20q^{10} - 32q^{11} - 16q^{12} - 38q^{13} + 24q^{14} - 10q^{15} - 64q^{16} + 92q^{18} + 100q^{19} + 40q^{20} + 12q^{21} + 128q^{22} + 78q^{23} + 25q^{25} + 152q^{26} + 100q^{27} - 48q^{28} + 50q^{29} + 40q^{30} + 108q^{31} + 256q^{32} + 64q^{33} - 30q^{35} - 184q^{36} - 266q^{37} - 400q^{38} + 76q^{39} - 22q^{41} - 48q^{42} + 442q^{43} - 256q^{44} - 115q^{45} - 312q^{46} - 514q^{47} + 128q^{48} - 307q^{49} - 100q^{50} - 304q^{52} + 2q^{53} - 400q^{54} - 160q^{55} - 200q^{57} - 200q^{58} + 500q^{59} - 80q^{60} + 518q^{61} - 432q^{62} + 138q^{63} - 512q^{64} - 190q^{65} - 256q^{66} + 126q^{67} - 156q^{69} + 120q^{70} - 412q^{71} + 878q^{73} + 1064q^{74} - 50q^{75} + 800q^{76} + 192q^{77} - 304q^{78} - 600q^{79} - 320q^{80} + 421q^{81} + 88q^{82} + 282q^{83} + 96q^{84} - 1768q^{86} - 100q^{87} - 150q^{89} + 460q^{90} + 228q^{91} + 624q^{92} - 216q^{93} + 2056q^{94} + 500q^{95} - 512q^{96} - 386q^{97} + 1228q^{98} + 736q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 −2.00000 8.00000 5.00000 8.00000 −6.00000 0 −23.0000 −20.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \(-1\)
\(17\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1445.4.a.a 1
17.b even 2 1 5.4.a.a 1
51.c odd 2 1 45.4.a.d 1
68.d odd 2 1 80.4.a.d 1
85.c even 2 1 25.4.a.c 1
85.g odd 4 2 25.4.b.a 2
119.d odd 2 1 245.4.a.a 1
119.h odd 6 2 245.4.e.g 2
119.j even 6 2 245.4.e.f 2
136.e odd 2 1 320.4.a.h 1
136.h even 2 1 320.4.a.g 1
153.h even 6 2 405.4.e.l 2
153.i odd 6 2 405.4.e.c 2
187.b odd 2 1 605.4.a.d 1
204.h even 2 1 720.4.a.u 1
221.b even 2 1 845.4.a.b 1
255.h odd 2 1 225.4.a.b 1
255.o even 4 2 225.4.b.c 2
272.k odd 4 2 1280.4.d.l 2
272.r even 4 2 1280.4.d.e 2
323.c odd 2 1 1805.4.a.h 1
340.d odd 2 1 400.4.a.m 1
340.r even 4 2 400.4.c.k 2
357.c even 2 1 2205.4.a.q 1
595.b odd 2 1 1225.4.a.k 1
680.h even 2 1 1600.4.a.bi 1
680.k odd 2 1 1600.4.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.4.a.a 1 17.b even 2 1
25.4.a.c 1 85.c even 2 1
25.4.b.a 2 85.g odd 4 2
45.4.a.d 1 51.c odd 2 1
80.4.a.d 1 68.d odd 2 1
225.4.a.b 1 255.h odd 2 1
225.4.b.c 2 255.o even 4 2
245.4.a.a 1 119.d odd 2 1
245.4.e.f 2 119.j even 6 2
245.4.e.g 2 119.h odd 6 2
320.4.a.g 1 136.h even 2 1
320.4.a.h 1 136.e odd 2 1
400.4.a.m 1 340.d odd 2 1
400.4.c.k 2 340.r even 4 2
405.4.e.c 2 153.i odd 6 2
405.4.e.l 2 153.h even 6 2
605.4.a.d 1 187.b odd 2 1
720.4.a.u 1 204.h even 2 1
845.4.a.b 1 221.b even 2 1
1225.4.a.k 1 595.b odd 2 1
1280.4.d.e 2 272.r even 4 2
1280.4.d.l 2 272.k odd 4 2
1445.4.a.a 1 1.a even 1 1 trivial
1600.4.a.s 1 680.k odd 2 1
1600.4.a.bi 1 680.h even 2 1
1805.4.a.h 1 323.c odd 2 1
2205.4.a.q 1 357.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1445))\):

\( T_{2} + 4 \)
\( T_{3} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 4 T + 8 T^{2} \)
$3$ \( 1 + 2 T + 27 T^{2} \)
$5$ \( 1 - 5 T \)
$7$ \( 1 + 6 T + 343 T^{2} \)
$11$ \( 1 + 32 T + 1331 T^{2} \)
$13$ \( 1 + 38 T + 2197 T^{2} \)
$17$ 1
$19$ \( 1 - 100 T + 6859 T^{2} \)
$23$ \( 1 - 78 T + 12167 T^{2} \)
$29$ \( 1 - 50 T + 24389 T^{2} \)
$31$ \( 1 - 108 T + 29791 T^{2} \)
$37$ \( 1 + 266 T + 50653 T^{2} \)
$41$ \( 1 + 22 T + 68921 T^{2} \)
$43$ \( 1 - 442 T + 79507 T^{2} \)
$47$ \( 1 + 514 T + 103823 T^{2} \)
$53$ \( 1 - 2 T + 148877 T^{2} \)
$59$ \( 1 - 500 T + 205379 T^{2} \)
$61$ \( 1 - 518 T + 226981 T^{2} \)
$67$ \( 1 - 126 T + 300763 T^{2} \)
$71$ \( 1 + 412 T + 357911 T^{2} \)
$73$ \( 1 - 878 T + 389017 T^{2} \)
$79$ \( 1 + 600 T + 493039 T^{2} \)
$83$ \( 1 - 282 T + 571787 T^{2} \)
$89$ \( 1 + 150 T + 704969 T^{2} \)
$97$ \( 1 + 386 T + 912673 T^{2} \)
show more
show less