Properties

Label 1445.2.d.j.866.14
Level $1445$
Weight $2$
Character 1445.866
Analytic conductor $11.538$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(866,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.866");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 866.14
Character \(\chi\) \(=\) 1445.866
Dual form 1445.2.d.j.866.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.962871 q^{2} +2.64897i q^{3} -1.07288 q^{4} +1.00000i q^{5} +2.55062i q^{6} +3.09463i q^{7} -2.95879 q^{8} -4.01706 q^{9} +0.962871i q^{10} +6.13071i q^{11} -2.84203i q^{12} +1.16017 q^{13} +2.97973i q^{14} -2.64897 q^{15} -0.703170 q^{16} -3.86791 q^{18} +5.42585 q^{19} -1.07288i q^{20} -8.19759 q^{21} +5.90308i q^{22} -3.11745i q^{23} -7.83775i q^{24} -1.00000 q^{25} +1.11710 q^{26} -2.69417i q^{27} -3.32016i q^{28} -4.99698i q^{29} -2.55062 q^{30} -3.72804i q^{31} +5.24051 q^{32} -16.2401 q^{33} -3.09463 q^{35} +4.30982 q^{36} +0.396716i q^{37} +5.22439 q^{38} +3.07327i q^{39} -2.95879i q^{40} +1.70263i q^{41} -7.89322 q^{42} +0.0268304 q^{43} -6.57751i q^{44} -4.01706i q^{45} -3.00170i q^{46} -5.43715 q^{47} -1.86268i q^{48} -2.57672 q^{49} -0.962871 q^{50} -1.24473 q^{52} -0.345087 q^{53} -2.59413i q^{54} -6.13071 q^{55} -9.15634i q^{56} +14.3729i q^{57} -4.81144i q^{58} -4.06060 q^{59} +2.84203 q^{60} +12.4424i q^{61} -3.58962i q^{62} -12.4313i q^{63} +6.45228 q^{64} +1.16017i q^{65} -15.6371 q^{66} +5.62508 q^{67} +8.25804 q^{69} -2.97973 q^{70} -10.7794i q^{71} +11.8856 q^{72} +1.65433i q^{73} +0.381986i q^{74} -2.64897i q^{75} -5.82128 q^{76} -18.9723 q^{77} +2.95916i q^{78} -5.27290i q^{79} -0.703170i q^{80} -4.91441 q^{81} +1.63941i q^{82} +12.4258 q^{83} +8.79502 q^{84} +0.0258342 q^{86} +13.2369 q^{87} -18.1394i q^{88} -3.22930 q^{89} -3.86791i q^{90} +3.59031i q^{91} +3.34465i q^{92} +9.87549 q^{93} -5.23528 q^{94} +5.42585i q^{95} +13.8820i q^{96} +12.9349i q^{97} -2.48105 q^{98} -24.6274i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{2} + 24 q^{4} + 24 q^{8} - 24 q^{9} - 16 q^{13} + 16 q^{15} + 24 q^{16} + 8 q^{18} + 32 q^{21} - 24 q^{25} - 32 q^{26} - 16 q^{30} + 56 q^{32} - 32 q^{35} - 24 q^{36} - 48 q^{38} + 32 q^{43}+ \cdots - 120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.962871 0.680853 0.340426 0.940271i \(-0.389429\pi\)
0.340426 + 0.940271i \(0.389429\pi\)
\(3\) 2.64897i 1.52939i 0.644395 + 0.764693i \(0.277109\pi\)
−0.644395 + 0.764693i \(0.722891\pi\)
\(4\) −1.07288 −0.536440
\(5\) 1.00000i 0.447214i
\(6\) 2.55062i 1.04129i
\(7\) 3.09463i 1.16966i 0.811156 + 0.584830i \(0.198839\pi\)
−0.811156 + 0.584830i \(0.801161\pi\)
\(8\) −2.95879 −1.04609
\(9\) −4.01706 −1.33902
\(10\) 0.962871i 0.304487i
\(11\) 6.13071i 1.84848i 0.381815 + 0.924239i \(0.375299\pi\)
−0.381815 + 0.924239i \(0.624701\pi\)
\(12\) − 2.84203i − 0.820423i
\(13\) 1.16017 0.321775 0.160887 0.986973i \(-0.448564\pi\)
0.160887 + 0.986973i \(0.448564\pi\)
\(14\) 2.97973i 0.796366i
\(15\) −2.64897 −0.683962
\(16\) −0.703170 −0.175793
\(17\) 0 0
\(18\) −3.86791 −0.911675
\(19\) 5.42585 1.24477 0.622387 0.782709i \(-0.286163\pi\)
0.622387 + 0.782709i \(0.286163\pi\)
\(20\) − 1.07288i − 0.239903i
\(21\) −8.19759 −1.78886
\(22\) 5.90308i 1.25854i
\(23\) − 3.11745i − 0.650033i −0.945708 0.325017i \(-0.894630\pi\)
0.945708 0.325017i \(-0.105370\pi\)
\(24\) − 7.83775i − 1.59987i
\(25\) −1.00000 −0.200000
\(26\) 1.11710 0.219081
\(27\) − 2.69417i − 0.518492i
\(28\) − 3.32016i − 0.627452i
\(29\) − 4.99698i − 0.927915i −0.885857 0.463958i \(-0.846429\pi\)
0.885857 0.463958i \(-0.153571\pi\)
\(30\) −2.55062 −0.465677
\(31\) − 3.72804i − 0.669576i −0.942293 0.334788i \(-0.891335\pi\)
0.942293 0.334788i \(-0.108665\pi\)
\(32\) 5.24051 0.926400
\(33\) −16.2401 −2.82703
\(34\) 0 0
\(35\) −3.09463 −0.523088
\(36\) 4.30982 0.718304
\(37\) 0.396716i 0.0652197i 0.999468 + 0.0326098i \(0.0103819\pi\)
−0.999468 + 0.0326098i \(0.989618\pi\)
\(38\) 5.22439 0.847508
\(39\) 3.07327i 0.492117i
\(40\) − 2.95879i − 0.467825i
\(41\) 1.70263i 0.265906i 0.991122 + 0.132953i \(0.0424460\pi\)
−0.991122 + 0.132953i \(0.957554\pi\)
\(42\) −7.89322 −1.21795
\(43\) 0.0268304 0.00409160 0.00204580 0.999998i \(-0.499349\pi\)
0.00204580 + 0.999998i \(0.499349\pi\)
\(44\) − 6.57751i − 0.991597i
\(45\) − 4.01706i − 0.598828i
\(46\) − 3.00170i − 0.442577i
\(47\) −5.43715 −0.793090 −0.396545 0.918015i \(-0.629791\pi\)
−0.396545 + 0.918015i \(0.629791\pi\)
\(48\) − 1.86268i − 0.268855i
\(49\) −2.57672 −0.368103
\(50\) −0.962871 −0.136171
\(51\) 0 0
\(52\) −1.24473 −0.172613
\(53\) −0.345087 −0.0474014 −0.0237007 0.999719i \(-0.507545\pi\)
−0.0237007 + 0.999719i \(0.507545\pi\)
\(54\) − 2.59413i − 0.353017i
\(55\) −6.13071 −0.826664
\(56\) − 9.15634i − 1.22357i
\(57\) 14.3729i 1.90374i
\(58\) − 4.81144i − 0.631773i
\(59\) −4.06060 −0.528645 −0.264322 0.964434i \(-0.585148\pi\)
−0.264322 + 0.964434i \(0.585148\pi\)
\(60\) 2.84203 0.366904
\(61\) 12.4424i 1.59308i 0.604584 + 0.796541i \(0.293339\pi\)
−0.604584 + 0.796541i \(0.706661\pi\)
\(62\) − 3.58962i − 0.455883i
\(63\) − 12.4313i − 1.56620i
\(64\) 6.45228 0.806534
\(65\) 1.16017i 0.143902i
\(66\) −15.6371 −1.92479
\(67\) 5.62508 0.687213 0.343607 0.939114i \(-0.388351\pi\)
0.343607 + 0.939114i \(0.388351\pi\)
\(68\) 0 0
\(69\) 8.25804 0.994152
\(70\) −2.97973 −0.356146
\(71\) − 10.7794i − 1.27928i −0.768674 0.639640i \(-0.779083\pi\)
0.768674 0.639640i \(-0.220917\pi\)
\(72\) 11.8856 1.40073
\(73\) 1.65433i 0.193624i 0.995303 + 0.0968121i \(0.0308646\pi\)
−0.995303 + 0.0968121i \(0.969135\pi\)
\(74\) 0.381986i 0.0444050i
\(75\) − 2.64897i − 0.305877i
\(76\) −5.82128 −0.667747
\(77\) −18.9723 −2.16209
\(78\) 2.95916i 0.335059i
\(79\) − 5.27290i − 0.593248i −0.954994 0.296624i \(-0.904139\pi\)
0.954994 0.296624i \(-0.0958608\pi\)
\(80\) − 0.703170i − 0.0786168i
\(81\) −4.91441 −0.546045
\(82\) 1.63941i 0.181043i
\(83\) 12.4258 1.36391 0.681955 0.731394i \(-0.261130\pi\)
0.681955 + 0.731394i \(0.261130\pi\)
\(84\) 8.79502 0.959616
\(85\) 0 0
\(86\) 0.0258342 0.00278577
\(87\) 13.2369 1.41914
\(88\) − 18.1394i − 1.93367i
\(89\) −3.22930 −0.342305 −0.171152 0.985245i \(-0.554749\pi\)
−0.171152 + 0.985245i \(0.554749\pi\)
\(90\) − 3.86791i − 0.407714i
\(91\) 3.59031i 0.376367i
\(92\) 3.34465i 0.348704i
\(93\) 9.87549 1.02404
\(94\) −5.23528 −0.539978
\(95\) 5.42585i 0.556680i
\(96\) 13.8820i 1.41682i
\(97\) 12.9349i 1.31334i 0.754180 + 0.656668i \(0.228035\pi\)
−0.754180 + 0.656668i \(0.771965\pi\)
\(98\) −2.48105 −0.250624
\(99\) − 24.6274i − 2.47515i
\(100\) 1.07288 0.107288
\(101\) −1.46947 −0.146218 −0.0731088 0.997324i \(-0.523292\pi\)
−0.0731088 + 0.997324i \(0.523292\pi\)
\(102\) 0 0
\(103\) 9.80978 0.966586 0.483293 0.875459i \(-0.339441\pi\)
0.483293 + 0.875459i \(0.339441\pi\)
\(104\) −3.43271 −0.336605
\(105\) − 8.19759i − 0.800003i
\(106\) −0.332275 −0.0322734
\(107\) 2.88742i 0.279137i 0.990212 + 0.139569i \(0.0445716\pi\)
−0.990212 + 0.139569i \(0.955428\pi\)
\(108\) 2.89052i 0.278140i
\(109\) 5.76330i 0.552024i 0.961154 + 0.276012i \(0.0890130\pi\)
−0.961154 + 0.276012i \(0.910987\pi\)
\(110\) −5.90308 −0.562836
\(111\) −1.05089 −0.0997460
\(112\) − 2.17605i − 0.205617i
\(113\) − 9.02043i − 0.848571i −0.905529 0.424285i \(-0.860525\pi\)
0.905529 0.424285i \(-0.139475\pi\)
\(114\) 13.8393i 1.29617i
\(115\) 3.11745 0.290704
\(116\) 5.36115i 0.497771i
\(117\) −4.66049 −0.430863
\(118\) −3.90983 −0.359929
\(119\) 0 0
\(120\) 7.83775 0.715485
\(121\) −26.5856 −2.41687
\(122\) 11.9804i 1.08465i
\(123\) −4.51022 −0.406673
\(124\) 3.99974i 0.359187i
\(125\) − 1.00000i − 0.0894427i
\(126\) − 11.9697i − 1.06635i
\(127\) 13.9992 1.24223 0.621114 0.783720i \(-0.286681\pi\)
0.621114 + 0.783720i \(0.286681\pi\)
\(128\) −4.26831 −0.377269
\(129\) 0.0710730i 0.00625763i
\(130\) 1.11710i 0.0979760i
\(131\) 12.6704i 1.10702i 0.832843 + 0.553509i \(0.186712\pi\)
−0.832843 + 0.553509i \(0.813288\pi\)
\(132\) 17.4236 1.51653
\(133\) 16.7910i 1.45596i
\(134\) 5.41623 0.467891
\(135\) 2.69417 0.231877
\(136\) 0 0
\(137\) 2.97888 0.254503 0.127251 0.991870i \(-0.459384\pi\)
0.127251 + 0.991870i \(0.459384\pi\)
\(138\) 7.95143 0.676871
\(139\) − 19.6413i − 1.66595i −0.553308 0.832977i \(-0.686635\pi\)
0.553308 0.832977i \(-0.313365\pi\)
\(140\) 3.32016 0.280605
\(141\) − 14.4029i − 1.21294i
\(142\) − 10.3792i − 0.871002i
\(143\) 7.11269i 0.594793i
\(144\) 2.82468 0.235390
\(145\) 4.99698 0.414976
\(146\) 1.59290i 0.131830i
\(147\) − 6.82567i − 0.562972i
\(148\) − 0.425628i − 0.0349864i
\(149\) 2.95573 0.242143 0.121072 0.992644i \(-0.461367\pi\)
0.121072 + 0.992644i \(0.461367\pi\)
\(150\) − 2.55062i − 0.208257i
\(151\) −22.0403 −1.79361 −0.896807 0.442422i \(-0.854119\pi\)
−0.896807 + 0.442422i \(0.854119\pi\)
\(152\) −16.0539 −1.30214
\(153\) 0 0
\(154\) −18.2678 −1.47206
\(155\) 3.72804 0.299444
\(156\) − 3.29725i − 0.263991i
\(157\) 12.8666 1.02686 0.513432 0.858130i \(-0.328374\pi\)
0.513432 + 0.858130i \(0.328374\pi\)
\(158\) − 5.07713i − 0.403914i
\(159\) − 0.914127i − 0.0724950i
\(160\) 5.24051i 0.414299i
\(161\) 9.64735 0.760318
\(162\) −4.73194 −0.371776
\(163\) 19.2925i 1.51110i 0.655089 + 0.755551i \(0.272631\pi\)
−0.655089 + 0.755551i \(0.727369\pi\)
\(164\) − 1.82672i − 0.142643i
\(165\) − 16.2401i − 1.26429i
\(166\) 11.9645 0.928622
\(167\) − 18.8591i − 1.45936i −0.683787 0.729681i \(-0.739668\pi\)
0.683787 0.729681i \(-0.260332\pi\)
\(168\) 24.2549 1.87131
\(169\) −11.6540 −0.896461
\(170\) 0 0
\(171\) −21.7960 −1.66678
\(172\) −0.0287858 −0.00219490
\(173\) 22.5770i 1.71650i 0.513233 + 0.858249i \(0.328448\pi\)
−0.513233 + 0.858249i \(0.671552\pi\)
\(174\) 12.7454 0.966225
\(175\) − 3.09463i − 0.233932i
\(176\) − 4.31093i − 0.324949i
\(177\) − 10.7564i − 0.808502i
\(178\) −3.10940 −0.233059
\(179\) −1.96068 −0.146548 −0.0732740 0.997312i \(-0.523345\pi\)
−0.0732740 + 0.997312i \(0.523345\pi\)
\(180\) 4.30982i 0.321235i
\(181\) − 0.711719i − 0.0529016i −0.999650 0.0264508i \(-0.991579\pi\)
0.999650 0.0264508i \(-0.00842054\pi\)
\(182\) 3.45700i 0.256250i
\(183\) −32.9595 −2.43644
\(184\) 9.22387i 0.679993i
\(185\) −0.396716 −0.0291671
\(186\) 9.50882 0.697220
\(187\) 0 0
\(188\) 5.83341 0.425445
\(189\) 8.33744 0.606460
\(190\) 5.22439i 0.379017i
\(191\) −5.26341 −0.380847 −0.190423 0.981702i \(-0.560986\pi\)
−0.190423 + 0.981702i \(0.560986\pi\)
\(192\) 17.0919i 1.23350i
\(193\) 14.9301i 1.07469i 0.843361 + 0.537347i \(0.180574\pi\)
−0.843361 + 0.537347i \(0.819426\pi\)
\(194\) 12.4546i 0.894188i
\(195\) −3.07327 −0.220082
\(196\) 2.76451 0.197465
\(197\) − 6.33014i − 0.451004i −0.974243 0.225502i \(-0.927598\pi\)
0.974243 0.225502i \(-0.0724022\pi\)
\(198\) − 23.7130i − 1.68521i
\(199\) − 14.9149i − 1.05729i −0.848843 0.528645i \(-0.822700\pi\)
0.848843 0.528645i \(-0.177300\pi\)
\(200\) 2.95879 0.209218
\(201\) 14.9007i 1.05101i
\(202\) −1.41491 −0.0995526
\(203\) 15.4638 1.08534
\(204\) 0 0
\(205\) −1.70263 −0.118917
\(206\) 9.44555 0.658103
\(207\) 12.5230i 0.870408i
\(208\) −0.815800 −0.0565656
\(209\) 33.2643i 2.30094i
\(210\) − 7.89322i − 0.544684i
\(211\) 13.3987i 0.922404i 0.887295 + 0.461202i \(0.152582\pi\)
−0.887295 + 0.461202i \(0.847418\pi\)
\(212\) 0.370237 0.0254280
\(213\) 28.5544 1.95651
\(214\) 2.78021i 0.190051i
\(215\) 0.0268304i 0.00182982i
\(216\) 7.97146i 0.542389i
\(217\) 11.5369 0.783176
\(218\) 5.54932i 0.375847i
\(219\) −4.38227 −0.296126
\(220\) 6.57751 0.443456
\(221\) 0 0
\(222\) −1.01187 −0.0679123
\(223\) 2.11298 0.141496 0.0707478 0.997494i \(-0.477461\pi\)
0.0707478 + 0.997494i \(0.477461\pi\)
\(224\) 16.2174i 1.08357i
\(225\) 4.01706 0.267804
\(226\) − 8.68551i − 0.577752i
\(227\) 14.5595i 0.966348i 0.875524 + 0.483174i \(0.160516\pi\)
−0.875524 + 0.483174i \(0.839484\pi\)
\(228\) − 15.4204i − 1.02124i
\(229\) 2.65040 0.175143 0.0875716 0.996158i \(-0.472089\pi\)
0.0875716 + 0.996158i \(0.472089\pi\)
\(230\) 3.00170 0.197926
\(231\) − 50.2570i − 3.30667i
\(232\) 14.7850i 0.970682i
\(233\) − 3.13924i − 0.205658i −0.994699 0.102829i \(-0.967210\pi\)
0.994699 0.102829i \(-0.0327895\pi\)
\(234\) −4.48745 −0.293354
\(235\) − 5.43715i − 0.354681i
\(236\) 4.35653 0.283586
\(237\) 13.9678 0.907305
\(238\) 0 0
\(239\) 13.7090 0.886760 0.443380 0.896334i \(-0.353779\pi\)
0.443380 + 0.896334i \(0.353779\pi\)
\(240\) 1.86268 0.120235
\(241\) 12.4877i 0.804404i 0.915551 + 0.402202i \(0.131755\pi\)
−0.915551 + 0.402202i \(0.868245\pi\)
\(242\) −25.5985 −1.64553
\(243\) − 21.1006i − 1.35361i
\(244\) − 13.3492i − 0.854593i
\(245\) − 2.57672i − 0.164621i
\(246\) −4.34276 −0.276884
\(247\) 6.29493 0.400537
\(248\) 11.0305i 0.700436i
\(249\) 32.9157i 2.08595i
\(250\) − 0.962871i − 0.0608973i
\(251\) 17.4413 1.10088 0.550441 0.834874i \(-0.314459\pi\)
0.550441 + 0.834874i \(0.314459\pi\)
\(252\) 13.3373i 0.840171i
\(253\) 19.1122 1.20157
\(254\) 13.4794 0.845774
\(255\) 0 0
\(256\) −17.0144 −1.06340
\(257\) −6.88101 −0.429226 −0.214613 0.976699i \(-0.568849\pi\)
−0.214613 + 0.976699i \(0.568849\pi\)
\(258\) 0.0684341i 0.00426052i
\(259\) −1.22769 −0.0762848
\(260\) − 1.24473i − 0.0771947i
\(261\) 20.0732i 1.24250i
\(262\) 12.2000i 0.753716i
\(263\) −6.23809 −0.384657 −0.192329 0.981331i \(-0.561604\pi\)
−0.192329 + 0.981331i \(0.561604\pi\)
\(264\) 48.0509 2.95733
\(265\) − 0.345087i − 0.0211986i
\(266\) 16.1675i 0.991296i
\(267\) − 8.55432i − 0.523516i
\(268\) −6.03504 −0.368648
\(269\) 1.29087i 0.0787059i 0.999225 + 0.0393530i \(0.0125297\pi\)
−0.999225 + 0.0393530i \(0.987470\pi\)
\(270\) 2.59413 0.157874
\(271\) 10.2849 0.624764 0.312382 0.949957i \(-0.398873\pi\)
0.312382 + 0.949957i \(0.398873\pi\)
\(272\) 0 0
\(273\) −9.51063 −0.575610
\(274\) 2.86828 0.173279
\(275\) − 6.13071i − 0.369695i
\(276\) −8.85989 −0.533302
\(277\) − 25.3802i − 1.52495i −0.647019 0.762474i \(-0.723985\pi\)
0.647019 0.762474i \(-0.276015\pi\)
\(278\) − 18.9120i − 1.13427i
\(279\) 14.9758i 0.896576i
\(280\) 9.15634 0.547196
\(281\) −5.89557 −0.351700 −0.175850 0.984417i \(-0.556267\pi\)
−0.175850 + 0.984417i \(0.556267\pi\)
\(282\) − 13.8681i − 0.825834i
\(283\) 18.4663i 1.09771i 0.835918 + 0.548854i \(0.184936\pi\)
−0.835918 + 0.548854i \(0.815064\pi\)
\(284\) 11.5650i 0.686257i
\(285\) −14.3729 −0.851378
\(286\) 6.84860i 0.404966i
\(287\) −5.26901 −0.311020
\(288\) −21.0514 −1.24047
\(289\) 0 0
\(290\) 4.81144 0.282538
\(291\) −34.2641 −2.00860
\(292\) − 1.77489i − 0.103868i
\(293\) 8.31894 0.485998 0.242999 0.970027i \(-0.421869\pi\)
0.242999 + 0.970027i \(0.421869\pi\)
\(294\) − 6.57224i − 0.383301i
\(295\) − 4.06060i − 0.236417i
\(296\) − 1.17380i − 0.0682256i
\(297\) 16.5171 0.958422
\(298\) 2.84599 0.164864
\(299\) − 3.61679i − 0.209164i
\(300\) 2.84203i 0.164085i
\(301\) 0.0830301i 0.00478577i
\(302\) −21.2220 −1.22119
\(303\) − 3.89258i − 0.223623i
\(304\) −3.81529 −0.218822
\(305\) −12.4424 −0.712448
\(306\) 0 0
\(307\) −12.2369 −0.698398 −0.349199 0.937049i \(-0.613546\pi\)
−0.349199 + 0.937049i \(0.613546\pi\)
\(308\) 20.3549 1.15983
\(309\) 25.9858i 1.47828i
\(310\) 3.58962 0.203877
\(311\) 32.6368i 1.85066i 0.379160 + 0.925331i \(0.376213\pi\)
−0.379160 + 0.925331i \(0.623787\pi\)
\(312\) − 9.09315i − 0.514799i
\(313\) − 13.4290i − 0.759053i −0.925181 0.379526i \(-0.876087\pi\)
0.925181 0.379526i \(-0.123913\pi\)
\(314\) 12.3889 0.699143
\(315\) 12.4313 0.700425
\(316\) 5.65719i 0.318242i
\(317\) 9.87357i 0.554555i 0.960790 + 0.277278i \(0.0894322\pi\)
−0.960790 + 0.277278i \(0.910568\pi\)
\(318\) − 0.880187i − 0.0493584i
\(319\) 30.6350 1.71523
\(320\) 6.45228i 0.360693i
\(321\) −7.64869 −0.426909
\(322\) 9.28915 0.517664
\(323\) 0 0
\(324\) 5.27257 0.292920
\(325\) −1.16017 −0.0643549
\(326\) 18.5762i 1.02884i
\(327\) −15.2668 −0.844258
\(328\) − 5.03772i − 0.278162i
\(329\) − 16.8260i − 0.927646i
\(330\) − 15.6371i − 0.860794i
\(331\) 5.64305 0.310170 0.155085 0.987901i \(-0.450435\pi\)
0.155085 + 0.987901i \(0.450435\pi\)
\(332\) −13.3314 −0.731656
\(333\) − 1.59363i − 0.0873304i
\(334\) − 18.1589i − 0.993611i
\(335\) 5.62508i 0.307331i
\(336\) 5.76430 0.314468
\(337\) 16.5925i 0.903853i 0.892055 + 0.451927i \(0.149263\pi\)
−0.892055 + 0.451927i \(0.850737\pi\)
\(338\) −11.2213 −0.610358
\(339\) 23.8949 1.29779
\(340\) 0 0
\(341\) 22.8555 1.23770
\(342\) −20.9867 −1.13483
\(343\) 13.6884i 0.739104i
\(344\) −0.0793854 −0.00428017
\(345\) 8.25804i 0.444598i
\(346\) 21.7387i 1.16868i
\(347\) 9.24424i 0.496257i 0.968727 + 0.248129i \(0.0798155\pi\)
−0.968727 + 0.248129i \(0.920184\pi\)
\(348\) −14.2016 −0.761283
\(349\) −26.9273 −1.44139 −0.720694 0.693254i \(-0.756177\pi\)
−0.720694 + 0.693254i \(0.756177\pi\)
\(350\) − 2.97973i − 0.159273i
\(351\) − 3.12570i − 0.166838i
\(352\) 32.1280i 1.71243i
\(353\) −22.9722 −1.22269 −0.611343 0.791366i \(-0.709370\pi\)
−0.611343 + 0.791366i \(0.709370\pi\)
\(354\) − 10.3570i − 0.550470i
\(355\) 10.7794 0.572112
\(356\) 3.46465 0.183626
\(357\) 0 0
\(358\) −1.88788 −0.0997775
\(359\) −34.1089 −1.80020 −0.900101 0.435682i \(-0.856507\pi\)
−0.900101 + 0.435682i \(0.856507\pi\)
\(360\) 11.8856i 0.626427i
\(361\) 10.4398 0.549463
\(362\) − 0.685293i − 0.0360182i
\(363\) − 70.4244i − 3.69632i
\(364\) − 3.85197i − 0.201898i
\(365\) −1.65433 −0.0865914
\(366\) −31.7358 −1.65885
\(367\) − 9.27610i − 0.484209i −0.970250 0.242104i \(-0.922162\pi\)
0.970250 0.242104i \(-0.0778376\pi\)
\(368\) 2.19210i 0.114271i
\(369\) − 6.83957i − 0.356054i
\(370\) −0.381986 −0.0198585
\(371\) − 1.06792i − 0.0554435i
\(372\) −10.5952 −0.549336
\(373\) −3.06857 −0.158884 −0.0794422 0.996839i \(-0.525314\pi\)
−0.0794422 + 0.996839i \(0.525314\pi\)
\(374\) 0 0
\(375\) 2.64897 0.136792
\(376\) 16.0874 0.829643
\(377\) − 5.79736i − 0.298579i
\(378\) 8.02788 0.412910
\(379\) − 36.5339i − 1.87662i −0.345795 0.938310i \(-0.612391\pi\)
0.345795 0.938310i \(-0.387609\pi\)
\(380\) − 5.82128i − 0.298625i
\(381\) 37.0835i 1.89984i
\(382\) −5.06798 −0.259301
\(383\) 9.32150 0.476306 0.238153 0.971228i \(-0.423458\pi\)
0.238153 + 0.971228i \(0.423458\pi\)
\(384\) − 11.3066i − 0.576990i
\(385\) − 18.9723i − 0.966916i
\(386\) 14.3758i 0.731709i
\(387\) −0.107779 −0.00547873
\(388\) − 13.8775i − 0.704525i
\(389\) −33.1623 −1.68139 −0.840697 0.541507i \(-0.817854\pi\)
−0.840697 + 0.541507i \(0.817854\pi\)
\(390\) −2.95916 −0.149843
\(391\) 0 0
\(392\) 7.62397 0.385069
\(393\) −33.5636 −1.69306
\(394\) − 6.09511i − 0.307067i
\(395\) 5.27290 0.265309
\(396\) 26.4223i 1.32777i
\(397\) − 8.82540i − 0.442934i −0.975168 0.221467i \(-0.928915\pi\)
0.975168 0.221467i \(-0.0710846\pi\)
\(398\) − 14.3611i − 0.719859i
\(399\) −44.4789 −2.22673
\(400\) 0.703170 0.0351585
\(401\) − 19.5190i − 0.974732i −0.873198 0.487366i \(-0.837958\pi\)
0.873198 0.487366i \(-0.162042\pi\)
\(402\) 14.3474i 0.715585i
\(403\) − 4.32518i − 0.215453i
\(404\) 1.57656 0.0784369
\(405\) − 4.91441i − 0.244199i
\(406\) 14.8896 0.738960
\(407\) −2.43215 −0.120557
\(408\) 0 0
\(409\) 10.4152 0.514998 0.257499 0.966279i \(-0.417102\pi\)
0.257499 + 0.966279i \(0.417102\pi\)
\(410\) −1.63941 −0.0809649
\(411\) 7.89097i 0.389233i
\(412\) −10.5247 −0.518515
\(413\) − 12.5660i − 0.618334i
\(414\) 12.0580i 0.592619i
\(415\) 12.4258i 0.609959i
\(416\) 6.07991 0.298092
\(417\) 52.0293 2.54789
\(418\) 32.0292i 1.56660i
\(419\) − 35.3206i − 1.72552i −0.505610 0.862762i \(-0.668733\pi\)
0.505610 0.862762i \(-0.331267\pi\)
\(420\) 8.79502i 0.429153i
\(421\) −15.0205 −0.732052 −0.366026 0.930605i \(-0.619282\pi\)
−0.366026 + 0.930605i \(0.619282\pi\)
\(422\) 12.9012i 0.628021i
\(423\) 21.8414 1.06196
\(424\) 1.02104 0.0495861
\(425\) 0 0
\(426\) 27.4942 1.33210
\(427\) −38.5045 −1.86336
\(428\) − 3.09785i − 0.149740i
\(429\) −18.8413 −0.909668
\(430\) 0.0258342i 0.00124584i
\(431\) − 23.3518i − 1.12481i −0.826860 0.562407i \(-0.809875\pi\)
0.826860 0.562407i \(-0.190125\pi\)
\(432\) 1.89446i 0.0911471i
\(433\) 18.3077 0.879811 0.439906 0.898044i \(-0.355012\pi\)
0.439906 + 0.898044i \(0.355012\pi\)
\(434\) 11.1086 0.533228
\(435\) 13.2369i 0.634659i
\(436\) − 6.18333i − 0.296128i
\(437\) − 16.9148i − 0.809145i
\(438\) −4.21956 −0.201618
\(439\) 20.2697i 0.967421i 0.875228 + 0.483711i \(0.160711\pi\)
−0.875228 + 0.483711i \(0.839289\pi\)
\(440\) 18.1394 0.864764
\(441\) 10.3509 0.492898
\(442\) 0 0
\(443\) 29.3849 1.39612 0.698058 0.716041i \(-0.254048\pi\)
0.698058 + 0.716041i \(0.254048\pi\)
\(444\) 1.12748 0.0535077
\(445\) − 3.22930i − 0.153083i
\(446\) 2.03453 0.0963376
\(447\) 7.82966i 0.370330i
\(448\) 19.9674i 0.943371i
\(449\) − 32.6419i − 1.54047i −0.637761 0.770234i \(-0.720139\pi\)
0.637761 0.770234i \(-0.279861\pi\)
\(450\) 3.86791 0.182335
\(451\) −10.4383 −0.491522
\(452\) 9.67784i 0.455207i
\(453\) − 58.3842i − 2.74313i
\(454\) 14.0189i 0.657940i
\(455\) −3.59031 −0.168316
\(456\) − 42.5264i − 1.99148i
\(457\) 8.45112 0.395327 0.197663 0.980270i \(-0.436665\pi\)
0.197663 + 0.980270i \(0.436665\pi\)
\(458\) 2.55199 0.119247
\(459\) 0 0
\(460\) −3.34465 −0.155945
\(461\) 38.2583 1.78187 0.890933 0.454134i \(-0.150051\pi\)
0.890933 + 0.454134i \(0.150051\pi\)
\(462\) − 48.3910i − 2.25135i
\(463\) 27.1761 1.26298 0.631491 0.775383i \(-0.282443\pi\)
0.631491 + 0.775383i \(0.282443\pi\)
\(464\) 3.51373i 0.163121i
\(465\) 9.87549i 0.457965i
\(466\) − 3.02268i − 0.140023i
\(467\) −3.44525 −0.159427 −0.0797136 0.996818i \(-0.525401\pi\)
−0.0797136 + 0.996818i \(0.525401\pi\)
\(468\) 5.00015 0.231132
\(469\) 17.4075i 0.803805i
\(470\) − 5.23528i − 0.241485i
\(471\) 34.0832i 1.57047i
\(472\) 12.0144 0.553009
\(473\) 0.164489i 0.00756322i
\(474\) 13.4492 0.617741
\(475\) −5.42585 −0.248955
\(476\) 0 0
\(477\) 1.38624 0.0634714
\(478\) 13.2000 0.603753
\(479\) − 15.3593i − 0.701785i −0.936416 0.350893i \(-0.885878\pi\)
0.936416 0.350893i \(-0.114122\pi\)
\(480\) −13.8820 −0.633622
\(481\) 0.460260i 0.0209860i
\(482\) 12.0241i 0.547681i
\(483\) 25.5556i 1.16282i
\(484\) 28.5231 1.29650
\(485\) −12.9349 −0.587341
\(486\) − 20.3172i − 0.921606i
\(487\) 26.3095i 1.19220i 0.802911 + 0.596099i \(0.203283\pi\)
−0.802911 + 0.596099i \(0.796717\pi\)
\(488\) − 36.8143i − 1.66651i
\(489\) −51.1052 −2.31106
\(490\) − 2.48105i − 0.112083i
\(491\) 29.0366 1.31040 0.655202 0.755454i \(-0.272583\pi\)
0.655202 + 0.755454i \(0.272583\pi\)
\(492\) 4.83893 0.218156
\(493\) 0 0
\(494\) 6.06120 0.272706
\(495\) 24.6274 1.10692
\(496\) 2.62145i 0.117707i
\(497\) 33.3583 1.49632
\(498\) 31.6935i 1.42022i
\(499\) 32.5905i 1.45895i 0.684007 + 0.729475i \(0.260236\pi\)
−0.684007 + 0.729475i \(0.739764\pi\)
\(500\) 1.07288i 0.0479806i
\(501\) 49.9573 2.23193
\(502\) 16.7937 0.749539
\(503\) − 23.5391i − 1.04956i −0.851239 0.524779i \(-0.824148\pi\)
0.851239 0.524779i \(-0.175852\pi\)
\(504\) 36.7816i 1.63838i
\(505\) − 1.46947i − 0.0653905i
\(506\) 18.4026 0.818093
\(507\) − 30.8711i − 1.37103i
\(508\) −15.0194 −0.666380
\(509\) −17.5818 −0.779300 −0.389650 0.920963i \(-0.627404\pi\)
−0.389650 + 0.920963i \(0.627404\pi\)
\(510\) 0 0
\(511\) −5.11953 −0.226474
\(512\) −7.84603 −0.346749
\(513\) − 14.6181i − 0.645406i
\(514\) −6.62553 −0.292239
\(515\) 9.80978i 0.432271i
\(516\) − 0.0762528i − 0.00335684i
\(517\) − 33.3336i − 1.46601i
\(518\) −1.18210 −0.0519387
\(519\) −59.8059 −2.62519
\(520\) − 3.43271i − 0.150534i
\(521\) 20.5061i 0.898388i 0.893434 + 0.449194i \(0.148289\pi\)
−0.893434 + 0.449194i \(0.851711\pi\)
\(522\) 19.3279i 0.845957i
\(523\) 9.19853 0.402224 0.201112 0.979568i \(-0.435545\pi\)
0.201112 + 0.979568i \(0.435545\pi\)
\(524\) − 13.5938i − 0.593849i
\(525\) 8.19759 0.357772
\(526\) −6.00648 −0.261895
\(527\) 0 0
\(528\) 11.4195 0.496972
\(529\) 13.2815 0.577457
\(530\) − 0.332275i − 0.0144331i
\(531\) 16.3117 0.707866
\(532\) − 18.0147i − 0.781036i
\(533\) 1.97535i 0.0855618i
\(534\) − 8.23671i − 0.356437i
\(535\) −2.88742 −0.124834
\(536\) −16.6434 −0.718886
\(537\) − 5.19378i − 0.224128i
\(538\) 1.24294i 0.0535871i
\(539\) − 15.7971i − 0.680431i
\(540\) −2.89052 −0.124388
\(541\) − 14.2880i − 0.614291i −0.951663 0.307145i \(-0.900626\pi\)
0.951663 0.307145i \(-0.0993738\pi\)
\(542\) 9.90305 0.425372
\(543\) 1.88532 0.0809070
\(544\) 0 0
\(545\) −5.76330 −0.246873
\(546\) −9.15751 −0.391905
\(547\) − 23.7010i − 1.01338i −0.862128 0.506691i \(-0.830869\pi\)
0.862128 0.506691i \(-0.169131\pi\)
\(548\) −3.19598 −0.136525
\(549\) − 49.9818i − 2.13317i
\(550\) − 5.90308i − 0.251708i
\(551\) − 27.1128i − 1.15505i
\(552\) −24.4338 −1.03997
\(553\) 16.3177 0.693898
\(554\) − 24.4378i − 1.03826i
\(555\) − 1.05089i − 0.0446078i
\(556\) 21.0728i 0.893684i
\(557\) 0.399812 0.0169406 0.00847028 0.999964i \(-0.497304\pi\)
0.00847028 + 0.999964i \(0.497304\pi\)
\(558\) 14.4197i 0.610436i
\(559\) 0.0311279 0.00131657
\(560\) 2.17605 0.0919549
\(561\) 0 0
\(562\) −5.67668 −0.239456
\(563\) −9.26358 −0.390413 −0.195207 0.980762i \(-0.562538\pi\)
−0.195207 + 0.980762i \(0.562538\pi\)
\(564\) 15.4525i 0.650670i
\(565\) 9.02043 0.379492
\(566\) 17.7807i 0.747377i
\(567\) − 15.2083i − 0.638687i
\(568\) 31.8940i 1.33824i
\(569\) −5.75650 −0.241325 −0.120662 0.992694i \(-0.538502\pi\)
−0.120662 + 0.992694i \(0.538502\pi\)
\(570\) −13.8393 −0.579663
\(571\) 13.9987i 0.585825i 0.956139 + 0.292913i \(0.0946245\pi\)
−0.956139 + 0.292913i \(0.905375\pi\)
\(572\) − 7.63106i − 0.319071i
\(573\) − 13.9426i − 0.582462i
\(574\) −5.07337 −0.211759
\(575\) 3.11745i 0.130007i
\(576\) −25.9192 −1.07997
\(577\) 18.4417 0.767736 0.383868 0.923388i \(-0.374592\pi\)
0.383868 + 0.923388i \(0.374592\pi\)
\(578\) 0 0
\(579\) −39.5495 −1.64362
\(580\) −5.36115 −0.222610
\(581\) 38.4533i 1.59531i
\(582\) −32.9919 −1.36756
\(583\) − 2.11563i − 0.0876204i
\(584\) − 4.89480i − 0.202548i
\(585\) − 4.66049i − 0.192688i
\(586\) 8.01007 0.330893
\(587\) −4.03167 −0.166405 −0.0832024 0.996533i \(-0.526515\pi\)
−0.0832024 + 0.996533i \(0.526515\pi\)
\(588\) 7.32312i 0.302001i
\(589\) − 20.2278i − 0.833471i
\(590\) − 3.90983i − 0.160965i
\(591\) 16.7684 0.689758
\(592\) − 0.278959i − 0.0114651i
\(593\) 6.52416 0.267915 0.133958 0.990987i \(-0.457231\pi\)
0.133958 + 0.990987i \(0.457231\pi\)
\(594\) 15.9039 0.652544
\(595\) 0 0
\(596\) −3.17114 −0.129895
\(597\) 39.5092 1.61700
\(598\) − 3.48250i − 0.142410i
\(599\) 6.81189 0.278326 0.139163 0.990269i \(-0.455559\pi\)
0.139163 + 0.990269i \(0.455559\pi\)
\(600\) 7.83775i 0.319975i
\(601\) 38.1591i 1.55654i 0.627927 + 0.778272i \(0.283904\pi\)
−0.627927 + 0.778272i \(0.716096\pi\)
\(602\) 0.0799473i 0.00325841i
\(603\) −22.5963 −0.920192
\(604\) 23.6466 0.962166
\(605\) − 26.5856i − 1.08086i
\(606\) − 3.74805i − 0.152254i
\(607\) − 27.1567i − 1.10226i −0.834420 0.551129i \(-0.814197\pi\)
0.834420 0.551129i \(-0.185803\pi\)
\(608\) 28.4342 1.15316
\(609\) 40.9632i 1.65991i
\(610\) −11.9804 −0.485072
\(611\) −6.30805 −0.255196
\(612\) 0 0
\(613\) 2.48591 0.100405 0.0502025 0.998739i \(-0.484013\pi\)
0.0502025 + 0.998739i \(0.484013\pi\)
\(614\) −11.7826 −0.475506
\(615\) − 4.51022i − 0.181870i
\(616\) 56.1349 2.26174
\(617\) − 43.1941i − 1.73893i −0.493994 0.869465i \(-0.664464\pi\)
0.493994 0.869465i \(-0.335536\pi\)
\(618\) 25.0210i 1.00649i
\(619\) − 1.37692i − 0.0553430i −0.999617 0.0276715i \(-0.991191\pi\)
0.999617 0.0276715i \(-0.00880923\pi\)
\(620\) −3.99974 −0.160633
\(621\) −8.39893 −0.337037
\(622\) 31.4250i 1.26003i
\(623\) − 9.99347i − 0.400380i
\(624\) − 2.16103i − 0.0865106i
\(625\) 1.00000 0.0400000
\(626\) − 12.9304i − 0.516803i
\(627\) −88.1162 −3.51902
\(628\) −13.8043 −0.550851
\(629\) 0 0
\(630\) 11.9697 0.476886
\(631\) 32.4351 1.29122 0.645611 0.763667i \(-0.276603\pi\)
0.645611 + 0.763667i \(0.276603\pi\)
\(632\) 15.6014i 0.620590i
\(633\) −35.4928 −1.41071
\(634\) 9.50698i 0.377570i
\(635\) 13.9992i 0.555541i
\(636\) 0.980749i 0.0388892i
\(637\) −2.98945 −0.118446
\(638\) 29.4975 1.16782
\(639\) 43.3015i 1.71298i
\(640\) − 4.26831i − 0.168720i
\(641\) 22.2992i 0.880764i 0.897811 + 0.440382i \(0.145157\pi\)
−0.897811 + 0.440382i \(0.854843\pi\)
\(642\) −7.36471 −0.290662
\(643\) − 11.7260i − 0.462430i −0.972903 0.231215i \(-0.925730\pi\)
0.972903 0.231215i \(-0.0742701\pi\)
\(644\) −10.3504 −0.407865
\(645\) −0.0710730 −0.00279850
\(646\) 0 0
\(647\) −37.3217 −1.46727 −0.733634 0.679544i \(-0.762177\pi\)
−0.733634 + 0.679544i \(0.762177\pi\)
\(648\) 14.5407 0.571212
\(649\) − 24.8943i − 0.977188i
\(650\) −1.11710 −0.0438162
\(651\) 30.5610i 1.19778i
\(652\) − 20.6985i − 0.810616i
\(653\) − 1.75573i − 0.0687071i −0.999410 0.0343535i \(-0.989063\pi\)
0.999410 0.0343535i \(-0.0109372\pi\)
\(654\) −14.7000 −0.574815
\(655\) −12.6704 −0.495074
\(656\) − 1.19724i − 0.0467443i
\(657\) − 6.64553i − 0.259267i
\(658\) − 16.2012i − 0.631590i
\(659\) 6.02834 0.234831 0.117415 0.993083i \(-0.462539\pi\)
0.117415 + 0.993083i \(0.462539\pi\)
\(660\) 17.4236i 0.678215i
\(661\) −32.0199 −1.24543 −0.622715 0.782449i \(-0.713970\pi\)
−0.622715 + 0.782449i \(0.713970\pi\)
\(662\) 5.43353 0.211180
\(663\) 0 0
\(664\) −36.7653 −1.42677
\(665\) −16.7910 −0.651126
\(666\) − 1.53446i − 0.0594592i
\(667\) −15.5778 −0.603176
\(668\) 20.2336i 0.782860i
\(669\) 5.59723i 0.216401i
\(670\) 5.41623i 0.209247i
\(671\) −76.2805 −2.94478
\(672\) −42.9595 −1.65720
\(673\) 39.5902i 1.52609i 0.646346 + 0.763044i \(0.276296\pi\)
−0.646346 + 0.763044i \(0.723704\pi\)
\(674\) 15.9765i 0.615391i
\(675\) 2.69417i 0.103698i
\(676\) 12.5033 0.480897
\(677\) 6.99467i 0.268827i 0.990925 + 0.134413i \(0.0429150\pi\)
−0.990925 + 0.134413i \(0.957085\pi\)
\(678\) 23.0077 0.883605
\(679\) −40.0286 −1.53616
\(680\) 0 0
\(681\) −38.5677 −1.47792
\(682\) 22.0069 0.842689
\(683\) − 37.2155i − 1.42401i −0.702174 0.712005i \(-0.747787\pi\)
0.702174 0.712005i \(-0.252213\pi\)
\(684\) 23.3844 0.894126
\(685\) 2.97888i 0.113817i
\(686\) 13.1802i 0.503221i
\(687\) 7.02084i 0.267862i
\(688\) −0.0188663 −0.000719272 0
\(689\) −0.400362 −0.0152526
\(690\) 7.95143i 0.302706i
\(691\) 15.6482i 0.595286i 0.954677 + 0.297643i \(0.0962005\pi\)
−0.954677 + 0.297643i \(0.903800\pi\)
\(692\) − 24.2224i − 0.920798i
\(693\) 76.2127 2.89508
\(694\) 8.90101i 0.337878i
\(695\) 19.6413 0.745037
\(696\) −39.1650 −1.48455
\(697\) 0 0
\(698\) −25.9276 −0.981372
\(699\) 8.31576 0.314531
\(700\) 3.32016i 0.125490i
\(701\) −6.08551 −0.229847 −0.114923 0.993374i \(-0.536662\pi\)
−0.114923 + 0.993374i \(0.536662\pi\)
\(702\) − 3.00965i − 0.113592i
\(703\) 2.15252i 0.0811838i
\(704\) 39.5570i 1.49086i
\(705\) 14.4029 0.542444
\(706\) −22.1193 −0.832469
\(707\) − 4.54746i − 0.171025i
\(708\) 11.5403i 0.433712i
\(709\) 19.7081i 0.740154i 0.929001 + 0.370077i \(0.120669\pi\)
−0.929001 + 0.370077i \(0.879331\pi\)
\(710\) 10.3792 0.389524
\(711\) 21.1816i 0.794371i
\(712\) 9.55480 0.358081
\(713\) −11.6220 −0.435247
\(714\) 0 0
\(715\) −7.11269 −0.266000
\(716\) 2.10357 0.0786141
\(717\) 36.3147i 1.35620i
\(718\) −32.8425 −1.22567
\(719\) 15.9164i 0.593583i 0.954942 + 0.296791i \(0.0959166\pi\)
−0.954942 + 0.296791i \(0.904083\pi\)
\(720\) 2.82468i 0.105270i
\(721\) 30.3576i 1.13058i
\(722\) 10.0522 0.374104
\(723\) −33.0796 −1.23024
\(724\) 0.763588i 0.0283785i
\(725\) 4.99698i 0.185583i
\(726\) − 67.8096i − 2.51665i
\(727\) 22.2643 0.825736 0.412868 0.910791i \(-0.364527\pi\)
0.412868 + 0.910791i \(0.364527\pi\)
\(728\) − 10.6230i − 0.393713i
\(729\) 41.1518 1.52414
\(730\) −1.59290 −0.0589560
\(731\) 0 0
\(732\) 35.3616 1.30700
\(733\) 5.67351 0.209556 0.104778 0.994496i \(-0.466587\pi\)
0.104778 + 0.994496i \(0.466587\pi\)
\(734\) − 8.93169i − 0.329675i
\(735\) 6.82567 0.251769
\(736\) − 16.3370i − 0.602191i
\(737\) 34.4857i 1.27030i
\(738\) − 6.58562i − 0.242420i
\(739\) 39.7975 1.46397 0.731987 0.681319i \(-0.238593\pi\)
0.731987 + 0.681319i \(0.238593\pi\)
\(740\) 0.425628 0.0156464
\(741\) 16.6751i 0.612575i
\(742\) − 1.02827i − 0.0377488i
\(743\) − 10.6500i − 0.390709i −0.980733 0.195355i \(-0.937414\pi\)
0.980733 0.195355i \(-0.0625858\pi\)
\(744\) −29.2195 −1.07124
\(745\) 2.95573i 0.108290i
\(746\) −2.95464 −0.108177
\(747\) −49.9153 −1.82630
\(748\) 0 0
\(749\) −8.93549 −0.326496
\(750\) 2.55062 0.0931355
\(751\) − 18.1195i − 0.661190i −0.943773 0.330595i \(-0.892751\pi\)
0.943773 0.330595i \(-0.107249\pi\)
\(752\) 3.82324 0.139419
\(753\) 46.2014i 1.68367i
\(754\) − 5.58211i − 0.203289i
\(755\) − 22.0403i − 0.802128i
\(756\) −8.94507 −0.325329
\(757\) 17.0771 0.620676 0.310338 0.950626i \(-0.399558\pi\)
0.310338 + 0.950626i \(0.399558\pi\)
\(758\) − 35.1774i − 1.27770i
\(759\) 50.6276i 1.83767i
\(760\) − 16.0539i − 0.582337i
\(761\) −31.9719 −1.15898 −0.579491 0.814979i \(-0.696749\pi\)
−0.579491 + 0.814979i \(0.696749\pi\)
\(762\) 35.7066i 1.29351i
\(763\) −17.8353 −0.645681
\(764\) 5.64701 0.204301
\(765\) 0 0
\(766\) 8.97540 0.324294
\(767\) −4.71100 −0.170104
\(768\) − 45.0707i − 1.62635i
\(769\) −34.9147 −1.25906 −0.629529 0.776977i \(-0.716752\pi\)
−0.629529 + 0.776977i \(0.716752\pi\)
\(770\) − 18.2678i − 0.658327i
\(771\) − 18.2276i − 0.656452i
\(772\) − 16.0182i − 0.576509i
\(773\) −4.49160 −0.161552 −0.0807758 0.996732i \(-0.525740\pi\)
−0.0807758 + 0.996732i \(0.525740\pi\)
\(774\) −0.103778 −0.00373021
\(775\) 3.72804i 0.133915i
\(776\) − 38.2715i − 1.37387i
\(777\) − 3.25211i − 0.116669i
\(778\) −31.9310 −1.14478
\(779\) 9.23821i 0.330993i
\(780\) 3.29725 0.118061
\(781\) 66.0854 2.36472
\(782\) 0 0
\(783\) −13.4627 −0.481117
\(784\) 1.81188 0.0647098
\(785\) 12.8666i 0.459228i
\(786\) −32.3174 −1.15272
\(787\) 8.65141i 0.308390i 0.988040 + 0.154195i \(0.0492783\pi\)
−0.988040 + 0.154195i \(0.950722\pi\)
\(788\) 6.79148i 0.241936i
\(789\) − 16.5245i − 0.588289i
\(790\) 5.07713 0.180636
\(791\) 27.9149 0.992539
\(792\) 72.8673i 2.58923i
\(793\) 14.4353i 0.512613i
\(794\) − 8.49772i − 0.301573i
\(795\) 0.914127 0.0324208
\(796\) 16.0019i 0.567173i
\(797\) −19.0137 −0.673500 −0.336750 0.941594i \(-0.609328\pi\)
−0.336750 + 0.941594i \(0.609328\pi\)
\(798\) −42.8274 −1.51607
\(799\) 0 0
\(800\) −5.24051 −0.185280
\(801\) 12.9723 0.458353
\(802\) − 18.7943i − 0.663649i
\(803\) −10.1422 −0.357910
\(804\) − 15.9866i − 0.563806i
\(805\) 9.64735i 0.340024i
\(806\) − 4.16459i − 0.146691i
\(807\) −3.41949 −0.120372
\(808\) 4.34784 0.152957
\(809\) 22.6712i 0.797077i 0.917152 + 0.398538i \(0.130482\pi\)
−0.917152 + 0.398538i \(0.869518\pi\)
\(810\) − 4.73194i − 0.166263i
\(811\) − 24.1167i − 0.846850i −0.905931 0.423425i \(-0.860828\pi\)
0.905931 0.423425i \(-0.139172\pi\)
\(812\) −16.5908 −0.582222
\(813\) 27.2445i 0.955505i
\(814\) −2.34184 −0.0820816
\(815\) −19.2925 −0.675786
\(816\) 0 0
\(817\) 0.145578 0.00509311
\(818\) 10.0285 0.350638
\(819\) − 14.4225i − 0.503963i
\(820\) 1.82672 0.0637917
\(821\) 0.114687i 0.00400260i 0.999998 + 0.00200130i \(0.000637035\pi\)
−0.999998 + 0.00200130i \(0.999363\pi\)
\(822\) 7.59799i 0.265010i
\(823\) − 33.8610i − 1.18032i −0.807286 0.590161i \(-0.799064\pi\)
0.807286 0.590161i \(-0.200936\pi\)
\(824\) −29.0250 −1.01114
\(825\) 16.2401 0.565407
\(826\) − 12.0995i − 0.420995i
\(827\) 20.5646i 0.715102i 0.933894 + 0.357551i \(0.116388\pi\)
−0.933894 + 0.357551i \(0.883612\pi\)
\(828\) − 13.4357i − 0.466921i
\(829\) 26.7935 0.930576 0.465288 0.885159i \(-0.345951\pi\)
0.465288 + 0.885159i \(0.345951\pi\)
\(830\) 11.9645i 0.415292i
\(831\) 67.2314 2.33223
\(832\) 7.48577 0.259522
\(833\) 0 0
\(834\) 50.0975 1.73473
\(835\) 18.8591 0.652647
\(836\) − 35.6886i − 1.23431i
\(837\) −10.0440 −0.347170
\(838\) − 34.0092i − 1.17483i
\(839\) 13.8332i 0.477575i 0.971072 + 0.238788i \(0.0767500\pi\)
−0.971072 + 0.238788i \(0.923250\pi\)
\(840\) 24.2549i 0.836874i
\(841\) 4.03023 0.138973
\(842\) −14.4628 −0.498419
\(843\) − 15.6172i − 0.537886i
\(844\) − 14.3752i − 0.494814i
\(845\) − 11.6540i − 0.400910i
\(846\) 21.0304 0.723041
\(847\) − 82.2724i − 2.82691i
\(848\) 0.242655 0.00833281
\(849\) −48.9168 −1.67882
\(850\) 0 0
\(851\) 1.23674 0.0423950
\(852\) −30.6354 −1.04955
\(853\) − 12.7815i − 0.437631i −0.975766 0.218816i \(-0.929781\pi\)
0.975766 0.218816i \(-0.0702193\pi\)
\(854\) −37.0749 −1.26868
\(855\) − 21.7960i − 0.745406i
\(856\) − 8.54325i − 0.292002i
\(857\) 6.31557i 0.215736i 0.994165 + 0.107868i \(0.0344023\pi\)
−0.994165 + 0.107868i \(0.965598\pi\)
\(858\) −18.1418 −0.619350
\(859\) 35.1334 1.19874 0.599369 0.800473i \(-0.295418\pi\)
0.599369 + 0.800473i \(0.295418\pi\)
\(860\) − 0.0287858i 0 0.000981587i
\(861\) − 13.9575i − 0.475669i
\(862\) − 22.4847i − 0.765833i
\(863\) −44.2102 −1.50493 −0.752466 0.658632i \(-0.771136\pi\)
−0.752466 + 0.658632i \(0.771136\pi\)
\(864\) − 14.1188i − 0.480331i
\(865\) −22.5770 −0.767641
\(866\) 17.6279 0.599022
\(867\) 0 0
\(868\) −12.3777 −0.420127
\(869\) 32.3266 1.09661
\(870\) 12.7454i 0.432109i
\(871\) 6.52608 0.221128
\(872\) − 17.0524i − 0.577467i
\(873\) − 51.9601i − 1.75858i
\(874\) − 16.2868i − 0.550908i
\(875\) 3.09463 0.104618
\(876\) 4.70164 0.158854
\(877\) − 23.6073i − 0.797164i −0.917133 0.398582i \(-0.869503\pi\)
0.917133 0.398582i \(-0.130497\pi\)
\(878\) 19.5171i 0.658671i
\(879\) 22.0367i 0.743278i
\(880\) 4.31093 0.145321
\(881\) − 33.0624i − 1.11390i −0.830546 0.556950i \(-0.811971\pi\)
0.830546 0.556950i \(-0.188029\pi\)
\(882\) 9.96654 0.335591
\(883\) 58.1141 1.95569 0.977847 0.209320i \(-0.0671251\pi\)
0.977847 + 0.209320i \(0.0671251\pi\)
\(884\) 0 0
\(885\) 10.7564 0.361573
\(886\) 28.2938 0.950550
\(887\) 28.0097i 0.940474i 0.882540 + 0.470237i \(0.155832\pi\)
−0.882540 + 0.470237i \(0.844168\pi\)
\(888\) 3.10936 0.104343
\(889\) 43.3223i 1.45298i
\(890\) − 3.10940i − 0.104227i
\(891\) − 30.1288i − 1.00935i
\(892\) −2.26697 −0.0759039
\(893\) −29.5012 −0.987219
\(894\) 7.53895i 0.252140i
\(895\) − 1.96068i − 0.0655382i
\(896\) − 13.2088i − 0.441276i
\(897\) 9.58077 0.319893
\(898\) − 31.4300i − 1.04883i
\(899\) −18.6289 −0.621310
\(900\) −4.30982 −0.143661
\(901\) 0 0
\(902\) −10.0508 −0.334654
\(903\) −0.219944 −0.00731929
\(904\) 26.6895i 0.887680i
\(905\) 0.711719 0.0236583
\(906\) − 56.2164i − 1.86766i
\(907\) 49.9204i 1.65758i 0.559560 + 0.828790i \(0.310970\pi\)
−0.559560 + 0.828790i \(0.689030\pi\)
\(908\) − 15.6206i − 0.518387i
\(909\) 5.90294 0.195788
\(910\) −3.45700 −0.114599
\(911\) 21.8797i 0.724908i 0.932002 + 0.362454i \(0.118061\pi\)
−0.932002 + 0.362454i \(0.881939\pi\)
\(912\) − 10.1066i − 0.334663i
\(913\) 76.1790i 2.52116i
\(914\) 8.13734 0.269159
\(915\) − 32.9595i − 1.08961i
\(916\) −2.84356 −0.0939538
\(917\) −39.2102 −1.29483
\(918\) 0 0
\(919\) −11.0529 −0.364600 −0.182300 0.983243i \(-0.558354\pi\)
−0.182300 + 0.983243i \(0.558354\pi\)
\(920\) −9.22387 −0.304102
\(921\) − 32.4153i − 1.06812i
\(922\) 36.8378 1.21319
\(923\) − 12.5060i − 0.411640i
\(924\) 53.9197i 1.77383i
\(925\) − 0.396716i − 0.0130439i
\(926\) 26.1671 0.859905
\(927\) −39.4065 −1.29428
\(928\) − 26.1867i − 0.859621i
\(929\) − 33.1333i − 1.08707i −0.839387 0.543534i \(-0.817086\pi\)
0.839387 0.543534i \(-0.182914\pi\)
\(930\) 9.50882i 0.311806i
\(931\) −13.9809 −0.458206
\(932\) 3.36803i 0.110323i
\(933\) −86.4540 −2.83038
\(934\) −3.31733 −0.108546
\(935\) 0 0
\(936\) 13.7894 0.450721
\(937\) 58.3815 1.90724 0.953621 0.301011i \(-0.0973241\pi\)
0.953621 + 0.301011i \(0.0973241\pi\)
\(938\) 16.7612i 0.547273i
\(939\) 35.5731 1.16088
\(940\) 5.83341i 0.190265i
\(941\) − 6.09945i − 0.198836i −0.995046 0.0994181i \(-0.968302\pi\)
0.995046 0.0994181i \(-0.0316981\pi\)
\(942\) 32.8177i 1.06926i
\(943\) 5.30787 0.172848
\(944\) 2.85529 0.0929318
\(945\) 8.33744i 0.271217i
\(946\) 0.158382i 0.00514944i
\(947\) 47.1485i 1.53212i 0.642769 + 0.766060i \(0.277785\pi\)
−0.642769 + 0.766060i \(0.722215\pi\)
\(948\) −14.9857 −0.486714
\(949\) 1.91931i 0.0623034i
\(950\) −5.22439 −0.169502
\(951\) −26.1548 −0.848129
\(952\) 0 0
\(953\) 26.8459 0.869625 0.434812 0.900521i \(-0.356815\pi\)
0.434812 + 0.900521i \(0.356815\pi\)
\(954\) 1.33477 0.0432147
\(955\) − 5.26341i − 0.170320i
\(956\) −14.7081 −0.475694
\(957\) 81.1513i 2.62325i
\(958\) − 14.7890i − 0.477812i
\(959\) 9.21852i 0.297682i
\(960\) −17.0919 −0.551639
\(961\) 17.1017 0.551668
\(962\) 0.443171i 0.0142884i
\(963\) − 11.5989i − 0.373770i
\(964\) − 13.3978i − 0.431514i
\(965\) −14.9301 −0.480618
\(966\) 24.6067i 0.791708i
\(967\) 34.1142 1.09704 0.548519 0.836138i \(-0.315192\pi\)
0.548519 + 0.836138i \(0.315192\pi\)
\(968\) 78.6610 2.52826
\(969\) 0 0
\(970\) −12.4546 −0.399893
\(971\) −22.9516 −0.736551 −0.368276 0.929717i \(-0.620052\pi\)
−0.368276 + 0.929717i \(0.620052\pi\)
\(972\) 22.6384i 0.726128i
\(973\) 60.7825 1.94860
\(974\) 25.3327i 0.811711i
\(975\) − 3.07327i − 0.0984235i
\(976\) − 8.74911i − 0.280052i
\(977\) −19.8739 −0.635823 −0.317912 0.948120i \(-0.602982\pi\)
−0.317912 + 0.948120i \(0.602982\pi\)
\(978\) −49.2077 −1.57349
\(979\) − 19.7979i − 0.632743i
\(980\) 2.76451i 0.0883092i
\(981\) − 23.1515i − 0.739172i
\(982\) 27.9585 0.892192
\(983\) − 59.0708i − 1.88407i −0.335518 0.942034i \(-0.608911\pi\)
0.335518 0.942034i \(-0.391089\pi\)
\(984\) 13.3448 0.425416
\(985\) 6.33014 0.201695
\(986\) 0 0
\(987\) 44.5715 1.41873
\(988\) −6.75370 −0.214864
\(989\) − 0.0836424i − 0.00265967i
\(990\) 23.7130 0.753649
\(991\) 10.5941i 0.336534i 0.985741 + 0.168267i \(0.0538171\pi\)
−0.985741 + 0.168267i \(0.946183\pi\)
\(992\) − 19.5368i − 0.620296i
\(993\) 14.9483i 0.474370i
\(994\) 32.1197 1.01878
\(995\) 14.9149 0.472835
\(996\) − 35.3145i − 1.11898i
\(997\) − 40.7864i − 1.29172i −0.763456 0.645860i \(-0.776499\pi\)
0.763456 0.645860i \(-0.223501\pi\)
\(998\) 31.3804i 0.993331i
\(999\) 1.06882 0.0338159
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.d.j.866.14 24
17.3 odd 16 85.2.l.a.76.4 yes 24
17.4 even 4 1445.2.a.p.1.6 12
17.11 odd 16 85.2.l.a.66.4 24
17.13 even 4 1445.2.a.q.1.6 12
17.16 even 2 inner 1445.2.d.j.866.13 24
51.11 even 16 765.2.be.b.406.3 24
51.20 even 16 765.2.be.b.586.3 24
85.3 even 16 425.2.n.c.399.3 24
85.4 even 4 7225.2.a.bs.1.7 12
85.28 even 16 425.2.n.f.49.4 24
85.37 even 16 425.2.n.f.399.4 24
85.54 odd 16 425.2.m.b.76.3 24
85.62 even 16 425.2.n.c.49.3 24
85.64 even 4 7225.2.a.bq.1.7 12
85.79 odd 16 425.2.m.b.151.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.4 24 17.11 odd 16
85.2.l.a.76.4 yes 24 17.3 odd 16
425.2.m.b.76.3 24 85.54 odd 16
425.2.m.b.151.3 24 85.79 odd 16
425.2.n.c.49.3 24 85.62 even 16
425.2.n.c.399.3 24 85.3 even 16
425.2.n.f.49.4 24 85.28 even 16
425.2.n.f.399.4 24 85.37 even 16
765.2.be.b.406.3 24 51.11 even 16
765.2.be.b.586.3 24 51.20 even 16
1445.2.a.p.1.6 12 17.4 even 4
1445.2.a.q.1.6 12 17.13 even 4
1445.2.d.j.866.13 24 17.16 even 2 inner
1445.2.d.j.866.14 24 1.1 even 1 trivial
7225.2.a.bq.1.7 12 85.64 even 4
7225.2.a.bs.1.7 12 85.4 even 4