Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1445,2,Mod(866,1445)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1445.866");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1445 = 5 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1445.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.5383830921\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 85) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
866.1 | −2.35190 | 1.56935i | 3.53144 | − | 1.00000i | − | 3.69096i | − | 3.58212i | −3.60181 | 0.537139 | 2.35190i | |||||||||||||||
866.2 | −2.35190 | − | 1.56935i | 3.53144 | 1.00000i | 3.69096i | 3.58212i | −3.60181 | 0.537139 | − | 2.35190i | ||||||||||||||||
866.3 | −2.04505 | 3.19566i | 2.18224 | − | 1.00000i | − | 6.53528i | 1.17743i | −0.372688 | −7.21221 | 2.04505i | ||||||||||||||||
866.4 | −2.04505 | − | 3.19566i | 2.18224 | 1.00000i | 6.53528i | − | 1.17743i | −0.372688 | −7.21221 | − | 2.04505i | |||||||||||||||
866.5 | −1.43840 | − | 0.109907i | 0.0689897 | − | 1.00000i | 0.158090i | − | 0.695085i | 2.77756 | 2.98792 | 1.43840i | |||||||||||||||
866.6 | −1.43840 | 0.109907i | 0.0689897 | 1.00000i | − | 0.158090i | 0.695085i | 2.77756 | 2.98792 | − | 1.43840i | ||||||||||||||||
866.7 | −0.747914 | 3.07503i | −1.44062 | − | 1.00000i | − | 2.29986i | − | 3.23262i | 2.57329 | −6.45581 | 0.747914i | |||||||||||||||
866.8 | −0.747914 | − | 3.07503i | −1.44062 | 1.00000i | 2.29986i | 3.23262i | 2.57329 | −6.45581 | − | 0.747914i | ||||||||||||||||
866.9 | −0.360254 | − | 0.0542373i | −1.87022 | − | 1.00000i | 0.0195392i | 0.298718i | 1.39426 | 2.99706 | 0.360254i | ||||||||||||||||
866.10 | −0.360254 | 0.0542373i | −1.87022 | 1.00000i | − | 0.0195392i | − | 0.298718i | 1.39426 | 2.99706 | − | 0.360254i | |||||||||||||||
866.11 | −0.301687 | − | 1.06101i | −1.90899 | − | 1.00000i | 0.320094i | 2.50984i | 1.17929 | 1.87425 | 0.301687i | ||||||||||||||||
866.12 | −0.301687 | 1.06101i | −1.90899 | 1.00000i | − | 0.320094i | − | 2.50984i | 1.17929 | 1.87425 | − | 0.301687i | |||||||||||||||
866.13 | 0.962871 | − | 2.64897i | −1.07288 | − | 1.00000i | − | 2.55062i | − | 3.09463i | −2.95879 | −4.01706 | − | 0.962871i | |||||||||||||
866.14 | 0.962871 | 2.64897i | −1.07288 | 1.00000i | 2.55062i | 3.09463i | −2.95879 | −4.01706 | 0.962871i | ||||||||||||||||||
866.15 | 1.55041 | 1.14040i | 0.403772 | − | 1.00000i | 1.76809i | 3.74146i | −2.47481 | 1.69949 | − | 1.55041i | ||||||||||||||||
866.16 | 1.55041 | − | 1.14040i | 0.403772 | 1.00000i | − | 1.76809i | − | 3.74146i | −2.47481 | 1.69949 | 1.55041i | |||||||||||||||
866.17 | 1.55555 | − | 3.00797i | 0.419729 | 1.00000i | − | 4.67904i | 3.45467i | −2.45819 | −6.04787 | 1.55555i | ||||||||||||||||
866.18 | 1.55555 | 3.00797i | 0.419729 | − | 1.00000i | 4.67904i | − | 3.45467i | −2.45819 | −6.04787 | − | 1.55555i | |||||||||||||||
866.19 | 1.80583 | 0.687917i | 1.26102 | 1.00000i | 1.24226i | 4.34193i | −1.33447 | 2.52677 | 1.80583i | ||||||||||||||||||
866.20 | 1.80583 | − | 0.687917i | 1.26102 | − | 1.00000i | − | 1.24226i | − | 4.34193i | −1.33447 | 2.52677 | − | 1.80583i | |||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1445.2.d.j | 24 | |
17.b | even | 2 | 1 | inner | 1445.2.d.j | 24 | |
17.c | even | 4 | 1 | 1445.2.a.p | 12 | ||
17.c | even | 4 | 1 | 1445.2.a.q | 12 | ||
17.e | odd | 16 | 2 | 85.2.l.a | ✓ | 24 | |
51.i | even | 16 | 2 | 765.2.be.b | 24 | ||
85.j | even | 4 | 1 | 7225.2.a.bq | 12 | ||
85.j | even | 4 | 1 | 7225.2.a.bs | 12 | ||
85.o | even | 16 | 2 | 425.2.n.c | 24 | ||
85.p | odd | 16 | 2 | 425.2.m.b | 24 | ||
85.r | even | 16 | 2 | 425.2.n.f | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
85.2.l.a | ✓ | 24 | 17.e | odd | 16 | 2 | |
425.2.m.b | 24 | 85.p | odd | 16 | 2 | ||
425.2.n.c | 24 | 85.o | even | 16 | 2 | ||
425.2.n.f | 24 | 85.r | even | 16 | 2 | ||
765.2.be.b | 24 | 51.i | even | 16 | 2 | ||
1445.2.a.p | 12 | 17.c | even | 4 | 1 | ||
1445.2.a.q | 12 | 17.c | even | 4 | 1 | ||
1445.2.d.j | 24 | 1.a | even | 1 | 1 | trivial | |
1445.2.d.j | 24 | 17.b | even | 2 | 1 | inner | |
7225.2.a.bq | 12 | 85.j | even | 4 | 1 | ||
7225.2.a.bs | 12 | 85.j | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1445, [\chi])\):
\( T_{2}^{12} - 4 T_{2}^{11} - 10 T_{2}^{10} + 52 T_{2}^{9} + 21 T_{2}^{8} - 232 T_{2}^{7} + 44 T_{2}^{6} + \cdots + 17 \) |
\( T_{3}^{24} + 48 T_{3}^{22} + 972 T_{3}^{20} + 10832 T_{3}^{18} + 72824 T_{3}^{16} + 305592 T_{3}^{14} + \cdots + 4 \) |