Properties

Label 1445.2.d.i.866.5
Level $1445$
Weight $2$
Character 1445.866
Analytic conductor $11.538$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(866,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.866"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-6,0,42,0,0,0,-24,-42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 866.5
Character \(\chi\) \(=\) 1445.866
Dual form 1445.2.d.i.866.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.27524 q^{2} -1.70271i q^{3} +3.17670 q^{4} +1.00000i q^{5} +3.87408i q^{6} +2.70724i q^{7} -2.67727 q^{8} +0.100765 q^{9} -2.27524i q^{10} -2.17632i q^{11} -5.40901i q^{12} +5.37970 q^{13} -6.15962i q^{14} +1.70271 q^{15} -0.261974 q^{16} -0.229265 q^{18} -8.53588 q^{19} +3.17670i q^{20} +4.60966 q^{21} +4.95164i q^{22} -5.32570i q^{23} +4.55863i q^{24} -1.00000 q^{25} -12.2401 q^{26} -5.27972i q^{27} +8.60011i q^{28} -1.31247i q^{29} -3.87408 q^{30} -0.757667i q^{31} +5.95060 q^{32} -3.70565 q^{33} -2.70724 q^{35} +0.320102 q^{36} +8.20380i q^{37} +19.4212 q^{38} -9.16010i q^{39} -2.67727i q^{40} +0.0130696i q^{41} -10.4881 q^{42} +0.330596 q^{43} -6.91352i q^{44} +0.100765i q^{45} +12.1172i q^{46} +11.3395 q^{47} +0.446067i q^{48} -0.329174 q^{49} +2.27524 q^{50} +17.0897 q^{52} +8.04151 q^{53} +12.0126i q^{54} +2.17632 q^{55} -7.24803i q^{56} +14.5342i q^{57} +2.98619i q^{58} +13.1546 q^{59} +5.40901 q^{60} +7.20639i q^{61} +1.72387i q^{62} +0.272797i q^{63} -13.0151 q^{64} +5.37970i q^{65} +8.43123 q^{66} +2.67143 q^{67} -9.06814 q^{69} +6.15962 q^{70} +1.87106i q^{71} -0.269777 q^{72} -11.9780i q^{73} -18.6656i q^{74} +1.70271i q^{75} -27.1160 q^{76} +5.89183 q^{77} +20.8414i q^{78} -17.0477i q^{79} -0.261974i q^{80} -8.68755 q^{81} -0.0297365i q^{82} +3.35585 q^{83} +14.6435 q^{84} -0.752183 q^{86} -2.23477 q^{87} +5.82660i q^{88} -10.8909 q^{89} -0.229265i q^{90} +14.5642i q^{91} -16.9182i q^{92} -1.29009 q^{93} -25.8001 q^{94} -8.53588i q^{95} -10.1322i q^{96} +10.9119i q^{97} +0.748948 q^{98} -0.219298i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 6 q^{2} + 42 q^{4} - 24 q^{8} - 42 q^{9} + 18 q^{13} - 6 q^{15} + 78 q^{16} - 18 q^{18} - 54 q^{19} + 12 q^{21} - 24 q^{25} - 12 q^{26} - 18 q^{30} - 24 q^{32} + 12 q^{35} - 96 q^{36} - 6 q^{38}+ \cdots - 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.27524 −1.60884 −0.804418 0.594064i \(-0.797522\pi\)
−0.804418 + 0.594064i \(0.797522\pi\)
\(3\) − 1.70271i − 0.983062i −0.870860 0.491531i \(-0.836437\pi\)
0.870860 0.491531i \(-0.163563\pi\)
\(4\) 3.17670 1.58835
\(5\) 1.00000i 0.447214i
\(6\) 3.87408i 1.58159i
\(7\) 2.70724i 1.02324i 0.859211 + 0.511621i \(0.170955\pi\)
−0.859211 + 0.511621i \(0.829045\pi\)
\(8\) −2.67727 −0.946559
\(9\) 0.100765 0.0335885
\(10\) − 2.27524i − 0.719493i
\(11\) − 2.17632i − 0.656185i −0.944646 0.328093i \(-0.893594\pi\)
0.944646 0.328093i \(-0.106406\pi\)
\(12\) − 5.40901i − 1.56145i
\(13\) 5.37970 1.49206 0.746031 0.665912i \(-0.231957\pi\)
0.746031 + 0.665912i \(0.231957\pi\)
\(14\) − 6.15962i − 1.64623i
\(15\) 1.70271 0.439639
\(16\) −0.261974 −0.0654935
\(17\) 0 0
\(18\) −0.229265 −0.0540384
\(19\) −8.53588 −1.95827 −0.979133 0.203220i \(-0.934859\pi\)
−0.979133 + 0.203220i \(0.934859\pi\)
\(20\) 3.17670i 0.710332i
\(21\) 4.60966 1.00591
\(22\) 4.95164i 1.05569i
\(23\) − 5.32570i − 1.11049i −0.831688 0.555243i \(-0.812625\pi\)
0.831688 0.555243i \(-0.187375\pi\)
\(24\) 4.55863i 0.930526i
\(25\) −1.00000 −0.200000
\(26\) −12.2401 −2.40048
\(27\) − 5.27972i − 1.01608i
\(28\) 8.60011i 1.62527i
\(29\) − 1.31247i − 0.243720i −0.992547 0.121860i \(-0.961114\pi\)
0.992547 0.121860i \(-0.0388860\pi\)
\(30\) −3.87408 −0.707306
\(31\) − 0.757667i − 0.136081i −0.997683 0.0680405i \(-0.978325\pi\)
0.997683 0.0680405i \(-0.0216747\pi\)
\(32\) 5.95060 1.05193
\(33\) −3.70565 −0.645071
\(34\) 0 0
\(35\) −2.70724 −0.457608
\(36\) 0.320102 0.0533503
\(37\) 8.20380i 1.34870i 0.738414 + 0.674348i \(0.235575\pi\)
−0.738414 + 0.674348i \(0.764425\pi\)
\(38\) 19.4212 3.15053
\(39\) − 9.16010i − 1.46679i
\(40\) − 2.67727i − 0.423314i
\(41\) 0.0130696i 0.00204113i 0.999999 + 0.00102057i \(0.000324857\pi\)
−0.999999 + 0.00102057i \(0.999675\pi\)
\(42\) −10.4881 −1.61834
\(43\) 0.330596 0.0504154 0.0252077 0.999682i \(-0.491975\pi\)
0.0252077 + 0.999682i \(0.491975\pi\)
\(44\) − 6.91352i − 1.04225i
\(45\) 0.100765i 0.0150212i
\(46\) 12.1172i 1.78659i
\(47\) 11.3395 1.65404 0.827019 0.562175i \(-0.190035\pi\)
0.827019 + 0.562175i \(0.190035\pi\)
\(48\) 0.446067i 0.0643842i
\(49\) −0.329174 −0.0470248
\(50\) 2.27524 0.321767
\(51\) 0 0
\(52\) 17.0897 2.36992
\(53\) 8.04151 1.10459 0.552293 0.833650i \(-0.313753\pi\)
0.552293 + 0.833650i \(0.313753\pi\)
\(54\) 12.0126i 1.63471i
\(55\) 2.17632 0.293455
\(56\) − 7.24803i − 0.968559i
\(57\) 14.5342i 1.92510i
\(58\) 2.98619i 0.392106i
\(59\) 13.1546 1.71259 0.856293 0.516490i \(-0.172762\pi\)
0.856293 + 0.516490i \(0.172762\pi\)
\(60\) 5.40901 0.698300
\(61\) 7.20639i 0.922684i 0.887222 + 0.461342i \(0.152632\pi\)
−0.887222 + 0.461342i \(0.847368\pi\)
\(62\) 1.72387i 0.218932i
\(63\) 0.272797i 0.0343692i
\(64\) −13.0151 −1.62688
\(65\) 5.37970i 0.667270i
\(66\) 8.43123 1.03781
\(67\) 2.67143 0.326367 0.163184 0.986596i \(-0.447824\pi\)
0.163184 + 0.986596i \(0.447824\pi\)
\(68\) 0 0
\(69\) −9.06814 −1.09168
\(70\) 6.15962 0.736216
\(71\) 1.87106i 0.222054i 0.993817 + 0.111027i \(0.0354140\pi\)
−0.993817 + 0.111027i \(0.964586\pi\)
\(72\) −0.269777 −0.0317935
\(73\) − 11.9780i − 1.40192i −0.713199 0.700962i \(-0.752754\pi\)
0.713199 0.700962i \(-0.247246\pi\)
\(74\) − 18.6656i − 2.16983i
\(75\) 1.70271i 0.196612i
\(76\) −27.1160 −3.11041
\(77\) 5.89183 0.671437
\(78\) 20.8414i 2.35982i
\(79\) − 17.0477i − 1.91802i −0.283375 0.959009i \(-0.591454\pi\)
0.283375 0.959009i \(-0.408546\pi\)
\(80\) − 0.261974i − 0.0292896i
\(81\) −8.68755 −0.965283
\(82\) − 0.0297365i − 0.00328385i
\(83\) 3.35585 0.368352 0.184176 0.982893i \(-0.441038\pi\)
0.184176 + 0.982893i \(0.441038\pi\)
\(84\) 14.6435 1.59774
\(85\) 0 0
\(86\) −0.752183 −0.0811100
\(87\) −2.23477 −0.239592
\(88\) 5.82660i 0.621118i
\(89\) −10.8909 −1.15444 −0.577218 0.816590i \(-0.695862\pi\)
−0.577218 + 0.816590i \(0.695862\pi\)
\(90\) − 0.229265i − 0.0241667i
\(91\) 14.5642i 1.52674i
\(92\) − 16.9182i − 1.76384i
\(93\) −1.29009 −0.133776
\(94\) −25.8001 −2.66107
\(95\) − 8.53588i − 0.875763i
\(96\) − 10.1322i − 1.03411i
\(97\) 10.9119i 1.10793i 0.832540 + 0.553965i \(0.186886\pi\)
−0.832540 + 0.553965i \(0.813114\pi\)
\(98\) 0.748948 0.0756552
\(99\) − 0.219298i − 0.0220403i
\(100\) −3.17670 −0.317670
\(101\) −3.95599 −0.393636 −0.196818 0.980440i \(-0.563061\pi\)
−0.196818 + 0.980440i \(0.563061\pi\)
\(102\) 0 0
\(103\) 7.16779 0.706263 0.353132 0.935574i \(-0.385117\pi\)
0.353132 + 0.935574i \(0.385117\pi\)
\(104\) −14.4029 −1.41232
\(105\) 4.60966i 0.449857i
\(106\) −18.2963 −1.77710
\(107\) 3.70041i 0.357732i 0.983873 + 0.178866i \(0.0572429\pi\)
−0.983873 + 0.178866i \(0.942757\pi\)
\(108\) − 16.7721i − 1.61389i
\(109\) − 2.73869i − 0.262319i −0.991361 0.131160i \(-0.958130\pi\)
0.991361 0.131160i \(-0.0418701\pi\)
\(110\) −4.95164 −0.472121
\(111\) 13.9687 1.32585
\(112\) − 0.709227i − 0.0670157i
\(113\) − 1.51487i − 0.142507i −0.997458 0.0712536i \(-0.977300\pi\)
0.997458 0.0712536i \(-0.0227000\pi\)
\(114\) − 33.0687i − 3.09716i
\(115\) 5.32570 0.496624
\(116\) − 4.16934i − 0.387114i
\(117\) 0.542088 0.0501161
\(118\) −29.9299 −2.75527
\(119\) 0 0
\(120\) −4.55863 −0.416144
\(121\) 6.26363 0.569421
\(122\) − 16.3963i − 1.48445i
\(123\) 0.0222538 0.00200656
\(124\) − 2.40688i − 0.216144i
\(125\) − 1.00000i − 0.0894427i
\(126\) − 0.620677i − 0.0552943i
\(127\) −4.15113 −0.368353 −0.184176 0.982893i \(-0.558962\pi\)
−0.184176 + 0.982893i \(0.558962\pi\)
\(128\) 17.7112 1.56546
\(129\) − 0.562910i − 0.0495614i
\(130\) − 12.2401i − 1.07353i
\(131\) − 12.3436i − 1.07847i −0.842156 0.539234i \(-0.818714\pi\)
0.842156 0.539234i \(-0.181286\pi\)
\(132\) −11.7717 −1.02460
\(133\) − 23.1087i − 2.00378i
\(134\) −6.07814 −0.525071
\(135\) 5.27972 0.454406
\(136\) 0 0
\(137\) 13.1700 1.12519 0.562594 0.826733i \(-0.309803\pi\)
0.562594 + 0.826733i \(0.309803\pi\)
\(138\) 20.6322 1.75633
\(139\) 0.706325i 0.0599097i 0.999551 + 0.0299548i \(0.00953635\pi\)
−0.999551 + 0.0299548i \(0.990464\pi\)
\(140\) −8.60011 −0.726842
\(141\) − 19.3079i − 1.62602i
\(142\) − 4.25710i − 0.357248i
\(143\) − 11.7080i − 0.979069i
\(144\) −0.0263979 −0.00219983
\(145\) 1.31247 0.108995
\(146\) 27.2529i 2.25546i
\(147\) 0.560489i 0.0462283i
\(148\) 26.0610i 2.14220i
\(149\) 7.41327 0.607319 0.303659 0.952781i \(-0.401792\pi\)
0.303659 + 0.952781i \(0.401792\pi\)
\(150\) − 3.87408i − 0.316317i
\(151\) 2.19280 0.178448 0.0892238 0.996012i \(-0.471561\pi\)
0.0892238 + 0.996012i \(0.471561\pi\)
\(152\) 22.8529 1.85361
\(153\) 0 0
\(154\) −13.4053 −1.08023
\(155\) 0.757667 0.0608573
\(156\) − 29.0989i − 2.32978i
\(157\) 5.33731 0.425963 0.212982 0.977056i \(-0.431683\pi\)
0.212982 + 0.977056i \(0.431683\pi\)
\(158\) 38.7876i 3.08578i
\(159\) − 13.6924i − 1.08588i
\(160\) 5.95060i 0.470436i
\(161\) 14.4180 1.13630
\(162\) 19.7662 1.55298
\(163\) 7.78483i 0.609755i 0.952392 + 0.304878i \(0.0986155\pi\)
−0.952392 + 0.304878i \(0.901384\pi\)
\(164\) 0.0415183i 0.00324204i
\(165\) − 3.70565i − 0.288485i
\(166\) −7.63534 −0.592617
\(167\) − 4.42165i − 0.342157i −0.985257 0.171079i \(-0.945275\pi\)
0.985257 0.171079i \(-0.0547252\pi\)
\(168\) −12.3413 −0.952154
\(169\) 15.9412 1.22625
\(170\) 0 0
\(171\) −0.860123 −0.0657752
\(172\) 1.05020 0.0800773
\(173\) − 14.6188i − 1.11145i −0.831367 0.555724i \(-0.812441\pi\)
0.831367 0.555724i \(-0.187559\pi\)
\(174\) 5.08463 0.385465
\(175\) − 2.70724i − 0.204648i
\(176\) 0.570139i 0.0429759i
\(177\) − 22.3986i − 1.68358i
\(178\) 24.7794 1.85730
\(179\) 5.42912 0.405791 0.202896 0.979200i \(-0.434965\pi\)
0.202896 + 0.979200i \(0.434965\pi\)
\(180\) 0.320102i 0.0238590i
\(181\) 18.3483i 1.36382i 0.731437 + 0.681909i \(0.238850\pi\)
−0.731437 + 0.681909i \(0.761150\pi\)
\(182\) − 33.1369i − 2.45627i
\(183\) 12.2704 0.907056
\(184\) 14.2583i 1.05114i
\(185\) −8.20380 −0.603155
\(186\) 2.93526 0.215224
\(187\) 0 0
\(188\) 36.0222 2.62719
\(189\) 14.2935 1.03970
\(190\) 19.4212i 1.40896i
\(191\) 4.91654 0.355748 0.177874 0.984053i \(-0.443078\pi\)
0.177874 + 0.984053i \(0.443078\pi\)
\(192\) 22.1609i 1.59933i
\(193\) 17.5487i 1.26318i 0.775302 + 0.631591i \(0.217598\pi\)
−0.775302 + 0.631591i \(0.782402\pi\)
\(194\) − 24.8270i − 1.78248i
\(195\) 9.16010 0.655968
\(196\) −1.04569 −0.0746919
\(197\) − 21.7620i − 1.55048i −0.631668 0.775239i \(-0.717629\pi\)
0.631668 0.775239i \(-0.282371\pi\)
\(198\) 0.498955i 0.0354592i
\(199\) 0.241280i 0.0171039i 0.999963 + 0.00855196i \(0.00272221\pi\)
−0.999963 + 0.00855196i \(0.997278\pi\)
\(200\) 2.67727 0.189312
\(201\) − 4.54869i − 0.320840i
\(202\) 9.00082 0.633295
\(203\) 3.55319 0.249385
\(204\) 0 0
\(205\) −0.0130696 −0.000912823 0
\(206\) −16.3084 −1.13626
\(207\) − 0.536647i − 0.0372995i
\(208\) −1.40934 −0.0977203
\(209\) 18.5768i 1.28499i
\(210\) − 10.4881i − 0.723746i
\(211\) − 9.41485i − 0.648145i −0.946032 0.324072i \(-0.894948\pi\)
0.946032 0.324072i \(-0.105052\pi\)
\(212\) 25.5455 1.75447
\(213\) 3.18588 0.218293
\(214\) − 8.41931i − 0.575532i
\(215\) 0.330596i 0.0225464i
\(216\) 14.1352i 0.961781i
\(217\) 2.05119 0.139244
\(218\) 6.23118i 0.422029i
\(219\) −20.3952 −1.37818
\(220\) 6.91352 0.466109
\(221\) 0 0
\(222\) −31.7821 −2.13308
\(223\) 14.8338 0.993345 0.496672 0.867938i \(-0.334555\pi\)
0.496672 + 0.867938i \(0.334555\pi\)
\(224\) 16.1097i 1.07638i
\(225\) −0.100765 −0.00671770
\(226\) 3.44669i 0.229271i
\(227\) − 9.83158i − 0.652545i −0.945276 0.326272i \(-0.894207\pi\)
0.945276 0.326272i \(-0.105793\pi\)
\(228\) 46.1707i 3.05773i
\(229\) 12.4315 0.821500 0.410750 0.911748i \(-0.365267\pi\)
0.410750 + 0.911748i \(0.365267\pi\)
\(230\) −12.1172 −0.798986
\(231\) − 10.0321i − 0.660064i
\(232\) 3.51385i 0.230696i
\(233\) 12.5812i 0.824224i 0.911133 + 0.412112i \(0.135209\pi\)
−0.911133 + 0.412112i \(0.864791\pi\)
\(234\) −1.23338 −0.0806285
\(235\) 11.3395i 0.739708i
\(236\) 41.7883 2.72019
\(237\) −29.0274 −1.88553
\(238\) 0 0
\(239\) −15.7966 −1.02179 −0.510897 0.859642i \(-0.670687\pi\)
−0.510897 + 0.859642i \(0.670687\pi\)
\(240\) −0.446067 −0.0287935
\(241\) − 8.45284i − 0.544496i −0.962227 0.272248i \(-0.912233\pi\)
0.962227 0.272248i \(-0.0877670\pi\)
\(242\) −14.2512 −0.916104
\(243\) − 1.04674i − 0.0671482i
\(244\) 22.8926i 1.46555i
\(245\) − 0.329174i − 0.0210301i
\(246\) −0.0506328 −0.00322823
\(247\) −45.9205 −2.92185
\(248\) 2.02848i 0.128809i
\(249\) − 5.71404i − 0.362113i
\(250\) 2.27524i 0.143899i
\(251\) 14.7900 0.933540 0.466770 0.884379i \(-0.345418\pi\)
0.466770 + 0.884379i \(0.345418\pi\)
\(252\) 0.866594i 0.0545903i
\(253\) −11.5904 −0.728684
\(254\) 9.44480 0.592619
\(255\) 0 0
\(256\) −14.2669 −0.891684
\(257\) −13.8681 −0.865070 −0.432535 0.901617i \(-0.642381\pi\)
−0.432535 + 0.901617i \(0.642381\pi\)
\(258\) 1.28075i 0.0797362i
\(259\) −22.2097 −1.38004
\(260\) 17.0897i 1.05986i
\(261\) − 0.132252i − 0.00818620i
\(262\) 28.0847i 1.73508i
\(263\) −0.382638 −0.0235945 −0.0117972 0.999930i \(-0.503755\pi\)
−0.0117972 + 0.999930i \(0.503755\pi\)
\(264\) 9.92104 0.610598
\(265\) 8.04151i 0.493986i
\(266\) 52.5778i 3.22375i
\(267\) 18.5441i 1.13488i
\(268\) 8.48634 0.518386
\(269\) − 21.8946i − 1.33494i −0.744638 0.667468i \(-0.767378\pi\)
0.744638 0.667468i \(-0.232622\pi\)
\(270\) −12.0126 −0.731064
\(271\) 16.9450 1.02933 0.514667 0.857390i \(-0.327916\pi\)
0.514667 + 0.857390i \(0.327916\pi\)
\(272\) 0 0
\(273\) 24.7986 1.50088
\(274\) −29.9648 −1.81024
\(275\) 2.17632i 0.131237i
\(276\) −28.8068 −1.73396
\(277\) − 24.4581i − 1.46954i −0.678315 0.734771i \(-0.737290\pi\)
0.678315 0.734771i \(-0.262710\pi\)
\(278\) − 1.60706i − 0.0963848i
\(279\) − 0.0763467i − 0.00457076i
\(280\) 7.24803 0.433153
\(281\) 13.2014 0.787529 0.393765 0.919211i \(-0.371173\pi\)
0.393765 + 0.919211i \(0.371173\pi\)
\(282\) 43.9301i 2.61600i
\(283\) − 13.7732i − 0.818730i −0.912371 0.409365i \(-0.865750\pi\)
0.912371 0.409365i \(-0.134250\pi\)
\(284\) 5.94379i 0.352699i
\(285\) −14.5342 −0.860930
\(286\) 26.6384i 1.57516i
\(287\) −0.0353827 −0.00208857
\(288\) 0.599615 0.0353326
\(289\) 0 0
\(290\) −2.98619 −0.175355
\(291\) 18.5798 1.08916
\(292\) − 38.0507i − 2.22675i
\(293\) 21.1370 1.23483 0.617417 0.786636i \(-0.288179\pi\)
0.617417 + 0.786636i \(0.288179\pi\)
\(294\) − 1.27524i − 0.0743737i
\(295\) 13.1546i 0.765892i
\(296\) − 21.9638i − 1.27662i
\(297\) −11.4904 −0.666738
\(298\) −16.8669 −0.977076
\(299\) − 28.6507i − 1.65691i
\(300\) 5.40901i 0.312289i
\(301\) 0.895003i 0.0515871i
\(302\) −4.98914 −0.287093
\(303\) 6.73592i 0.386969i
\(304\) 2.23618 0.128254
\(305\) −7.20639 −0.412637
\(306\) 0 0
\(307\) −23.2068 −1.32448 −0.662242 0.749290i \(-0.730395\pi\)
−0.662242 + 0.749290i \(0.730395\pi\)
\(308\) 18.7166 1.06648
\(309\) − 12.2047i − 0.694301i
\(310\) −1.72387 −0.0979094
\(311\) − 19.0929i − 1.08266i −0.840810 0.541330i \(-0.817921\pi\)
0.840810 0.541330i \(-0.182079\pi\)
\(312\) 24.5241i 1.38840i
\(313\) 31.9061i 1.80344i 0.432320 + 0.901720i \(0.357695\pi\)
−0.432320 + 0.901720i \(0.642305\pi\)
\(314\) −12.1436 −0.685305
\(315\) −0.272797 −0.0153704
\(316\) − 54.1555i − 3.04649i
\(317\) 7.35179i 0.412917i 0.978455 + 0.206459i \(0.0661939\pi\)
−0.978455 + 0.206459i \(0.933806\pi\)
\(318\) 31.1534i 1.74700i
\(319\) −2.85637 −0.159926
\(320\) − 13.0151i − 0.727564i
\(321\) 6.30074 0.351673
\(322\) −32.8043 −1.82811
\(323\) 0 0
\(324\) −27.5977 −1.53321
\(325\) −5.37970 −0.298412
\(326\) − 17.7123i − 0.980995i
\(327\) −4.66321 −0.257876
\(328\) − 0.0349910i − 0.00193205i
\(329\) 30.6988i 1.69248i
\(330\) 8.43123i 0.464124i
\(331\) −16.3546 −0.898930 −0.449465 0.893298i \(-0.648385\pi\)
−0.449465 + 0.893298i \(0.648385\pi\)
\(332\) 10.6605 0.585072
\(333\) 0.826660i 0.0453007i
\(334\) 10.0603i 0.550475i
\(335\) 2.67143i 0.145956i
\(336\) −1.20761 −0.0658806
\(337\) 2.73232i 0.148839i 0.997227 + 0.0744196i \(0.0237104\pi\)
−0.997227 + 0.0744196i \(0.976290\pi\)
\(338\) −36.2700 −1.97283
\(339\) −2.57939 −0.140093
\(340\) 0 0
\(341\) −1.64893 −0.0892944
\(342\) 1.95698 0.105821
\(343\) 18.0596i 0.975125i
\(344\) −0.885095 −0.0477211
\(345\) − 9.06814i − 0.488212i
\(346\) 33.2613i 1.78814i
\(347\) 18.9609i 1.01788i 0.860803 + 0.508938i \(0.169962\pi\)
−0.860803 + 0.508938i \(0.830038\pi\)
\(348\) −7.09919 −0.380557
\(349\) 32.3382 1.73102 0.865511 0.500890i \(-0.166994\pi\)
0.865511 + 0.500890i \(0.166994\pi\)
\(350\) 6.15962i 0.329246i
\(351\) − 28.4033i − 1.51606i
\(352\) − 12.9504i − 0.690259i
\(353\) −13.0916 −0.696796 −0.348398 0.937347i \(-0.613274\pi\)
−0.348398 + 0.937347i \(0.613274\pi\)
\(354\) 50.9620i 2.70860i
\(355\) −1.87106 −0.0993054
\(356\) −34.5972 −1.83365
\(357\) 0 0
\(358\) −12.3525 −0.652851
\(359\) −8.64264 −0.456141 −0.228071 0.973645i \(-0.573242\pi\)
−0.228071 + 0.973645i \(0.573242\pi\)
\(360\) − 0.269777i − 0.0142185i
\(361\) 53.8613 2.83481
\(362\) − 41.7467i − 2.19416i
\(363\) − 10.6652i − 0.559776i
\(364\) 46.2660i 2.42500i
\(365\) 11.9780 0.626960
\(366\) −27.9181 −1.45930
\(367\) 6.61035i 0.345057i 0.985005 + 0.172529i \(0.0551937\pi\)
−0.985005 + 0.172529i \(0.944806\pi\)
\(368\) 1.39519i 0.0727295i
\(369\) 0.00131697i 0 6.85586e-5i
\(370\) 18.6656 0.970377
\(371\) 21.7703i 1.13026i
\(372\) −4.09823 −0.212483
\(373\) −7.14349 −0.369876 −0.184938 0.982750i \(-0.559208\pi\)
−0.184938 + 0.982750i \(0.559208\pi\)
\(374\) 0 0
\(375\) −1.70271 −0.0879278
\(376\) −30.3589 −1.56564
\(377\) − 7.06073i − 0.363646i
\(378\) −32.5211 −1.67270
\(379\) 7.19225i 0.369441i 0.982791 + 0.184720i \(0.0591380\pi\)
−0.982791 + 0.184720i \(0.940862\pi\)
\(380\) − 27.1160i − 1.39102i
\(381\) 7.06818i 0.362114i
\(382\) −11.1863 −0.572340
\(383\) 12.2903 0.628006 0.314003 0.949422i \(-0.398330\pi\)
0.314003 + 0.949422i \(0.398330\pi\)
\(384\) − 30.1570i − 1.53895i
\(385\) 5.89183i 0.300276i
\(386\) − 39.9274i − 2.03225i
\(387\) 0.0333126 0.00169338
\(388\) 34.6637i 1.75978i
\(389\) −10.6413 −0.539536 −0.269768 0.962925i \(-0.586947\pi\)
−0.269768 + 0.962925i \(0.586947\pi\)
\(390\) −20.8414 −1.05534
\(391\) 0 0
\(392\) 0.881288 0.0445117
\(393\) −21.0177 −1.06020
\(394\) 49.5137i 2.49446i
\(395\) 17.0477 0.857764
\(396\) − 0.696644i − 0.0350077i
\(397\) − 24.0554i − 1.20731i −0.797247 0.603654i \(-0.793711\pi\)
0.797247 0.603654i \(-0.206289\pi\)
\(398\) − 0.548970i − 0.0275174i
\(399\) −39.3476 −1.96984
\(400\) 0.261974 0.0130987
\(401\) 22.9193i 1.14453i 0.820067 + 0.572267i \(0.193936\pi\)
−0.820067 + 0.572267i \(0.806064\pi\)
\(402\) 10.3493i 0.516178i
\(403\) − 4.07603i − 0.203041i
\(404\) −12.5670 −0.625232
\(405\) − 8.68755i − 0.431688i
\(406\) −8.08435 −0.401220
\(407\) 17.8541 0.884995
\(408\) 0 0
\(409\) −7.50913 −0.371303 −0.185651 0.982616i \(-0.559439\pi\)
−0.185651 + 0.982616i \(0.559439\pi\)
\(410\) 0.0297365 0.00146858
\(411\) − 22.4247i − 1.10613i
\(412\) 22.7699 1.12179
\(413\) 35.6128i 1.75239i
\(414\) 1.22100i 0.0600088i
\(415\) 3.35585i 0.164732i
\(416\) 32.0124 1.56954
\(417\) 1.20267 0.0588949
\(418\) − 42.2667i − 2.06733i
\(419\) 13.3993i 0.654598i 0.944921 + 0.327299i \(0.106138\pi\)
−0.944921 + 0.327299i \(0.893862\pi\)
\(420\) 14.6435i 0.714531i
\(421\) −20.5078 −0.999491 −0.499745 0.866172i \(-0.666573\pi\)
−0.499745 + 0.866172i \(0.666573\pi\)
\(422\) 21.4210i 1.04276i
\(423\) 1.14263 0.0555566
\(424\) −21.5293 −1.04556
\(425\) 0 0
\(426\) −7.24862 −0.351197
\(427\) −19.5095 −0.944130
\(428\) 11.7551i 0.568204i
\(429\) −19.9353 −0.962486
\(430\) − 0.752183i − 0.0362735i
\(431\) 8.98646i 0.432863i 0.976298 + 0.216431i \(0.0694417\pi\)
−0.976298 + 0.216431i \(0.930558\pi\)
\(432\) 1.38315i 0.0665467i
\(433\) −26.3738 −1.26744 −0.633721 0.773562i \(-0.718473\pi\)
−0.633721 + 0.773562i \(0.718473\pi\)
\(434\) −4.66694 −0.224020
\(435\) − 2.23477i − 0.107149i
\(436\) − 8.70001i − 0.416655i
\(437\) 45.4596i 2.17463i
\(438\) 46.4039 2.21726
\(439\) 29.3558i 1.40108i 0.713615 + 0.700538i \(0.247057\pi\)
−0.713615 + 0.700538i \(0.752943\pi\)
\(440\) −5.82660 −0.277772
\(441\) −0.0331693 −0.00157949
\(442\) 0 0
\(443\) −23.4483 −1.11406 −0.557030 0.830492i \(-0.688059\pi\)
−0.557030 + 0.830492i \(0.688059\pi\)
\(444\) 44.3744 2.10592
\(445\) − 10.8909i − 0.516279i
\(446\) −33.7504 −1.59813
\(447\) − 12.6227i − 0.597032i
\(448\) − 35.2350i − 1.66470i
\(449\) − 11.8222i − 0.557926i −0.960302 0.278963i \(-0.910009\pi\)
0.960302 0.278963i \(-0.0899907\pi\)
\(450\) 0.229265 0.0108077
\(451\) 0.0284437 0.00133936
\(452\) − 4.81230i − 0.226351i
\(453\) − 3.73371i − 0.175425i
\(454\) 22.3692i 1.04984i
\(455\) −14.5642 −0.682779
\(456\) − 38.9119i − 1.82222i
\(457\) 3.31478 0.155059 0.0775293 0.996990i \(-0.475297\pi\)
0.0775293 + 0.996990i \(0.475297\pi\)
\(458\) −28.2847 −1.32166
\(459\) 0 0
\(460\) 16.9182 0.788813
\(461\) −36.2559 −1.68860 −0.844302 0.535868i \(-0.819984\pi\)
−0.844302 + 0.535868i \(0.819984\pi\)
\(462\) 22.8254i 1.06193i
\(463\) 10.9581 0.509268 0.254634 0.967038i \(-0.418045\pi\)
0.254634 + 0.967038i \(0.418045\pi\)
\(464\) 0.343834i 0.0159621i
\(465\) − 1.29009i − 0.0598265i
\(466\) − 28.6253i − 1.32604i
\(467\) 34.3919 1.59147 0.795734 0.605647i \(-0.207086\pi\)
0.795734 + 0.605647i \(0.207086\pi\)
\(468\) 1.72205 0.0796019
\(469\) 7.23222i 0.333953i
\(470\) − 25.8001i − 1.19007i
\(471\) − 9.08791i − 0.418749i
\(472\) −35.2185 −1.62106
\(473\) − 0.719482i − 0.0330818i
\(474\) 66.0442 3.03351
\(475\) 8.53588 0.391653
\(476\) 0 0
\(477\) 0.810307 0.0371014
\(478\) 35.9409 1.64390
\(479\) − 27.5154i − 1.25721i −0.777724 0.628606i \(-0.783626\pi\)
0.777724 0.628606i \(-0.216374\pi\)
\(480\) 10.1322 0.462468
\(481\) 44.1340i 2.01234i
\(482\) 19.2322i 0.876004i
\(483\) − 24.5497i − 1.11705i
\(484\) 19.8977 0.904440
\(485\) −10.9119 −0.495482
\(486\) 2.38158i 0.108030i
\(487\) 10.6229i 0.481368i 0.970604 + 0.240684i \(0.0773718\pi\)
−0.970604 + 0.240684i \(0.922628\pi\)
\(488\) − 19.2935i − 0.873375i
\(489\) 13.2553 0.599427
\(490\) 0.748948i 0.0338340i
\(491\) −36.2103 −1.63415 −0.817074 0.576533i \(-0.804405\pi\)
−0.817074 + 0.576533i \(0.804405\pi\)
\(492\) 0.0706938 0.00318712
\(493\) 0 0
\(494\) 104.480 4.70078
\(495\) 0.219298 0.00985671
\(496\) 0.198489i 0.00891242i
\(497\) −5.06541 −0.227215
\(498\) 13.0008i 0.582580i
\(499\) − 20.8740i − 0.934447i −0.884139 0.467224i \(-0.845254\pi\)
0.884139 0.467224i \(-0.154746\pi\)
\(500\) − 3.17670i − 0.142066i
\(501\) −7.52880 −0.336362
\(502\) −33.6509 −1.50191
\(503\) 7.63988i 0.340645i 0.985388 + 0.170323i \(0.0544810\pi\)
−0.985388 + 0.170323i \(0.945519\pi\)
\(504\) − 0.730351i − 0.0325324i
\(505\) − 3.95599i − 0.176039i
\(506\) 26.3710 1.17233
\(507\) − 27.1433i − 1.20548i
\(508\) −13.1869 −0.585074
\(509\) −20.9805 −0.929945 −0.464972 0.885325i \(-0.653936\pi\)
−0.464972 + 0.885325i \(0.653936\pi\)
\(510\) 0 0
\(511\) 32.4275 1.43451
\(512\) −2.96165 −0.130888
\(513\) 45.0671i 1.98976i
\(514\) 31.5533 1.39175
\(515\) 7.16779i 0.315851i
\(516\) − 1.78820i − 0.0787209i
\(517\) − 24.6784i − 1.08536i
\(518\) 50.5323 2.22026
\(519\) −24.8917 −1.09262
\(520\) − 14.4029i − 0.631610i
\(521\) − 6.11774i − 0.268023i −0.990980 0.134012i \(-0.957214\pi\)
0.990980 0.134012i \(-0.0427859\pi\)
\(522\) 0.300905i 0.0131703i
\(523\) −5.40916 −0.236526 −0.118263 0.992982i \(-0.537733\pi\)
−0.118263 + 0.992982i \(0.537733\pi\)
\(524\) − 39.2120i − 1.71298i
\(525\) −4.60966 −0.201182
\(526\) 0.870591 0.0379596
\(527\) 0 0
\(528\) 0.970784 0.0422480
\(529\) −5.36307 −0.233177
\(530\) − 18.2963i − 0.794742i
\(531\) 1.32553 0.0575232
\(532\) − 73.4095i − 3.18271i
\(533\) 0.0703107i 0.00304550i
\(534\) − 42.1923i − 1.82584i
\(535\) −3.70041 −0.159983
\(536\) −7.15215 −0.308926
\(537\) − 9.24423i − 0.398918i
\(538\) 49.8154i 2.14769i
\(539\) 0.716388i 0.0308570i
\(540\) 16.7721 0.721755
\(541\) 20.4944i 0.881124i 0.897722 + 0.440562i \(0.145221\pi\)
−0.897722 + 0.440562i \(0.854779\pi\)
\(542\) −38.5538 −1.65603
\(543\) 31.2419 1.34072
\(544\) 0 0
\(545\) 2.73869 0.117313
\(546\) −56.4227 −2.41467
\(547\) − 10.1545i − 0.434175i −0.976152 0.217088i \(-0.930344\pi\)
0.976152 0.217088i \(-0.0696557\pi\)
\(548\) 41.8371 1.78719
\(549\) 0.726156i 0.0309916i
\(550\) − 4.95164i − 0.211139i
\(551\) 11.2031i 0.477270i
\(552\) 24.2779 1.03334
\(553\) 46.1523 1.96260
\(554\) 55.6479i 2.36425i
\(555\) 13.9687i 0.592939i
\(556\) 2.24378i 0.0951575i
\(557\) 30.1117 1.27587 0.637937 0.770088i \(-0.279788\pi\)
0.637937 + 0.770088i \(0.279788\pi\)
\(558\) 0.173707i 0.00735360i
\(559\) 1.77851 0.0752228
\(560\) 0.709227 0.0299703
\(561\) 0 0
\(562\) −30.0363 −1.26700
\(563\) −12.8482 −0.541486 −0.270743 0.962652i \(-0.587269\pi\)
−0.270743 + 0.962652i \(0.587269\pi\)
\(564\) − 61.3355i − 2.58269i
\(565\) 1.51487 0.0637312
\(566\) 31.3372i 1.31720i
\(567\) − 23.5193i − 0.987719i
\(568\) − 5.00933i − 0.210187i
\(569\) −19.6602 −0.824196 −0.412098 0.911139i \(-0.635204\pi\)
−0.412098 + 0.911139i \(0.635204\pi\)
\(570\) 33.0687 1.38509
\(571\) − 20.2253i − 0.846403i −0.906036 0.423202i \(-0.860906\pi\)
0.906036 0.423202i \(-0.139094\pi\)
\(572\) − 37.1927i − 1.55510i
\(573\) − 8.37146i − 0.349723i
\(574\) 0.0805040 0.00336017
\(575\) 5.32570i 0.222097i
\(576\) −1.31147 −0.0546446
\(577\) 34.5597 1.43874 0.719369 0.694628i \(-0.244431\pi\)
0.719369 + 0.694628i \(0.244431\pi\)
\(578\) 0 0
\(579\) 29.8804 1.24179
\(580\) 4.16934 0.173122
\(581\) 9.08509i 0.376913i
\(582\) −42.2734 −1.75229
\(583\) − 17.5009i − 0.724814i
\(584\) 32.0685i 1.32700i
\(585\) 0.542088i 0.0224126i
\(586\) −48.0916 −1.98665
\(587\) −23.7081 −0.978540 −0.489270 0.872132i \(-0.662737\pi\)
−0.489270 + 0.872132i \(0.662737\pi\)
\(588\) 1.78050i 0.0734268i
\(589\) 6.46736i 0.266483i
\(590\) − 29.9299i − 1.23219i
\(591\) −37.0545 −1.52422
\(592\) − 2.14918i − 0.0883308i
\(593\) 11.5371 0.473770 0.236885 0.971538i \(-0.423873\pi\)
0.236885 + 0.971538i \(0.423873\pi\)
\(594\) 26.1433 1.07267
\(595\) 0 0
\(596\) 23.5497 0.964635
\(597\) 0.410831 0.0168142
\(598\) 65.1871i 2.66570i
\(599\) −9.83844 −0.401988 −0.200994 0.979593i \(-0.564417\pi\)
−0.200994 + 0.979593i \(0.564417\pi\)
\(600\) − 4.55863i − 0.186105i
\(601\) 10.1246i 0.412991i 0.978448 + 0.206496i \(0.0662059\pi\)
−0.978448 + 0.206496i \(0.933794\pi\)
\(602\) − 2.03634i − 0.0829952i
\(603\) 0.269188 0.0109622
\(604\) 6.96587 0.283437
\(605\) 6.26363i 0.254653i
\(606\) − 15.3258i − 0.622569i
\(607\) 0.707519i 0.0287173i 0.999897 + 0.0143587i \(0.00457066\pi\)
−0.999897 + 0.0143587i \(0.995429\pi\)
\(608\) −50.7936 −2.05995
\(609\) − 6.05007i − 0.245161i
\(610\) 16.3963 0.663865
\(611\) 61.0032 2.46792
\(612\) 0 0
\(613\) −28.1775 −1.13808 −0.569039 0.822310i \(-0.692685\pi\)
−0.569039 + 0.822310i \(0.692685\pi\)
\(614\) 52.8010 2.13088
\(615\) 0.0222538i 0 0.000897362i
\(616\) −15.7740 −0.635554
\(617\) 39.8676i 1.60501i 0.596645 + 0.802505i \(0.296500\pi\)
−0.596645 + 0.802505i \(0.703500\pi\)
\(618\) 27.7686i 1.11702i
\(619\) 37.4591i 1.50561i 0.658244 + 0.752804i \(0.271299\pi\)
−0.658244 + 0.752804i \(0.728701\pi\)
\(620\) 2.40688 0.0966627
\(621\) −28.1182 −1.12834
\(622\) 43.4409i 1.74182i
\(623\) − 29.4844i − 1.18127i
\(624\) 2.39971i 0.0960651i
\(625\) 1.00000 0.0400000
\(626\) − 72.5940i − 2.90144i
\(627\) 31.6310 1.26322
\(628\) 16.9550 0.676579
\(629\) 0 0
\(630\) 0.620677 0.0247284
\(631\) 10.5005 0.418020 0.209010 0.977913i \(-0.432976\pi\)
0.209010 + 0.977913i \(0.432976\pi\)
\(632\) 45.6414i 1.81552i
\(633\) −16.0308 −0.637167
\(634\) − 16.7271i − 0.664316i
\(635\) − 4.15113i − 0.164732i
\(636\) − 43.4966i − 1.72475i
\(637\) −1.77086 −0.0701639
\(638\) 6.49891 0.257294
\(639\) 0.188538i 0.00745845i
\(640\) 17.7112i 0.700095i
\(641\) − 44.9746i − 1.77639i −0.459466 0.888195i \(-0.651959\pi\)
0.459466 0.888195i \(-0.348041\pi\)
\(642\) −14.3357 −0.565784
\(643\) − 3.17835i − 0.125342i −0.998034 0.0626710i \(-0.980038\pi\)
0.998034 0.0626710i \(-0.0199619\pi\)
\(644\) 45.8016 1.80484
\(645\) 0.562910 0.0221645
\(646\) 0 0
\(647\) 3.28494 0.129144 0.0645721 0.997913i \(-0.479432\pi\)
0.0645721 + 0.997913i \(0.479432\pi\)
\(648\) 23.2589 0.913697
\(649\) − 28.6287i − 1.12377i
\(650\) 12.2401 0.480096
\(651\) − 3.49259i − 0.136885i
\(652\) 24.7301i 0.968505i
\(653\) − 33.9120i − 1.32708i −0.748140 0.663540i \(-0.769053\pi\)
0.748140 0.663540i \(-0.230947\pi\)
\(654\) 10.6099 0.414880
\(655\) 12.3436 0.482305
\(656\) − 0.00342390i 0 0.000133681i
\(657\) − 1.20697i − 0.0470885i
\(658\) − 69.8471i − 2.72292i
\(659\) 27.5756 1.07419 0.537097 0.843521i \(-0.319521\pi\)
0.537097 + 0.843521i \(0.319521\pi\)
\(660\) − 11.7717i − 0.458215i
\(661\) 19.4561 0.756756 0.378378 0.925651i \(-0.376482\pi\)
0.378378 + 0.925651i \(0.376482\pi\)
\(662\) 37.2106 1.44623
\(663\) 0 0
\(664\) −8.98451 −0.348667
\(665\) 23.1087 0.896118
\(666\) − 1.88085i − 0.0728813i
\(667\) −6.98985 −0.270648
\(668\) − 14.0463i − 0.543466i
\(669\) − 25.2577i − 0.976520i
\(670\) − 6.07814i − 0.234819i
\(671\) 15.6834 0.605452
\(672\) 27.4302 1.05814
\(673\) − 2.96580i − 0.114323i −0.998365 0.0571616i \(-0.981795\pi\)
0.998365 0.0571616i \(-0.0182050\pi\)
\(674\) − 6.21668i − 0.239458i
\(675\) 5.27972i 0.203216i
\(676\) 50.6404 1.94771
\(677\) − 4.50634i − 0.173193i −0.996243 0.0865964i \(-0.972401\pi\)
0.996243 0.0865964i \(-0.0275991\pi\)
\(678\) 5.86873 0.225387
\(679\) −29.5411 −1.13368
\(680\) 0 0
\(681\) −16.7404 −0.641492
\(682\) 3.75170 0.143660
\(683\) − 48.5495i − 1.85769i −0.370464 0.928847i \(-0.620801\pi\)
0.370464 0.928847i \(-0.379199\pi\)
\(684\) −2.73235 −0.104474
\(685\) 13.1700i 0.503199i
\(686\) − 41.0898i − 1.56881i
\(687\) − 21.1674i − 0.807585i
\(688\) −0.0866074 −0.00330188
\(689\) 43.2609 1.64811
\(690\) 20.6322i 0.785453i
\(691\) − 1.63196i − 0.0620827i −0.999518 0.0310413i \(-0.990118\pi\)
0.999518 0.0310413i \(-0.00988235\pi\)
\(692\) − 46.4396i − 1.76537i
\(693\) 0.593693 0.0225525
\(694\) − 43.1406i − 1.63759i
\(695\) −0.706325 −0.0267924
\(696\) 5.98309 0.226788
\(697\) 0 0
\(698\) −73.5769 −2.78493
\(699\) 21.4222 0.810264
\(700\) − 8.60011i − 0.325053i
\(701\) −40.4449 −1.52758 −0.763792 0.645463i \(-0.776664\pi\)
−0.763792 + 0.645463i \(0.776664\pi\)
\(702\) 64.6242i 2.43908i
\(703\) − 70.0267i − 2.64111i
\(704\) 28.3250i 1.06754i
\(705\) 19.3079 0.727179
\(706\) 29.7865 1.12103
\(707\) − 10.7098i − 0.402785i
\(708\) − 71.1535i − 2.67411i
\(709\) 47.3049i 1.77657i 0.459291 + 0.888286i \(0.348103\pi\)
−0.459291 + 0.888286i \(0.651897\pi\)
\(710\) 4.25710 0.159766
\(711\) − 1.71782i − 0.0644234i
\(712\) 29.1580 1.09274
\(713\) −4.03511 −0.151116
\(714\) 0 0
\(715\) 11.7080 0.437853
\(716\) 17.2467 0.644539
\(717\) 26.8970i 1.00449i
\(718\) 19.6640 0.733856
\(719\) − 8.17117i − 0.304733i −0.988324 0.152367i \(-0.951311\pi\)
0.988324 0.152367i \(-0.0486894\pi\)
\(720\) − 0.0263979i 0 0.000983793i
\(721\) 19.4050i 0.722679i
\(722\) −122.547 −4.56074
\(723\) −14.3928 −0.535273
\(724\) 58.2871i 2.16622i
\(725\) 1.31247i 0.0487441i
\(726\) 24.2658i 0.900587i
\(727\) −18.8237 −0.698133 −0.349067 0.937098i \(-0.613501\pi\)
−0.349067 + 0.937098i \(0.613501\pi\)
\(728\) − 38.9923i − 1.44515i
\(729\) −27.8449 −1.03129
\(730\) −27.2529 −1.00867
\(731\) 0 0
\(732\) 38.9795 1.44072
\(733\) −25.9444 −0.958278 −0.479139 0.877739i \(-0.659051\pi\)
−0.479139 + 0.877739i \(0.659051\pi\)
\(734\) − 15.0401i − 0.555140i
\(735\) −0.560489 −0.0206739
\(736\) − 31.6911i − 1.16815i
\(737\) − 5.81389i − 0.214158i
\(738\) − 0.00299641i 0 0.000110299i
\(739\) −18.9248 −0.696162 −0.348081 0.937465i \(-0.613167\pi\)
−0.348081 + 0.937465i \(0.613167\pi\)
\(740\) −26.0610 −0.958022
\(741\) 78.1895i 2.87236i
\(742\) − 49.5327i − 1.81840i
\(743\) 0.0747338i 0.00274172i 0.999999 + 0.00137086i \(0.000436358\pi\)
−0.999999 + 0.00137086i \(0.999564\pi\)
\(744\) 3.45392 0.126627
\(745\) 7.41327i 0.271601i
\(746\) 16.2531 0.595069
\(747\) 0.338153 0.0123724
\(748\) 0 0
\(749\) −10.0179 −0.366047
\(750\) 3.87408 0.141461
\(751\) 31.3032i 1.14227i 0.820856 + 0.571135i \(0.193497\pi\)
−0.820856 + 0.571135i \(0.806503\pi\)
\(752\) −2.97066 −0.108329
\(753\) − 25.1832i − 0.917728i
\(754\) 16.0648i 0.585046i
\(755\) 2.19280i 0.0798042i
\(756\) 45.4061 1.65140
\(757\) 10.9290 0.397223 0.198612 0.980078i \(-0.436357\pi\)
0.198612 + 0.980078i \(0.436357\pi\)
\(758\) − 16.3641i − 0.594369i
\(759\) 19.7352i 0.716342i
\(760\) 22.8529i 0.828961i
\(761\) −34.7125 −1.25833 −0.629164 0.777272i \(-0.716603\pi\)
−0.629164 + 0.777272i \(0.716603\pi\)
\(762\) − 16.0818i − 0.582582i
\(763\) 7.41431 0.268416
\(764\) 15.6184 0.565053
\(765\) 0 0
\(766\) −27.9634 −1.01036
\(767\) 70.7680 2.55528
\(768\) 24.2925i 0.876581i
\(769\) 28.5727 1.03036 0.515178 0.857083i \(-0.327726\pi\)
0.515178 + 0.857083i \(0.327726\pi\)
\(770\) − 13.4053i − 0.483094i
\(771\) 23.6135i 0.850418i
\(772\) 55.7469i 2.00638i
\(773\) −31.3773 −1.12856 −0.564281 0.825583i \(-0.690847\pi\)
−0.564281 + 0.825583i \(0.690847\pi\)
\(774\) −0.0757941 −0.00272436
\(775\) 0.757667i 0.0272162i
\(776\) − 29.2140i − 1.04872i
\(777\) 37.8167i 1.35667i
\(778\) 24.2115 0.868025
\(779\) − 0.111561i − 0.00399708i
\(780\) 29.0989 1.04191
\(781\) 4.07202 0.145708
\(782\) 0 0
\(783\) −6.92950 −0.247640
\(784\) 0.0862349 0.00307982
\(785\) 5.33731i 0.190497i
\(786\) 47.8201 1.70569
\(787\) 19.5079i 0.695380i 0.937610 + 0.347690i \(0.113034\pi\)
−0.937610 + 0.347690i \(0.886966\pi\)
\(788\) − 69.1314i − 2.46270i
\(789\) 0.651523i 0.0231948i
\(790\) −38.7876 −1.38000
\(791\) 4.10113 0.145819
\(792\) 0.587121i 0.0208624i
\(793\) 38.7683i 1.37670i
\(794\) 54.7318i 1.94236i
\(795\) 13.6924 0.485619
\(796\) 0.766476i 0.0271670i
\(797\) 16.1734 0.572892 0.286446 0.958096i \(-0.407526\pi\)
0.286446 + 0.958096i \(0.407526\pi\)
\(798\) 89.5250 3.16915
\(799\) 0 0
\(800\) −5.95060 −0.210385
\(801\) −1.09743 −0.0387757
\(802\) − 52.1468i − 1.84137i
\(803\) −26.0681 −0.919922
\(804\) − 14.4498i − 0.509606i
\(805\) 14.4180i 0.508167i
\(806\) 9.27392i 0.326660i
\(807\) −37.2802 −1.31233
\(808\) 10.5913 0.372600
\(809\) 37.5852i 1.32143i 0.750639 + 0.660713i \(0.229746\pi\)
−0.750639 + 0.660713i \(0.770254\pi\)
\(810\) 19.7662i 0.694515i
\(811\) − 34.8967i − 1.22539i −0.790320 0.612695i \(-0.790085\pi\)
0.790320 0.612695i \(-0.209915\pi\)
\(812\) 11.2874 0.396111
\(813\) − 28.8524i − 1.01190i
\(814\) −40.6223 −1.42381
\(815\) −7.78483 −0.272691
\(816\) 0 0
\(817\) −2.82193 −0.0987267
\(818\) 17.0850 0.597365
\(819\) 1.46757i 0.0512809i
\(820\) −0.0415183 −0.00144988
\(821\) − 30.8990i − 1.07838i −0.842184 0.539191i \(-0.818730\pi\)
0.842184 0.539191i \(-0.181270\pi\)
\(822\) 51.0215i 1.77958i
\(823\) 42.4684i 1.48035i 0.672412 + 0.740177i \(0.265258\pi\)
−0.672412 + 0.740177i \(0.734742\pi\)
\(824\) −19.1901 −0.668520
\(825\) 3.70565 0.129014
\(826\) − 81.0275i − 2.81931i
\(827\) 20.4596i 0.711449i 0.934591 + 0.355724i \(0.115766\pi\)
−0.934591 + 0.355724i \(0.884234\pi\)
\(828\) − 1.70477i − 0.0592447i
\(829\) −38.1368 −1.32455 −0.662273 0.749263i \(-0.730408\pi\)
−0.662273 + 0.749263i \(0.730408\pi\)
\(830\) − 7.63534i − 0.265027i
\(831\) −41.6451 −1.44465
\(832\) −70.0172 −2.42741
\(833\) 0 0
\(834\) −2.73636 −0.0947522
\(835\) 4.42165 0.153017
\(836\) 59.0130i 2.04101i
\(837\) −4.00027 −0.138270
\(838\) − 30.4866i − 1.05314i
\(839\) 37.7486i 1.30323i 0.758552 + 0.651613i \(0.225907\pi\)
−0.758552 + 0.651613i \(0.774093\pi\)
\(840\) − 12.3413i − 0.425816i
\(841\) 27.2774 0.940600
\(842\) 46.6602 1.60802
\(843\) − 22.4782i − 0.774190i
\(844\) − 29.9082i − 1.02948i
\(845\) 15.9412i 0.548394i
\(846\) −2.59976 −0.0893814
\(847\) 16.9572i 0.582655i
\(848\) −2.10667 −0.0723432
\(849\) −23.4518 −0.804863
\(850\) 0 0
\(851\) 43.6910 1.49771
\(852\) 10.1206 0.346725
\(853\) 19.5859i 0.670608i 0.942110 + 0.335304i \(0.108839\pi\)
−0.942110 + 0.335304i \(0.891161\pi\)
\(854\) 44.3887 1.51895
\(855\) − 0.860123i − 0.0294156i
\(856\) − 9.90701i − 0.338615i
\(857\) − 14.2754i − 0.487639i −0.969821 0.243820i \(-0.921599\pi\)
0.969821 0.243820i \(-0.0784005\pi\)
\(858\) 45.3575 1.54848
\(859\) −50.2428 −1.71426 −0.857130 0.515099i \(-0.827755\pi\)
−0.857130 + 0.515099i \(0.827755\pi\)
\(860\) 1.05020i 0.0358116i
\(861\) 0.0602466i 0.00205320i
\(862\) − 20.4463i − 0.696405i
\(863\) 13.1930 0.449095 0.224548 0.974463i \(-0.427910\pi\)
0.224548 + 0.974463i \(0.427910\pi\)
\(864\) − 31.4175i − 1.06884i
\(865\) 14.6188 0.497055
\(866\) 60.0065 2.03910
\(867\) 0 0
\(868\) 6.51602 0.221168
\(869\) −37.1013 −1.25858
\(870\) 5.08463i 0.172385i
\(871\) 14.3715 0.486960
\(872\) 7.33223i 0.248301i
\(873\) 1.09954i 0.0372137i
\(874\) − 103.431i − 3.49861i
\(875\) 2.70724 0.0915216
\(876\) −64.7894 −2.18903
\(877\) 6.22918i 0.210345i 0.994454 + 0.105172i \(0.0335394\pi\)
−0.994454 + 0.105172i \(0.966461\pi\)
\(878\) − 66.7914i − 2.25410i
\(879\) − 35.9902i − 1.21392i
\(880\) −0.570139 −0.0192194
\(881\) 30.3408i 1.02221i 0.859519 + 0.511104i \(0.170763\pi\)
−0.859519 + 0.511104i \(0.829237\pi\)
\(882\) 0.0754681 0.00254114
\(883\) 27.0762 0.911185 0.455593 0.890188i \(-0.349427\pi\)
0.455593 + 0.890188i \(0.349427\pi\)
\(884\) 0 0
\(885\) 22.3986 0.752920
\(886\) 53.3504 1.79234
\(887\) 28.1506i 0.945205i 0.881276 + 0.472603i \(0.156685\pi\)
−0.881276 + 0.472603i \(0.843315\pi\)
\(888\) −37.3981 −1.25500
\(889\) − 11.2381i − 0.376914i
\(890\) 24.7794i 0.830608i
\(891\) 18.9069i 0.633405i
\(892\) 47.1225 1.57778
\(893\) −96.7927 −3.23905
\(894\) 28.7196i 0.960526i
\(895\) 5.42912i 0.181475i
\(896\) 47.9484i 1.60185i
\(897\) −48.7839 −1.62885
\(898\) 26.8984i 0.897611i
\(899\) −0.994419 −0.0331657
\(900\) −0.320102 −0.0106701
\(901\) 0 0
\(902\) −0.0647162 −0.00215481
\(903\) 1.52393 0.0507134
\(904\) 4.05573i 0.134891i
\(905\) −18.3483 −0.609918
\(906\) 8.49507i 0.282230i
\(907\) − 37.7225i − 1.25256i −0.779600 0.626278i \(-0.784577\pi\)
0.779600 0.626278i \(-0.215423\pi\)
\(908\) − 31.2320i − 1.03647i
\(909\) −0.398628 −0.0132216
\(910\) 33.1369 1.09848
\(911\) 17.9517i 0.594765i 0.954758 + 0.297383i \(0.0961137\pi\)
−0.954758 + 0.297383i \(0.903886\pi\)
\(912\) − 3.80757i − 0.126081i
\(913\) − 7.30340i − 0.241707i
\(914\) −7.54190 −0.249464
\(915\) 12.2704i 0.405648i
\(916\) 39.4913 1.30483
\(917\) 33.4172 1.10353
\(918\) 0 0
\(919\) −25.0436 −0.826112 −0.413056 0.910706i \(-0.635539\pi\)
−0.413056 + 0.910706i \(0.635539\pi\)
\(920\) −14.2583 −0.470084
\(921\) 39.5146i 1.30205i
\(922\) 82.4906 2.71668
\(923\) 10.0657i 0.331318i
\(924\) − 31.8690i − 1.04841i
\(925\) − 8.20380i − 0.269739i
\(926\) −24.9324 −0.819328
\(927\) 0.722266 0.0237223
\(928\) − 7.81001i − 0.256376i
\(929\) 21.1573i 0.694148i 0.937838 + 0.347074i \(0.112825\pi\)
−0.937838 + 0.347074i \(0.887175\pi\)
\(930\) 2.93526i 0.0962510i
\(931\) 2.80979 0.0920871
\(932\) 39.9668i 1.30916i
\(933\) −32.5098 −1.06432
\(934\) −78.2497 −2.56041
\(935\) 0 0
\(936\) −1.45132 −0.0474378
\(937\) 6.56252 0.214388 0.107194 0.994238i \(-0.465813\pi\)
0.107194 + 0.994238i \(0.465813\pi\)
\(938\) − 16.4550i − 0.537275i
\(939\) 54.3270 1.77289
\(940\) 36.0222i 1.17492i
\(941\) 18.5109i 0.603439i 0.953397 + 0.301719i \(0.0975605\pi\)
−0.953397 + 0.301719i \(0.902439\pi\)
\(942\) 20.6771i 0.673698i
\(943\) 0.0696049 0.00226665
\(944\) −3.44617 −0.112163
\(945\) 14.2935i 0.464967i
\(946\) 1.63699i 0.0532232i
\(947\) − 30.7922i − 1.00061i −0.865848 0.500307i \(-0.833221\pi\)
0.865848 0.500307i \(-0.166779\pi\)
\(948\) −92.2113 −2.99488
\(949\) − 64.4383i − 2.09176i
\(950\) −19.4212 −0.630106
\(951\) 12.5180 0.405924
\(952\) 0 0
\(953\) −12.7261 −0.412240 −0.206120 0.978527i \(-0.566084\pi\)
−0.206120 + 0.978527i \(0.566084\pi\)
\(954\) −1.84364 −0.0596900
\(955\) 4.91654i 0.159095i
\(956\) −50.1809 −1.62297
\(957\) 4.86358i 0.157217i
\(958\) 62.6041i 2.02265i
\(959\) 35.6544i 1.15134i
\(960\) −22.1609 −0.715241
\(961\) 30.4259 0.981482
\(962\) − 100.415i − 3.23752i
\(963\) 0.372874i 0.0120157i
\(964\) − 26.8522i − 0.864850i
\(965\) −17.5487 −0.564912
\(966\) 55.8563i 1.79715i
\(967\) −6.17919 −0.198709 −0.0993547 0.995052i \(-0.531678\pi\)
−0.0993547 + 0.995052i \(0.531678\pi\)
\(968\) −16.7694 −0.538990
\(969\) 0 0
\(970\) 24.8270 0.797148
\(971\) −8.79368 −0.282202 −0.141101 0.989995i \(-0.545064\pi\)
−0.141101 + 0.989995i \(0.545064\pi\)
\(972\) − 3.32517i − 0.106655i
\(973\) −1.91219 −0.0613021
\(974\) − 24.1695i − 0.774442i
\(975\) 9.16010i 0.293358i
\(976\) − 1.88789i − 0.0604298i
\(977\) 14.5316 0.464906 0.232453 0.972608i \(-0.425325\pi\)
0.232453 + 0.972608i \(0.425325\pi\)
\(978\) −30.1590 −0.964380
\(979\) 23.7021i 0.757524i
\(980\) − 1.04569i − 0.0334032i
\(981\) − 0.275966i − 0.00881091i
\(982\) 82.3870 2.62907
\(983\) 22.7184i 0.724603i 0.932061 + 0.362302i \(0.118009\pi\)
−0.932061 + 0.362302i \(0.881991\pi\)
\(984\) −0.0595796 −0.00189933
\(985\) 21.7620 0.693395
\(986\) 0 0
\(987\) 52.2713 1.66381
\(988\) −145.876 −4.64093
\(989\) − 1.76065i − 0.0559855i
\(990\) −0.498955 −0.0158578
\(991\) 3.88859i 0.123525i 0.998091 + 0.0617626i \(0.0196722\pi\)
−0.998091 + 0.0617626i \(0.980328\pi\)
\(992\) − 4.50857i − 0.143147i
\(993\) 27.8472i 0.883705i
\(994\) 11.5250 0.365551
\(995\) −0.241280 −0.00764910
\(996\) − 18.1518i − 0.575162i
\(997\) 31.1914i 0.987842i 0.869507 + 0.493921i \(0.164437\pi\)
−0.869507 + 0.493921i \(0.835563\pi\)
\(998\) 47.4932i 1.50337i
\(999\) 43.3137 1.37039
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.d.i.866.5 24
17.4 even 4 1445.2.a.s.1.10 yes 12
17.13 even 4 1445.2.a.r.1.10 12
17.16 even 2 inner 1445.2.d.i.866.6 24
85.4 even 4 7225.2.a.bn.1.3 12
85.64 even 4 7225.2.a.bo.1.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1445.2.a.r.1.10 12 17.13 even 4
1445.2.a.s.1.10 yes 12 17.4 even 4
1445.2.d.i.866.5 24 1.1 even 1 trivial
1445.2.d.i.866.6 24 17.16 even 2 inner
7225.2.a.bn.1.3 12 85.4 even 4
7225.2.a.bo.1.3 12 85.64 even 4