Properties

Label 1445.2.d.i.866.16
Level $1445$
Weight $2$
Character 1445.866
Analytic conductor $11.538$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(866,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.866"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-6,0,42,0,0,0,-24,-42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 866.16
Character \(\chi\) \(=\) 1445.866
Dual form 1445.2.d.i.866.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.704111 q^{2} -3.11994i q^{3} -1.50423 q^{4} +1.00000i q^{5} -2.19679i q^{6} -4.06346i q^{7} -2.46736 q^{8} -6.73405 q^{9} +0.704111i q^{10} -0.231031i q^{11} +4.69311i q^{12} +2.35528 q^{13} -2.86112i q^{14} +3.11994 q^{15} +1.27116 q^{16} -4.74152 q^{18} -7.38657 q^{19} -1.50423i q^{20} -12.6778 q^{21} -0.162671i q^{22} -1.87741i q^{23} +7.69804i q^{24} -1.00000 q^{25} +1.65838 q^{26} +11.6500i q^{27} +6.11237i q^{28} -4.04943i q^{29} +2.19679 q^{30} -0.130455i q^{31} +5.82977 q^{32} -0.720802 q^{33} +4.06346 q^{35} +10.1295 q^{36} +5.82227i q^{37} -5.20096 q^{38} -7.34835i q^{39} -2.46736i q^{40} +8.10305i q^{41} -8.92655 q^{42} +3.69785 q^{43} +0.347523i q^{44} -6.73405i q^{45} -1.32190i q^{46} +1.30633 q^{47} -3.96595i q^{48} -9.51170 q^{49} -0.704111 q^{50} -3.54288 q^{52} -8.26017 q^{53} +8.20291i q^{54} +0.231031 q^{55} +10.0260i q^{56} +23.0457i q^{57} -2.85125i q^{58} -2.29764 q^{59} -4.69311 q^{60} +8.92792i q^{61} -0.0918548i q^{62} +27.3635i q^{63} +1.56248 q^{64} +2.35528i q^{65} -0.507524 q^{66} +14.5995 q^{67} -5.85742 q^{69} +2.86112 q^{70} -11.0065i q^{71} +16.6154 q^{72} -0.471385i q^{73} +4.09952i q^{74} +3.11994i q^{75} +11.1111 q^{76} -0.938783 q^{77} -5.17405i q^{78} -4.31667i q^{79} +1.27116i q^{80} +16.1453 q^{81} +5.70544i q^{82} -15.4238 q^{83} +19.0703 q^{84} +2.60370 q^{86} -12.6340 q^{87} +0.570036i q^{88} +3.68913 q^{89} -4.74152i q^{90} -9.57059i q^{91} +2.82405i q^{92} -0.407012 q^{93} +0.919804 q^{94} -7.38657i q^{95} -18.1885i q^{96} -9.00621i q^{97} -6.69729 q^{98} +1.55577i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 6 q^{2} + 42 q^{4} - 24 q^{8} - 42 q^{9} + 18 q^{13} - 6 q^{15} + 78 q^{16} - 18 q^{18} - 54 q^{19} + 12 q^{21} - 24 q^{25} - 12 q^{26} - 18 q^{30} - 24 q^{32} + 12 q^{35} - 96 q^{36} - 6 q^{38}+ \cdots - 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.704111 0.497881 0.248941 0.968519i \(-0.419918\pi\)
0.248941 + 0.968519i \(0.419918\pi\)
\(3\) − 3.11994i − 1.80130i −0.434545 0.900650i \(-0.643091\pi\)
0.434545 0.900650i \(-0.356909\pi\)
\(4\) −1.50423 −0.752114
\(5\) 1.00000i 0.447214i
\(6\) − 2.19679i − 0.896834i
\(7\) − 4.06346i − 1.53584i −0.640544 0.767922i \(-0.721291\pi\)
0.640544 0.767922i \(-0.278709\pi\)
\(8\) −2.46736 −0.872345
\(9\) −6.73405 −2.24468
\(10\) 0.704111i 0.222659i
\(11\) − 0.231031i − 0.0696583i −0.999393 0.0348292i \(-0.988911\pi\)
0.999393 0.0348292i \(-0.0110887\pi\)
\(12\) 4.69311i 1.35478i
\(13\) 2.35528 0.653238 0.326619 0.945156i \(-0.394091\pi\)
0.326619 + 0.945156i \(0.394091\pi\)
\(14\) − 2.86112i − 0.764668i
\(15\) 3.11994 0.805566
\(16\) 1.27116 0.317790
\(17\) 0 0
\(18\) −4.74152 −1.11759
\(19\) −7.38657 −1.69460 −0.847298 0.531118i \(-0.821772\pi\)
−0.847298 + 0.531118i \(0.821772\pi\)
\(20\) − 1.50423i − 0.336356i
\(21\) −12.6778 −2.76651
\(22\) − 0.162671i − 0.0346816i
\(23\) − 1.87741i − 0.391467i −0.980657 0.195734i \(-0.937291\pi\)
0.980657 0.195734i \(-0.0627088\pi\)
\(24\) 7.69804i 1.57136i
\(25\) −1.00000 −0.200000
\(26\) 1.65838 0.325235
\(27\) 11.6500i 2.24205i
\(28\) 6.11237i 1.15513i
\(29\) − 4.04943i − 0.751961i −0.926628 0.375980i \(-0.877306\pi\)
0.926628 0.375980i \(-0.122694\pi\)
\(30\) 2.19679 0.401076
\(31\) − 0.130455i − 0.0234304i −0.999931 0.0117152i \(-0.996271\pi\)
0.999931 0.0117152i \(-0.00372915\pi\)
\(32\) 5.82977 1.03057
\(33\) −0.720802 −0.125476
\(34\) 0 0
\(35\) 4.06346 0.686850
\(36\) 10.1295 1.68826
\(37\) 5.82227i 0.957175i 0.878040 + 0.478587i \(0.158851\pi\)
−0.878040 + 0.478587i \(0.841149\pi\)
\(38\) −5.20096 −0.843707
\(39\) − 7.34835i − 1.17668i
\(40\) − 2.46736i − 0.390125i
\(41\) 8.10305i 1.26548i 0.774363 + 0.632742i \(0.218071\pi\)
−0.774363 + 0.632742i \(0.781929\pi\)
\(42\) −8.92655 −1.37740
\(43\) 3.69785 0.563917 0.281959 0.959427i \(-0.409016\pi\)
0.281959 + 0.959427i \(0.409016\pi\)
\(44\) 0.347523i 0.0523910i
\(45\) − 6.73405i − 1.00385i
\(46\) − 1.32190i − 0.194904i
\(47\) 1.30633 0.190549 0.0952743 0.995451i \(-0.469627\pi\)
0.0952743 + 0.995451i \(0.469627\pi\)
\(48\) − 3.96595i − 0.572435i
\(49\) −9.51170 −1.35881
\(50\) −0.704111 −0.0995763
\(51\) 0 0
\(52\) −3.54288 −0.491309
\(53\) −8.26017 −1.13462 −0.567311 0.823504i \(-0.692016\pi\)
−0.567311 + 0.823504i \(0.692016\pi\)
\(54\) 8.20291i 1.11627i
\(55\) 0.231031 0.0311521
\(56\) 10.0260i 1.33978i
\(57\) 23.0457i 3.05248i
\(58\) − 2.85125i − 0.374387i
\(59\) −2.29764 −0.299128 −0.149564 0.988752i \(-0.547787\pi\)
−0.149564 + 0.988752i \(0.547787\pi\)
\(60\) −4.69311 −0.605878
\(61\) 8.92792i 1.14310i 0.820566 + 0.571552i \(0.193658\pi\)
−0.820566 + 0.571552i \(0.806342\pi\)
\(62\) − 0.0918548i − 0.0116656i
\(63\) 27.3635i 3.44748i
\(64\) 1.56248 0.195310
\(65\) 2.35528i 0.292137i
\(66\) −0.507524 −0.0624719
\(67\) 14.5995 1.78361 0.891805 0.452419i \(-0.149439\pi\)
0.891805 + 0.452419i \(0.149439\pi\)
\(68\) 0 0
\(69\) −5.85742 −0.705150
\(70\) 2.86112 0.341970
\(71\) − 11.0065i − 1.30623i −0.757257 0.653117i \(-0.773461\pi\)
0.757257 0.653117i \(-0.226539\pi\)
\(72\) 16.6154 1.95814
\(73\) − 0.471385i − 0.0551714i −0.999619 0.0275857i \(-0.991218\pi\)
0.999619 0.0275857i \(-0.00878191\pi\)
\(74\) 4.09952i 0.476560i
\(75\) 3.11994i 0.360260i
\(76\) 11.1111 1.27453
\(77\) −0.938783 −0.106984
\(78\) − 5.17405i − 0.585846i
\(79\) − 4.31667i − 0.485663i −0.970069 0.242831i \(-0.921924\pi\)
0.970069 0.242831i \(-0.0780762\pi\)
\(80\) 1.27116i 0.142120i
\(81\) 16.1453 1.79392
\(82\) 5.70544i 0.630061i
\(83\) −15.4238 −1.69298 −0.846489 0.532407i \(-0.821288\pi\)
−0.846489 + 0.532407i \(0.821288\pi\)
\(84\) 19.0703 2.08073
\(85\) 0 0
\(86\) 2.60370 0.280764
\(87\) −12.6340 −1.35451
\(88\) 0.570036i 0.0607661i
\(89\) 3.68913 0.391047 0.195523 0.980699i \(-0.437359\pi\)
0.195523 + 0.980699i \(0.437359\pi\)
\(90\) − 4.74152i − 0.499800i
\(91\) − 9.57059i − 1.00327i
\(92\) 2.82405i 0.294428i
\(93\) −0.407012 −0.0422052
\(94\) 0.919804 0.0948706
\(95\) − 7.38657i − 0.757846i
\(96\) − 18.1885i − 1.85636i
\(97\) − 9.00621i − 0.914442i −0.889353 0.457221i \(-0.848845\pi\)
0.889353 0.457221i \(-0.151155\pi\)
\(98\) −6.69729 −0.676528
\(99\) 1.55577i 0.156361i
\(100\) 1.50423 0.150423
\(101\) −6.94560 −0.691113 −0.345556 0.938398i \(-0.612310\pi\)
−0.345556 + 0.938398i \(0.612310\pi\)
\(102\) 0 0
\(103\) −1.04422 −0.102891 −0.0514453 0.998676i \(-0.516383\pi\)
−0.0514453 + 0.998676i \(0.516383\pi\)
\(104\) −5.81134 −0.569849
\(105\) − 12.6778i − 1.23722i
\(106\) −5.81607 −0.564907
\(107\) 10.0027i 0.966999i 0.875345 + 0.483500i \(0.160635\pi\)
−0.875345 + 0.483500i \(0.839365\pi\)
\(108\) − 17.5243i − 1.68628i
\(109\) − 8.14200i − 0.779863i −0.920844 0.389931i \(-0.872499\pi\)
0.920844 0.389931i \(-0.127501\pi\)
\(110\) 0.162671 0.0155101
\(111\) 18.1651 1.72416
\(112\) − 5.16530i − 0.488075i
\(113\) − 13.0656i − 1.22911i −0.788873 0.614556i \(-0.789335\pi\)
0.788873 0.614556i \(-0.210665\pi\)
\(114\) 16.2267i 1.51977i
\(115\) 1.87741 0.175069
\(116\) 6.09127i 0.565560i
\(117\) −15.8606 −1.46631
\(118\) −1.61779 −0.148930
\(119\) 0 0
\(120\) −7.69804 −0.702731
\(121\) 10.9466 0.995148
\(122\) 6.28624i 0.569130i
\(123\) 25.2811 2.27952
\(124\) 0.196234i 0.0176223i
\(125\) − 1.00000i − 0.0894427i
\(126\) 19.2670i 1.71644i
\(127\) −0.745900 −0.0661879 −0.0330939 0.999452i \(-0.510536\pi\)
−0.0330939 + 0.999452i \(0.510536\pi\)
\(128\) −10.5594 −0.933325
\(129\) − 11.5371i − 1.01578i
\(130\) 1.65838i 0.145449i
\(131\) − 5.67574i − 0.495891i −0.968774 0.247946i \(-0.920245\pi\)
0.968774 0.247946i \(-0.0797555\pi\)
\(132\) 1.08425 0.0943720
\(133\) 30.0150i 2.60263i
\(134\) 10.2797 0.888027
\(135\) −11.6500 −1.00267
\(136\) 0 0
\(137\) −19.6850 −1.68180 −0.840900 0.541190i \(-0.817974\pi\)
−0.840900 + 0.541190i \(0.817974\pi\)
\(138\) −4.12427 −0.351081
\(139\) 5.64706i 0.478977i 0.970899 + 0.239489i \(0.0769798\pi\)
−0.970899 + 0.239489i \(0.923020\pi\)
\(140\) −6.11237 −0.516590
\(141\) − 4.07569i − 0.343235i
\(142\) − 7.74981i − 0.650350i
\(143\) − 0.544142i − 0.0455034i
\(144\) −8.56005 −0.713338
\(145\) 4.04943 0.336287
\(146\) − 0.331907i − 0.0274688i
\(147\) 29.6760i 2.44763i
\(148\) − 8.75802i − 0.719905i
\(149\) −19.0000 −1.55654 −0.778269 0.627931i \(-0.783902\pi\)
−0.778269 + 0.627931i \(0.783902\pi\)
\(150\) 2.19679i 0.179367i
\(151\) −6.95236 −0.565775 −0.282887 0.959153i \(-0.591292\pi\)
−0.282887 + 0.959153i \(0.591292\pi\)
\(152\) 18.2254 1.47827
\(153\) 0 0
\(154\) −0.661007 −0.0532655
\(155\) 0.130455 0.0104784
\(156\) 11.0536i 0.884996i
\(157\) −7.18338 −0.573296 −0.286648 0.958036i \(-0.592541\pi\)
−0.286648 + 0.958036i \(0.592541\pi\)
\(158\) − 3.03941i − 0.241802i
\(159\) 25.7713i 2.04379i
\(160\) 5.82977i 0.460883i
\(161\) −7.62878 −0.601232
\(162\) 11.3681 0.893159
\(163\) 12.3259i 0.965443i 0.875774 + 0.482721i \(0.160352\pi\)
−0.875774 + 0.482721i \(0.839648\pi\)
\(164\) − 12.1888i − 0.951788i
\(165\) − 0.720802i − 0.0561144i
\(166\) −10.8600 −0.842902
\(167\) − 2.10123i − 0.162598i −0.996690 0.0812990i \(-0.974093\pi\)
0.996690 0.0812990i \(-0.0259069\pi\)
\(168\) 31.2807 2.41336
\(169\) −7.45265 −0.573281
\(170\) 0 0
\(171\) 49.7415 3.80383
\(172\) −5.56242 −0.424130
\(173\) 2.38845i 0.181590i 0.995870 + 0.0907952i \(0.0289409\pi\)
−0.995870 + 0.0907952i \(0.971059\pi\)
\(174\) −8.89573 −0.674384
\(175\) 4.06346i 0.307169i
\(176\) − 0.293677i − 0.0221367i
\(177\) 7.16852i 0.538819i
\(178\) 2.59755 0.194695
\(179\) 2.06564 0.154394 0.0771968 0.997016i \(-0.475403\pi\)
0.0771968 + 0.997016i \(0.475403\pi\)
\(180\) 10.1295i 0.755012i
\(181\) − 10.0975i − 0.750542i −0.926915 0.375271i \(-0.877550\pi\)
0.926915 0.375271i \(-0.122450\pi\)
\(182\) − 6.73875i − 0.499510i
\(183\) 27.8546 2.05907
\(184\) 4.63225i 0.341494i
\(185\) −5.82227 −0.428062
\(186\) −0.286582 −0.0210132
\(187\) 0 0
\(188\) −1.96503 −0.143314
\(189\) 47.3394 3.44343
\(190\) − 5.20096i − 0.377317i
\(191\) −26.5500 −1.92109 −0.960547 0.278119i \(-0.910289\pi\)
−0.960547 + 0.278119i \(0.910289\pi\)
\(192\) − 4.87485i − 0.351812i
\(193\) − 6.80795i − 0.490047i −0.969517 0.245023i \(-0.921204\pi\)
0.969517 0.245023i \(-0.0787957\pi\)
\(194\) − 6.34137i − 0.455284i
\(195\) 7.34835 0.526226
\(196\) 14.3078 1.02198
\(197\) − 6.05995i − 0.431753i −0.976421 0.215877i \(-0.930739\pi\)
0.976421 0.215877i \(-0.0692609\pi\)
\(198\) 1.09543i 0.0778492i
\(199\) − 11.3467i − 0.804343i −0.915564 0.402172i \(-0.868255\pi\)
0.915564 0.402172i \(-0.131745\pi\)
\(200\) 2.46736 0.174469
\(201\) − 45.5496i − 3.21282i
\(202\) −4.89047 −0.344092
\(203\) −16.4547 −1.15489
\(204\) 0 0
\(205\) −8.10305 −0.565942
\(206\) −0.735250 −0.0512273
\(207\) 12.6426i 0.878720i
\(208\) 2.99394 0.207592
\(209\) 1.70652i 0.118043i
\(210\) − 8.92655i − 0.615990i
\(211\) − 13.7348i − 0.945543i −0.881185 0.472772i \(-0.843254\pi\)
0.881185 0.472772i \(-0.156746\pi\)
\(212\) 12.4252 0.853365
\(213\) −34.3397 −2.35292
\(214\) 7.04302i 0.481451i
\(215\) 3.69785i 0.252191i
\(216\) − 28.7449i − 1.95584i
\(217\) −0.530099 −0.0359854
\(218\) − 5.73287i − 0.388279i
\(219\) −1.47069 −0.0993802
\(220\) −0.347523 −0.0234300
\(221\) 0 0
\(222\) 12.7903 0.858427
\(223\) 3.57068 0.239110 0.119555 0.992828i \(-0.461853\pi\)
0.119555 + 0.992828i \(0.461853\pi\)
\(224\) − 23.6890i − 1.58279i
\(225\) 6.73405 0.448937
\(226\) − 9.19966i − 0.611952i
\(227\) − 23.3475i − 1.54963i −0.632187 0.774816i \(-0.717843\pi\)
0.632187 0.774816i \(-0.282157\pi\)
\(228\) − 34.6660i − 2.29581i
\(229\) −25.2530 −1.66877 −0.834384 0.551184i \(-0.814176\pi\)
−0.834384 + 0.551184i \(0.814176\pi\)
\(230\) 1.32190 0.0871638
\(231\) 2.92895i 0.192711i
\(232\) 9.99142i 0.655969i
\(233\) 1.76097i 0.115365i 0.998335 + 0.0576824i \(0.0183711\pi\)
−0.998335 + 0.0576824i \(0.981629\pi\)
\(234\) −11.1676 −0.730049
\(235\) 1.30633i 0.0852159i
\(236\) 3.45618 0.224978
\(237\) −13.4678 −0.874825
\(238\) 0 0
\(239\) 21.2916 1.37724 0.688621 0.725122i \(-0.258216\pi\)
0.688621 + 0.725122i \(0.258216\pi\)
\(240\) 3.96595 0.256001
\(241\) − 10.1369i − 0.652972i −0.945202 0.326486i \(-0.894135\pi\)
0.945202 0.326486i \(-0.105865\pi\)
\(242\) 7.70763 0.495465
\(243\) − 15.4223i − 0.989340i
\(244\) − 13.4296i − 0.859744i
\(245\) − 9.51170i − 0.607680i
\(246\) 17.8007 1.13493
\(247\) −17.3975 −1.10697
\(248\) 0.321880i 0.0204394i
\(249\) 48.1213i 3.04956i
\(250\) − 0.704111i − 0.0445319i
\(251\) 17.5960 1.11065 0.555326 0.831633i \(-0.312593\pi\)
0.555326 + 0.831633i \(0.312593\pi\)
\(252\) − 41.1610i − 2.59290i
\(253\) −0.433739 −0.0272689
\(254\) −0.525196 −0.0329537
\(255\) 0 0
\(256\) −10.5599 −0.659995
\(257\) −10.0995 −0.629990 −0.314995 0.949093i \(-0.602003\pi\)
−0.314995 + 0.949093i \(0.602003\pi\)
\(258\) − 8.12339i − 0.505740i
\(259\) 23.6585 1.47007
\(260\) − 3.54288i − 0.219720i
\(261\) 27.2691i 1.68791i
\(262\) − 3.99635i − 0.246895i
\(263\) 16.0060 0.986973 0.493487 0.869753i \(-0.335722\pi\)
0.493487 + 0.869753i \(0.335722\pi\)
\(264\) 1.77848 0.109458
\(265\) − 8.26017i − 0.507418i
\(266\) 21.1339i 1.29580i
\(267\) − 11.5099i − 0.704393i
\(268\) −21.9610 −1.34148
\(269\) − 13.0629i − 0.796457i −0.917286 0.398229i \(-0.869625\pi\)
0.917286 0.398229i \(-0.130375\pi\)
\(270\) −8.20291 −0.499213
\(271\) 17.3388 1.05325 0.526627 0.850096i \(-0.323456\pi\)
0.526627 + 0.850096i \(0.323456\pi\)
\(272\) 0 0
\(273\) −29.8597 −1.80719
\(274\) −13.8604 −0.837337
\(275\) 0.231031i 0.0139317i
\(276\) 8.81089 0.530353
\(277\) − 10.9525i − 0.658075i −0.944317 0.329037i \(-0.893276\pi\)
0.944317 0.329037i \(-0.106724\pi\)
\(278\) 3.97615i 0.238474i
\(279\) 0.878491i 0.0525939i
\(280\) −10.0260 −0.599170
\(281\) 3.09350 0.184543 0.0922714 0.995734i \(-0.470587\pi\)
0.0922714 + 0.995734i \(0.470587\pi\)
\(282\) − 2.86974i − 0.170890i
\(283\) 0.469462i 0.0279066i 0.999903 + 0.0139533i \(0.00444162\pi\)
−0.999903 + 0.0139533i \(0.995558\pi\)
\(284\) 16.5563i 0.982437i
\(285\) −23.0457 −1.36511
\(286\) − 0.383136i − 0.0226553i
\(287\) 32.9264 1.94358
\(288\) −39.2579 −2.31330
\(289\) 0 0
\(290\) 2.85125 0.167431
\(291\) −28.0989 −1.64718
\(292\) 0.709070i 0.0414952i
\(293\) −20.6954 −1.20904 −0.604520 0.796590i \(-0.706635\pi\)
−0.604520 + 0.796590i \(0.706635\pi\)
\(294\) 20.8952i 1.21863i
\(295\) − 2.29764i − 0.133774i
\(296\) − 14.3657i − 0.834987i
\(297\) 2.69151 0.156177
\(298\) −13.3781 −0.774971
\(299\) − 4.42183i − 0.255721i
\(300\) − 4.69311i − 0.270957i
\(301\) − 15.0261i − 0.866088i
\(302\) −4.89523 −0.281689
\(303\) 21.6699i 1.24490i
\(304\) −9.38951 −0.538525
\(305\) −8.92792 −0.511211
\(306\) 0 0
\(307\) 21.9900 1.25504 0.627519 0.778601i \(-0.284071\pi\)
0.627519 + 0.778601i \(0.284071\pi\)
\(308\) 1.41214 0.0804644
\(309\) 3.25792i 0.185337i
\(310\) 0.0918548 0.00521700
\(311\) 24.4834i 1.38833i 0.719817 + 0.694163i \(0.244226\pi\)
−0.719817 + 0.694163i \(0.755774\pi\)
\(312\) 18.1310i 1.02647i
\(313\) − 2.87540i − 0.162527i −0.996693 0.0812635i \(-0.974104\pi\)
0.996693 0.0812635i \(-0.0258955\pi\)
\(314\) −5.05790 −0.285434
\(315\) −27.3635 −1.54176
\(316\) 6.49325i 0.365274i
\(317\) − 23.5740i − 1.32405i −0.749482 0.662025i \(-0.769697\pi\)
0.749482 0.662025i \(-0.230303\pi\)
\(318\) 18.1458i 1.01757i
\(319\) −0.935542 −0.0523803
\(320\) 1.56248i 0.0873453i
\(321\) 31.2079 1.74186
\(322\) −5.37150 −0.299342
\(323\) 0 0
\(324\) −24.2862 −1.34923
\(325\) −2.35528 −0.130648
\(326\) 8.67883i 0.480676i
\(327\) −25.4026 −1.40477
\(328\) − 19.9932i − 1.10394i
\(329\) − 5.30824i − 0.292653i
\(330\) − 0.507524i − 0.0279383i
\(331\) −25.0816 −1.37861 −0.689306 0.724471i \(-0.742084\pi\)
−0.689306 + 0.724471i \(0.742084\pi\)
\(332\) 23.2009 1.27331
\(333\) − 39.2074i − 2.14855i
\(334\) − 1.47950i − 0.0809545i
\(335\) 14.5995i 0.797655i
\(336\) −16.1155 −0.879171
\(337\) 16.4774i 0.897581i 0.893637 + 0.448790i \(0.148145\pi\)
−0.893637 + 0.448790i \(0.851855\pi\)
\(338\) −5.24749 −0.285426
\(339\) −40.7641 −2.21400
\(340\) 0 0
\(341\) −0.0301391 −0.00163212
\(342\) 35.0235 1.89386
\(343\) 10.2062i 0.551082i
\(344\) −9.12395 −0.491930
\(345\) − 5.85742i − 0.315353i
\(346\) 1.68173i 0.0904105i
\(347\) − 17.0278i − 0.914100i −0.889441 0.457050i \(-0.848906\pi\)
0.889441 0.457050i \(-0.151094\pi\)
\(348\) 19.0044 1.01874
\(349\) 6.72216 0.359829 0.179915 0.983682i \(-0.442418\pi\)
0.179915 + 0.983682i \(0.442418\pi\)
\(350\) 2.86112i 0.152934i
\(351\) 27.4391i 1.46459i
\(352\) − 1.34685i − 0.0717875i
\(353\) 2.22223 0.118277 0.0591386 0.998250i \(-0.481165\pi\)
0.0591386 + 0.998250i \(0.481165\pi\)
\(354\) 5.04743i 0.268268i
\(355\) 11.0065 0.584166
\(356\) −5.54929 −0.294112
\(357\) 0 0
\(358\) 1.45444 0.0768696
\(359\) −16.7305 −0.883000 −0.441500 0.897261i \(-0.645553\pi\)
−0.441500 + 0.897261i \(0.645553\pi\)
\(360\) 16.6154i 0.875706i
\(361\) 35.5614 1.87165
\(362\) − 7.10977i − 0.373681i
\(363\) − 34.1529i − 1.79256i
\(364\) 14.3964i 0.754574i
\(365\) 0.471385 0.0246734
\(366\) 19.6127 1.02517
\(367\) − 17.8974i − 0.934237i −0.884195 0.467119i \(-0.845292\pi\)
0.884195 0.467119i \(-0.154708\pi\)
\(368\) − 2.38649i − 0.124404i
\(369\) − 54.5664i − 2.84061i
\(370\) −4.09952 −0.213124
\(371\) 33.5648i 1.74260i
\(372\) 0.612240 0.0317431
\(373\) 16.3386 0.845983 0.422991 0.906134i \(-0.360980\pi\)
0.422991 + 0.906134i \(0.360980\pi\)
\(374\) 0 0
\(375\) −3.11994 −0.161113
\(376\) −3.22320 −0.166224
\(377\) − 9.53755i − 0.491209i
\(378\) 33.3322 1.71442
\(379\) 14.5126i 0.745464i 0.927939 + 0.372732i \(0.121579\pi\)
−0.927939 + 0.372732i \(0.878421\pi\)
\(380\) 11.1111i 0.569987i
\(381\) 2.32717i 0.119224i
\(382\) −18.6942 −0.956476
\(383\) 1.18611 0.0606074 0.0303037 0.999541i \(-0.490353\pi\)
0.0303037 + 0.999541i \(0.490353\pi\)
\(384\) 32.9446i 1.68120i
\(385\) − 0.938783i − 0.0478448i
\(386\) − 4.79355i − 0.243985i
\(387\) −24.9015 −1.26582
\(388\) 13.5474i 0.687765i
\(389\) 23.1832 1.17543 0.587717 0.809066i \(-0.300027\pi\)
0.587717 + 0.809066i \(0.300027\pi\)
\(390\) 5.17405 0.261998
\(391\) 0 0
\(392\) 23.4688 1.18535
\(393\) −17.7080 −0.893249
\(394\) − 4.26687i − 0.214962i
\(395\) 4.31667 0.217195
\(396\) − 2.34023i − 0.117601i
\(397\) 35.2709i 1.77019i 0.465406 + 0.885097i \(0.345908\pi\)
−0.465406 + 0.885097i \(0.654092\pi\)
\(398\) − 7.98930i − 0.400468i
\(399\) 93.6452 4.68812
\(400\) −1.27116 −0.0635580
\(401\) − 33.6355i − 1.67968i −0.542837 0.839838i \(-0.682650\pi\)
0.542837 0.839838i \(-0.317350\pi\)
\(402\) − 32.0719i − 1.59960i
\(403\) − 0.307258i − 0.0153056i
\(404\) 10.4478 0.519796
\(405\) 16.1453i 0.802265i
\(406\) −11.5859 −0.575000
\(407\) 1.34512 0.0666752
\(408\) 0 0
\(409\) 18.0019 0.890135 0.445068 0.895497i \(-0.353180\pi\)
0.445068 + 0.895497i \(0.353180\pi\)
\(410\) −5.70544 −0.281772
\(411\) 61.4160i 3.02943i
\(412\) 1.57075 0.0773854
\(413\) 9.33638i 0.459413i
\(414\) 8.90177i 0.437498i
\(415\) − 15.4238i − 0.757122i
\(416\) 13.7307 0.673205
\(417\) 17.6185 0.862782
\(418\) 1.20158i 0.0587712i
\(419\) − 6.34658i − 0.310051i −0.987910 0.155025i \(-0.950454\pi\)
0.987910 0.155025i \(-0.0495460\pi\)
\(420\) 19.0703i 0.930533i
\(421\) −22.0829 −1.07625 −0.538127 0.842864i \(-0.680868\pi\)
−0.538127 + 0.842864i \(0.680868\pi\)
\(422\) − 9.67082i − 0.470768i
\(423\) −8.79692 −0.427721
\(424\) 20.3808 0.989781
\(425\) 0 0
\(426\) −24.1790 −1.17148
\(427\) 36.2782 1.75563
\(428\) − 15.0464i − 0.727294i
\(429\) −1.69769 −0.0819654
\(430\) 2.60370i 0.125561i
\(431\) 32.7753i 1.57873i 0.613924 + 0.789365i \(0.289590\pi\)
−0.613924 + 0.789365i \(0.710410\pi\)
\(432\) 14.8090i 0.712500i
\(433\) −2.69414 −0.129472 −0.0647361 0.997902i \(-0.520621\pi\)
−0.0647361 + 0.997902i \(0.520621\pi\)
\(434\) −0.373248 −0.0179165
\(435\) − 12.6340i − 0.605754i
\(436\) 12.2474i 0.586546i
\(437\) 13.8676i 0.663378i
\(438\) −1.03553 −0.0494796
\(439\) − 24.3493i − 1.16213i −0.813858 0.581063i \(-0.802637\pi\)
0.813858 0.581063i \(-0.197363\pi\)
\(440\) −0.570036 −0.0271754
\(441\) 64.0522 3.05011
\(442\) 0 0
\(443\) −31.9645 −1.51868 −0.759341 0.650693i \(-0.774478\pi\)
−0.759341 + 0.650693i \(0.774478\pi\)
\(444\) −27.3245 −1.29676
\(445\) 3.68913i 0.174881i
\(446\) 2.51415 0.119048
\(447\) 59.2788i 2.80379i
\(448\) − 6.34907i − 0.299965i
\(449\) 35.8993i 1.69419i 0.531438 + 0.847097i \(0.321652\pi\)
−0.531438 + 0.847097i \(0.678348\pi\)
\(450\) 4.74152 0.223517
\(451\) 1.87205 0.0881515
\(452\) 19.6537i 0.924433i
\(453\) 21.6910i 1.01913i
\(454\) − 16.4393i − 0.771532i
\(455\) 9.57059 0.448676
\(456\) − 56.8621i − 2.66281i
\(457\) −42.0589 −1.96743 −0.983717 0.179724i \(-0.942480\pi\)
−0.983717 + 0.179724i \(0.942480\pi\)
\(458\) −17.7809 −0.830848
\(459\) 0 0
\(460\) −2.82405 −0.131672
\(461\) 24.5172 1.14188 0.570940 0.820992i \(-0.306579\pi\)
0.570940 + 0.820992i \(0.306579\pi\)
\(462\) 2.06230i 0.0959471i
\(463\) 12.9662 0.602590 0.301295 0.953531i \(-0.402581\pi\)
0.301295 + 0.953531i \(0.402581\pi\)
\(464\) − 5.14747i − 0.238966i
\(465\) − 0.407012i − 0.0188747i
\(466\) 1.23992i 0.0574380i
\(467\) 32.3125 1.49524 0.747622 0.664124i \(-0.231195\pi\)
0.747622 + 0.664124i \(0.231195\pi\)
\(468\) 23.8579 1.10283
\(469\) − 59.3244i − 2.73935i
\(470\) 0.919804i 0.0424274i
\(471\) 22.4118i 1.03268i
\(472\) 5.66912 0.260942
\(473\) − 0.854317i − 0.0392815i
\(474\) −9.48279 −0.435559
\(475\) 7.38657 0.338919
\(476\) 0 0
\(477\) 55.6244 2.54687
\(478\) 14.9917 0.685703
\(479\) − 14.4494i − 0.660209i −0.943944 0.330104i \(-0.892916\pi\)
0.943944 0.330104i \(-0.107084\pi\)
\(480\) 18.1885 0.830189
\(481\) 13.7131i 0.625263i
\(482\) − 7.13747i − 0.325103i
\(483\) 23.8014i 1.08300i
\(484\) −16.4662 −0.748465
\(485\) 9.00621 0.408951
\(486\) − 10.8590i − 0.492574i
\(487\) − 35.3420i − 1.60150i −0.598998 0.800750i \(-0.704434\pi\)
0.598998 0.800750i \(-0.295566\pi\)
\(488\) − 22.0284i − 0.997181i
\(489\) 38.4563 1.73905
\(490\) − 6.69729i − 0.302553i
\(491\) −38.2821 −1.72765 −0.863825 0.503793i \(-0.831937\pi\)
−0.863825 + 0.503793i \(0.831937\pi\)
\(492\) −38.0285 −1.71446
\(493\) 0 0
\(494\) −12.2497 −0.551141
\(495\) −1.55577 −0.0699267
\(496\) − 0.165829i − 0.00744595i
\(497\) −44.7246 −2.00617
\(498\) 33.8827i 1.51832i
\(499\) − 25.5250i − 1.14266i −0.820721 0.571329i \(-0.806428\pi\)
0.820721 0.571329i \(-0.193572\pi\)
\(500\) 1.50423i 0.0672711i
\(501\) −6.55572 −0.292888
\(502\) 12.3896 0.552973
\(503\) 37.8180i 1.68622i 0.537742 + 0.843110i \(0.319278\pi\)
−0.537742 + 0.843110i \(0.680722\pi\)
\(504\) − 67.5158i − 3.00739i
\(505\) − 6.94560i − 0.309075i
\(506\) −0.305400 −0.0135767
\(507\) 23.2518i 1.03265i
\(508\) 1.12200 0.0497809
\(509\) 16.2321 0.719476 0.359738 0.933053i \(-0.382866\pi\)
0.359738 + 0.933053i \(0.382866\pi\)
\(510\) 0 0
\(511\) −1.91545 −0.0847346
\(512\) 13.6834 0.604726
\(513\) − 86.0537i − 3.79937i
\(514\) −7.11117 −0.313660
\(515\) − 1.04422i − 0.0460140i
\(516\) 17.3544i 0.763986i
\(517\) − 0.301803i − 0.0132733i
\(518\) 16.6582 0.731921
\(519\) 7.45183 0.327099
\(520\) − 5.81134i − 0.254844i
\(521\) 17.6650i 0.773916i 0.922097 + 0.386958i \(0.126474\pi\)
−0.922097 + 0.386958i \(0.873526\pi\)
\(522\) 19.2004i 0.840381i
\(523\) 9.51295 0.415972 0.207986 0.978132i \(-0.433309\pi\)
0.207986 + 0.978132i \(0.433309\pi\)
\(524\) 8.53760i 0.372967i
\(525\) 12.6778 0.553303
\(526\) 11.2700 0.491396
\(527\) 0 0
\(528\) −0.916255 −0.0398749
\(529\) 19.4753 0.846753
\(530\) − 5.81607i − 0.252634i
\(531\) 15.4724 0.671447
\(532\) − 45.1494i − 1.95748i
\(533\) 19.0850i 0.826662i
\(534\) − 8.10422i − 0.350704i
\(535\) −10.0027 −0.432455
\(536\) −36.0222 −1.55592
\(537\) − 6.44469i − 0.278109i
\(538\) − 9.19770i − 0.396541i
\(539\) 2.19749i 0.0946527i
\(540\) 17.5243 0.754126
\(541\) 12.2201i 0.525382i 0.964880 + 0.262691i \(0.0846101\pi\)
−0.964880 + 0.262691i \(0.915390\pi\)
\(542\) 12.2084 0.524396
\(543\) −31.5037 −1.35195
\(544\) 0 0
\(545\) 8.14200 0.348765
\(546\) −21.0245 −0.899767
\(547\) − 14.8127i − 0.633345i −0.948535 0.316672i \(-0.897434\pi\)
0.948535 0.316672i \(-0.102566\pi\)
\(548\) 29.6107 1.26491
\(549\) − 60.1211i − 2.56591i
\(550\) 0.162671i 0.00693632i
\(551\) 29.9114i 1.27427i
\(552\) 14.4524 0.615134
\(553\) −17.5406 −0.745902
\(554\) − 7.71180i − 0.327643i
\(555\) 18.1651i 0.771068i
\(556\) − 8.49447i − 0.360246i
\(557\) 18.6501 0.790230 0.395115 0.918632i \(-0.370705\pi\)
0.395115 + 0.918632i \(0.370705\pi\)
\(558\) 0.618555i 0.0261855i
\(559\) 8.70949 0.368372
\(560\) 5.16530 0.218274
\(561\) 0 0
\(562\) 2.17817 0.0918804
\(563\) 12.5501 0.528923 0.264461 0.964396i \(-0.414806\pi\)
0.264461 + 0.964396i \(0.414806\pi\)
\(564\) 6.13077i 0.258152i
\(565\) 13.0656 0.549676
\(566\) 0.330553i 0.0138942i
\(567\) − 65.6057i − 2.75518i
\(568\) 27.1571i 1.13949i
\(569\) −13.8442 −0.580377 −0.290189 0.956969i \(-0.593718\pi\)
−0.290189 + 0.956969i \(0.593718\pi\)
\(570\) −16.2267 −0.679662
\(571\) 45.4021i 1.90002i 0.312224 + 0.950009i \(0.398926\pi\)
−0.312224 + 0.950009i \(0.601074\pi\)
\(572\) 0.818514i 0.0342238i
\(573\) 82.8346i 3.46047i
\(574\) 23.1838 0.967675
\(575\) 1.87741i 0.0782934i
\(576\) −10.5218 −0.438409
\(577\) −18.7645 −0.781177 −0.390588 0.920565i \(-0.627728\pi\)
−0.390588 + 0.920565i \(0.627728\pi\)
\(578\) 0 0
\(579\) −21.2404 −0.882722
\(580\) −6.09127 −0.252926
\(581\) 62.6738i 2.60015i
\(582\) −19.7847 −0.820103
\(583\) 1.90835i 0.0790358i
\(584\) 1.16308i 0.0481285i
\(585\) − 15.8606i − 0.655755i
\(586\) −14.5719 −0.601959
\(587\) 26.4900 1.09336 0.546679 0.837342i \(-0.315892\pi\)
0.546679 + 0.837342i \(0.315892\pi\)
\(588\) − 44.6394i − 1.84090i
\(589\) 0.963615i 0.0397051i
\(590\) − 1.61779i − 0.0666035i
\(591\) −18.9067 −0.777717
\(592\) 7.40103i 0.304181i
\(593\) 33.8360 1.38948 0.694740 0.719261i \(-0.255520\pi\)
0.694740 + 0.719261i \(0.255520\pi\)
\(594\) 1.89512 0.0777578
\(595\) 0 0
\(596\) 28.5803 1.17069
\(597\) −35.4009 −1.44886
\(598\) − 3.11346i − 0.127319i
\(599\) 10.9189 0.446133 0.223067 0.974803i \(-0.428393\pi\)
0.223067 + 0.974803i \(0.428393\pi\)
\(600\) − 7.69804i − 0.314271i
\(601\) 13.7204i 0.559667i 0.960049 + 0.279833i \(0.0902792\pi\)
−0.960049 + 0.279833i \(0.909721\pi\)
\(602\) − 10.5800i − 0.431209i
\(603\) −98.3137 −4.00364
\(604\) 10.4579 0.425527
\(605\) 10.9466i 0.445044i
\(606\) 15.2580i 0.619813i
\(607\) − 26.5777i − 1.07876i −0.842063 0.539379i \(-0.818659\pi\)
0.842063 0.539379i \(-0.181341\pi\)
\(608\) −43.0620 −1.74639
\(609\) 51.3377i 2.08031i
\(610\) −6.28624 −0.254523
\(611\) 3.07679 0.124473
\(612\) 0 0
\(613\) 11.9043 0.480812 0.240406 0.970672i \(-0.422719\pi\)
0.240406 + 0.970672i \(0.422719\pi\)
\(614\) 15.4834 0.624860
\(615\) 25.2811i 1.01943i
\(616\) 2.31632 0.0933272
\(617\) − 7.85884i − 0.316385i −0.987408 0.158193i \(-0.949433\pi\)
0.987408 0.158193i \(-0.0505667\pi\)
\(618\) 2.29394i 0.0922757i
\(619\) − 32.7760i − 1.31738i −0.752416 0.658689i \(-0.771111\pi\)
0.752416 0.658689i \(-0.228889\pi\)
\(620\) −0.196234 −0.00788095
\(621\) 21.8719 0.877688
\(622\) 17.2390i 0.691222i
\(623\) − 14.9906i − 0.600587i
\(624\) − 9.34092i − 0.373936i
\(625\) 1.00000 0.0400000
\(626\) − 2.02460i − 0.0809192i
\(627\) 5.32426 0.212630
\(628\) 10.8054 0.431184
\(629\) 0 0
\(630\) −19.2670 −0.767614
\(631\) 12.5294 0.498789 0.249395 0.968402i \(-0.419768\pi\)
0.249395 + 0.968402i \(0.419768\pi\)
\(632\) 10.6508i 0.423666i
\(633\) −42.8518 −1.70321
\(634\) − 16.5987i − 0.659220i
\(635\) − 0.745900i − 0.0296001i
\(636\) − 38.7659i − 1.53717i
\(637\) −22.4027 −0.887628
\(638\) −0.658725 −0.0260792
\(639\) 74.1185i 2.93208i
\(640\) − 10.5594i − 0.417396i
\(641\) 19.4356i 0.767660i 0.923404 + 0.383830i \(0.125395\pi\)
−0.923404 + 0.383830i \(0.874605\pi\)
\(642\) 21.9738 0.867238
\(643\) − 16.0075i − 0.631276i −0.948880 0.315638i \(-0.897782\pi\)
0.948880 0.315638i \(-0.102218\pi\)
\(644\) 11.4754 0.452195
\(645\) 11.5371 0.454273
\(646\) 0 0
\(647\) −41.3567 −1.62590 −0.812949 0.582335i \(-0.802139\pi\)
−0.812949 + 0.582335i \(0.802139\pi\)
\(648\) −39.8363 −1.56492
\(649\) 0.530826i 0.0208367i
\(650\) −1.65838 −0.0650470
\(651\) 1.65388i 0.0648206i
\(652\) − 18.5410i − 0.726123i
\(653\) 5.21693i 0.204154i 0.994776 + 0.102077i \(0.0325488\pi\)
−0.994776 + 0.102077i \(0.967451\pi\)
\(654\) −17.8862 −0.699407
\(655\) 5.67574 0.221769
\(656\) 10.3003i 0.402158i
\(657\) 3.17433i 0.123842i
\(658\) − 3.73759i − 0.145706i
\(659\) −10.7781 −0.419854 −0.209927 0.977717i \(-0.567323\pi\)
−0.209927 + 0.977717i \(0.567323\pi\)
\(660\) 1.08425i 0.0422044i
\(661\) 10.3851 0.403935 0.201968 0.979392i \(-0.435266\pi\)
0.201968 + 0.979392i \(0.435266\pi\)
\(662\) −17.6602 −0.686385
\(663\) 0 0
\(664\) 38.0560 1.47686
\(665\) −30.0150 −1.16393
\(666\) − 27.6064i − 1.06973i
\(667\) −7.60245 −0.294368
\(668\) 3.16073i 0.122292i
\(669\) − 11.1403i − 0.430709i
\(670\) 10.2797i 0.397138i
\(671\) 2.06262 0.0796267
\(672\) −73.9084 −2.85108
\(673\) 13.1346i 0.506302i 0.967427 + 0.253151i \(0.0814669\pi\)
−0.967427 + 0.253151i \(0.918533\pi\)
\(674\) 11.6019i 0.446889i
\(675\) − 11.6500i − 0.448410i
\(676\) 11.2105 0.431172
\(677\) − 18.9820i − 0.729539i −0.931098 0.364769i \(-0.881148\pi\)
0.931098 0.364769i \(-0.118852\pi\)
\(678\) −28.7024 −1.10231
\(679\) −36.5964 −1.40444
\(680\) 0 0
\(681\) −72.8430 −2.79135
\(682\) −0.0212213 −0.000812604 0
\(683\) 14.9579i 0.572347i 0.958178 + 0.286173i \(0.0923834\pi\)
−0.958178 + 0.286173i \(0.907617\pi\)
\(684\) −74.8226 −2.86091
\(685\) − 19.6850i − 0.752124i
\(686\) 7.18628i 0.274373i
\(687\) 78.7880i 3.00595i
\(688\) 4.70056 0.179207
\(689\) −19.4550 −0.741177
\(690\) − 4.12427i − 0.157008i
\(691\) 11.3095i 0.430233i 0.976588 + 0.215116i \(0.0690131\pi\)
−0.976588 + 0.215116i \(0.930987\pi\)
\(692\) − 3.59277i − 0.136577i
\(693\) 6.32181 0.240146
\(694\) − 11.9895i − 0.455113i
\(695\) −5.64706 −0.214205
\(696\) 31.1727 1.18160
\(697\) 0 0
\(698\) 4.73315 0.179152
\(699\) 5.49412 0.207807
\(700\) − 6.11237i − 0.231026i
\(701\) −13.0707 −0.493674 −0.246837 0.969057i \(-0.579391\pi\)
−0.246837 + 0.969057i \(0.579391\pi\)
\(702\) 19.3202i 0.729192i
\(703\) − 43.0066i − 1.62202i
\(704\) − 0.360980i − 0.0136050i
\(705\) 4.07569 0.153499
\(706\) 1.56469 0.0588880
\(707\) 28.2232i 1.06144i
\(708\) − 10.7831i − 0.405253i
\(709\) 48.6798i 1.82821i 0.405479 + 0.914105i \(0.367105\pi\)
−0.405479 + 0.914105i \(0.632895\pi\)
\(710\) 7.74981 0.290845
\(711\) 29.0686i 1.09016i
\(712\) −9.10242 −0.341128
\(713\) −0.244918 −0.00917224
\(714\) 0 0
\(715\) 0.544142 0.0203498
\(716\) −3.10720 −0.116122
\(717\) − 66.4287i − 2.48083i
\(718\) −11.7801 −0.439629
\(719\) 31.8171i 1.18658i 0.804990 + 0.593289i \(0.202171\pi\)
−0.804990 + 0.593289i \(0.797829\pi\)
\(720\) − 8.56005i − 0.319014i
\(721\) 4.24316i 0.158024i
\(722\) 25.0392 0.931861
\(723\) −31.6264 −1.17620
\(724\) 15.1890i 0.564493i
\(725\) 4.04943i 0.150392i
\(726\) − 24.0474i − 0.892482i
\(727\) 6.69618 0.248348 0.124174 0.992260i \(-0.460372\pi\)
0.124174 + 0.992260i \(0.460372\pi\)
\(728\) 23.6141i 0.875198i
\(729\) 0.319170 0.0118211
\(730\) 0.331907 0.0122844
\(731\) 0 0
\(732\) −41.8997 −1.54866
\(733\) 38.7110 1.42982 0.714912 0.699215i \(-0.246467\pi\)
0.714912 + 0.699215i \(0.246467\pi\)
\(734\) − 12.6018i − 0.465139i
\(735\) −29.6760 −1.09461
\(736\) − 10.9449i − 0.403433i
\(737\) − 3.37293i − 0.124243i
\(738\) − 38.4207i − 1.41429i
\(739\) −19.1997 −0.706271 −0.353136 0.935572i \(-0.614885\pi\)
−0.353136 + 0.935572i \(0.614885\pi\)
\(740\) 8.75802 0.321951
\(741\) 54.2791i 1.99399i
\(742\) 23.6334i 0.867608i
\(743\) 2.12614i 0.0780004i 0.999239 + 0.0390002i \(0.0124173\pi\)
−0.999239 + 0.0390002i \(0.987583\pi\)
\(744\) 1.00425 0.0368175
\(745\) − 19.0000i − 0.696105i
\(746\) 11.5042 0.421199
\(747\) 103.864 3.80020
\(748\) 0 0
\(749\) 40.6456 1.48516
\(750\) −2.19679 −0.0802153
\(751\) − 9.76463i − 0.356316i −0.984002 0.178158i \(-0.942986\pi\)
0.984002 0.178158i \(-0.0570139\pi\)
\(752\) 1.66056 0.0605544
\(753\) − 54.8987i − 2.00062i
\(754\) − 6.71549i − 0.244564i
\(755\) − 6.95236i − 0.253022i
\(756\) −71.2093 −2.58986
\(757\) 29.2324 1.06247 0.531236 0.847224i \(-0.321728\pi\)
0.531236 + 0.847224i \(0.321728\pi\)
\(758\) 10.2185i 0.371153i
\(759\) 1.35324i 0.0491196i
\(760\) 18.2254i 0.661103i
\(761\) −11.3975 −0.413161 −0.206580 0.978430i \(-0.566234\pi\)
−0.206580 + 0.978430i \(0.566234\pi\)
\(762\) 1.63858i 0.0593595i
\(763\) −33.0847 −1.19775
\(764\) 39.9373 1.44488
\(765\) 0 0
\(766\) 0.835153 0.0301753
\(767\) −5.41160 −0.195401
\(768\) 32.9464i 1.18885i
\(769\) 14.6414 0.527984 0.263992 0.964525i \(-0.414961\pi\)
0.263992 + 0.964525i \(0.414961\pi\)
\(770\) − 0.661007i − 0.0238210i
\(771\) 31.5099i 1.13480i
\(772\) 10.2407i 0.368571i
\(773\) −16.8387 −0.605646 −0.302823 0.953047i \(-0.597929\pi\)
−0.302823 + 0.953047i \(0.597929\pi\)
\(774\) −17.5334 −0.630226
\(775\) 0.130455i 0.00468608i
\(776\) 22.2216i 0.797709i
\(777\) − 73.8133i − 2.64804i
\(778\) 16.3235 0.585227
\(779\) − 59.8538i − 2.14448i
\(780\) −11.0536 −0.395782
\(781\) −2.54284 −0.0909901
\(782\) 0 0
\(783\) 47.1760 1.68593
\(784\) −12.0909 −0.431817
\(785\) − 7.18338i − 0.256386i
\(786\) −12.4684 −0.444732
\(787\) − 17.4487i − 0.621979i −0.950413 0.310990i \(-0.899340\pi\)
0.950413 0.310990i \(-0.100660\pi\)
\(788\) 9.11554i 0.324728i
\(789\) − 49.9379i − 1.77784i
\(790\) 3.03941 0.108137
\(791\) −53.0917 −1.88772
\(792\) − 3.83865i − 0.136401i
\(793\) 21.0278i 0.746718i
\(794\) 24.8346i 0.881347i
\(795\) −25.7713 −0.914012
\(796\) 17.0680i 0.604958i
\(797\) −25.0208 −0.886282 −0.443141 0.896452i \(-0.646136\pi\)
−0.443141 + 0.896452i \(0.646136\pi\)
\(798\) 65.9366 2.33413
\(799\) 0 0
\(800\) −5.82977 −0.206113
\(801\) −24.8428 −0.877776
\(802\) − 23.6831i − 0.836279i
\(803\) −0.108904 −0.00384315
\(804\) 68.5170i 2.41641i
\(805\) − 7.62878i − 0.268879i
\(806\) − 0.216344i − 0.00762039i
\(807\) −40.7554 −1.43466
\(808\) 17.1373 0.602889
\(809\) − 19.6531i − 0.690966i −0.938425 0.345483i \(-0.887715\pi\)
0.938425 0.345483i \(-0.112285\pi\)
\(810\) 11.3681i 0.399433i
\(811\) − 30.7782i − 1.08077i −0.841418 0.540385i \(-0.818279\pi\)
0.841418 0.540385i \(-0.181721\pi\)
\(812\) 24.7516 0.868612
\(813\) − 54.0960i − 1.89723i
\(814\) 0.947114 0.0331963
\(815\) −12.3259 −0.431759
\(816\) 0 0
\(817\) −27.3144 −0.955612
\(818\) 12.6753 0.443182
\(819\) 64.4488i 2.25202i
\(820\) 12.1888 0.425653
\(821\) − 35.0315i − 1.22261i −0.791397 0.611303i \(-0.790646\pi\)
0.791397 0.611303i \(-0.209354\pi\)
\(822\) 43.2437i 1.50830i
\(823\) − 30.1072i − 1.04947i −0.851265 0.524736i \(-0.824164\pi\)
0.851265 0.524736i \(-0.175836\pi\)
\(824\) 2.57648 0.0897560
\(825\) 0.720802 0.0250951
\(826\) 6.57384i 0.228733i
\(827\) 20.7366i 0.721082i 0.932743 + 0.360541i \(0.117408\pi\)
−0.932743 + 0.360541i \(0.882592\pi\)
\(828\) − 19.0173i − 0.660898i
\(829\) 54.3221 1.88669 0.943343 0.331820i \(-0.107663\pi\)
0.943343 + 0.331820i \(0.107663\pi\)
\(830\) − 10.8600i − 0.376957i
\(831\) −34.1713 −1.18539
\(832\) 3.68008 0.127584
\(833\) 0 0
\(834\) 12.4054 0.429563
\(835\) 2.10123 0.0727160
\(836\) − 2.56700i − 0.0887816i
\(837\) 1.51980 0.0525321
\(838\) − 4.46870i − 0.154369i
\(839\) 10.7461i 0.370997i 0.982645 + 0.185498i \(0.0593900\pi\)
−0.982645 + 0.185498i \(0.940610\pi\)
\(840\) 31.2807i 1.07929i
\(841\) 12.6021 0.434555
\(842\) −15.5488 −0.535847
\(843\) − 9.65155i − 0.332417i
\(844\) 20.6603i 0.711156i
\(845\) − 7.45265i − 0.256379i
\(846\) −6.19401 −0.212954
\(847\) − 44.4812i − 1.52839i
\(848\) −10.5000 −0.360571
\(849\) 1.46469 0.0502682
\(850\) 0 0
\(851\) 10.9308 0.374703
\(852\) 51.6548 1.76966
\(853\) 43.7616i 1.49837i 0.662362 + 0.749184i \(0.269554\pi\)
−0.662362 + 0.749184i \(0.730446\pi\)
\(854\) 25.5439 0.874094
\(855\) 49.7415i 1.70112i
\(856\) − 24.6803i − 0.843557i
\(857\) 0.857197i 0.0292813i 0.999893 + 0.0146406i \(0.00466043\pi\)
−0.999893 + 0.0146406i \(0.995340\pi\)
\(858\) −1.19536 −0.0408090
\(859\) 38.5994 1.31700 0.658498 0.752583i \(-0.271192\pi\)
0.658498 + 0.752583i \(0.271192\pi\)
\(860\) − 5.56242i − 0.189677i
\(861\) − 102.729i − 3.50098i
\(862\) 23.0774i 0.786021i
\(863\) 18.0234 0.613522 0.306761 0.951787i \(-0.400755\pi\)
0.306761 + 0.951787i \(0.400755\pi\)
\(864\) 67.9169i 2.31058i
\(865\) −2.38845 −0.0812097
\(866\) −1.89697 −0.0644618
\(867\) 0 0
\(868\) 0.797389 0.0270652
\(869\) −0.997281 −0.0338305
\(870\) − 8.89573i − 0.301594i
\(871\) 34.3859 1.16512
\(872\) 20.0893i 0.680309i
\(873\) 60.6483i 2.05263i
\(874\) 9.76434i 0.330284i
\(875\) −4.06346 −0.137370
\(876\) 2.21226 0.0747453
\(877\) − 26.7943i − 0.904780i −0.891820 0.452390i \(-0.850572\pi\)
0.891820 0.452390i \(-0.149428\pi\)
\(878\) − 17.1446i − 0.578601i
\(879\) 64.5686i 2.17785i
\(880\) 0.293677 0.00989984
\(881\) − 21.6063i − 0.727933i −0.931412 0.363967i \(-0.881422\pi\)
0.931412 0.363967i \(-0.118578\pi\)
\(882\) 45.0999 1.51859
\(883\) 20.8987 0.703297 0.351649 0.936132i \(-0.385621\pi\)
0.351649 + 0.936132i \(0.385621\pi\)
\(884\) 0 0
\(885\) −7.16852 −0.240967
\(886\) −22.5066 −0.756123
\(887\) 33.8887i 1.13787i 0.822382 + 0.568936i \(0.192645\pi\)
−0.822382 + 0.568936i \(0.807355\pi\)
\(888\) −44.8200 −1.50406
\(889\) 3.03093i 0.101654i
\(890\) 2.59755i 0.0870702i
\(891\) − 3.73005i − 0.124961i
\(892\) −5.37111 −0.179838
\(893\) −9.64933 −0.322903
\(894\) 41.7388i 1.39596i
\(895\) 2.06564i 0.0690469i
\(896\) 42.9076i 1.43344i
\(897\) −13.7959 −0.460631
\(898\) 25.2771i 0.843508i
\(899\) −0.528269 −0.0176187
\(900\) −10.1295 −0.337652
\(901\) 0 0
\(902\) 1.31813 0.0438890
\(903\) −46.8805 −1.56009
\(904\) 32.2377i 1.07221i
\(905\) 10.0975 0.335653
\(906\) 15.2728i 0.507406i
\(907\) − 17.3527i − 0.576187i −0.957602 0.288093i \(-0.906979\pi\)
0.957602 0.288093i \(-0.0930214\pi\)
\(908\) 35.1200i 1.16550i
\(909\) 46.7720 1.55133
\(910\) 6.73875 0.223388
\(911\) − 44.2282i − 1.46535i −0.680581 0.732673i \(-0.738273\pi\)
0.680581 0.732673i \(-0.261727\pi\)
\(912\) 29.2947i 0.970046i
\(913\) 3.56336i 0.117930i
\(914\) −29.6141 −0.979549
\(915\) 27.8546i 0.920845i
\(916\) 37.9863 1.25510
\(917\) −23.0631 −0.761611
\(918\) 0 0
\(919\) 4.31977 0.142496 0.0712480 0.997459i \(-0.477302\pi\)
0.0712480 + 0.997459i \(0.477302\pi\)
\(920\) −4.63225 −0.152721
\(921\) − 68.6077i − 2.26070i
\(922\) 17.2628 0.568521
\(923\) − 25.9235i − 0.853282i
\(924\) − 4.40581i − 0.144941i
\(925\) − 5.82227i − 0.191435i
\(926\) 9.12963 0.300018
\(927\) 7.03186 0.230957
\(928\) − 23.6072i − 0.774945i
\(929\) − 9.99294i − 0.327858i −0.986472 0.163929i \(-0.947583\pi\)
0.986472 0.163929i \(-0.0524167\pi\)
\(930\) − 0.286582i − 0.00939738i
\(931\) 70.2588 2.30264
\(932\) − 2.64890i − 0.0867676i
\(933\) 76.3869 2.50079
\(934\) 22.7516 0.744454
\(935\) 0 0
\(936\) 39.1338 1.27913
\(937\) −41.6190 −1.35964 −0.679818 0.733381i \(-0.737941\pi\)
−0.679818 + 0.733381i \(0.737941\pi\)
\(938\) − 41.7709i − 1.36387i
\(939\) −8.97108 −0.292760
\(940\) − 1.96503i − 0.0640921i
\(941\) − 22.4168i − 0.730767i −0.930857 0.365384i \(-0.880938\pi\)
0.930857 0.365384i \(-0.119062\pi\)
\(942\) 15.7804i 0.514152i
\(943\) 15.2128 0.495395
\(944\) −2.92067 −0.0950597
\(945\) 47.3394i 1.53995i
\(946\) − 0.601533i − 0.0195575i
\(947\) 44.0389i 1.43107i 0.698577 + 0.715535i \(0.253817\pi\)
−0.698577 + 0.715535i \(0.746183\pi\)
\(948\) 20.2586 0.657968
\(949\) − 1.11024i − 0.0360400i
\(950\) 5.20096 0.168741
\(951\) −73.5497 −2.38501
\(952\) 0 0
\(953\) −43.8375 −1.42004 −0.710019 0.704183i \(-0.751314\pi\)
−0.710019 + 0.704183i \(0.751314\pi\)
\(954\) 39.1657 1.26804
\(955\) − 26.5500i − 0.859139i
\(956\) −32.0275 −1.03584
\(957\) 2.91884i 0.0943527i
\(958\) − 10.1740i − 0.328706i
\(959\) 79.9891i 2.58298i
\(960\) 4.87485 0.157335
\(961\) 30.9830 0.999451
\(962\) 9.65553i 0.311307i
\(963\) − 67.3588i − 2.17061i
\(964\) 15.2481i 0.491110i
\(965\) 6.80795 0.219156
\(966\) 16.7588i 0.539205i
\(967\) 9.41429 0.302743 0.151372 0.988477i \(-0.451631\pi\)
0.151372 + 0.988477i \(0.451631\pi\)
\(968\) −27.0093 −0.868112
\(969\) 0 0
\(970\) 6.34137 0.203609
\(971\) 14.2960 0.458780 0.229390 0.973335i \(-0.426327\pi\)
0.229390 + 0.973335i \(0.426327\pi\)
\(972\) 23.1986i 0.744097i
\(973\) 22.9466 0.735634
\(974\) − 24.8847i − 0.797357i
\(975\) 7.34835i 0.235335i
\(976\) 11.3488i 0.363267i
\(977\) 2.92222 0.0934900 0.0467450 0.998907i \(-0.485115\pi\)
0.0467450 + 0.998907i \(0.485115\pi\)
\(978\) 27.0775 0.865842
\(979\) − 0.852301i − 0.0272397i
\(980\) 14.3078i 0.457045i
\(981\) 54.8287i 1.75054i
\(982\) −26.9549 −0.860164
\(983\) 1.35448i 0.0432013i 0.999767 + 0.0216007i \(0.00687624\pi\)
−0.999767 + 0.0216007i \(0.993124\pi\)
\(984\) −62.3776 −1.98853
\(985\) 6.05995 0.193086
\(986\) 0 0
\(987\) −16.5614 −0.527155
\(988\) 26.1697 0.832571
\(989\) − 6.94239i − 0.220755i
\(990\) −1.09543 −0.0348152
\(991\) − 49.6083i − 1.57586i −0.615765 0.787930i \(-0.711153\pi\)
0.615765 0.787930i \(-0.288847\pi\)
\(992\) − 0.760522i − 0.0241466i
\(993\) 78.2533i 2.48329i
\(994\) −31.4910 −0.998835
\(995\) 11.3467 0.359713
\(996\) − 72.3854i − 2.29362i
\(997\) − 12.3189i − 0.390143i −0.980789 0.195072i \(-0.937506\pi\)
0.980789 0.195072i \(-0.0624939\pi\)
\(998\) − 17.9724i − 0.568908i
\(999\) −67.8296 −2.14603
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.d.i.866.16 24
17.4 even 4 1445.2.a.s.1.5 yes 12
17.13 even 4 1445.2.a.r.1.5 12
17.16 even 2 inner 1445.2.d.i.866.15 24
85.4 even 4 7225.2.a.bn.1.8 12
85.64 even 4 7225.2.a.bo.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1445.2.a.r.1.5 12 17.13 even 4
1445.2.a.s.1.5 yes 12 17.4 even 4
1445.2.d.i.866.15 24 17.16 even 2 inner
1445.2.d.i.866.16 24 1.1 even 1 trivial
7225.2.a.bn.1.8 12 85.4 even 4
7225.2.a.bo.1.8 12 85.64 even 4