Properties

Label 1445.2.d.g
Level $1445$
Weight $2$
Character orbit 1445.d
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(866,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.866");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} + ( - \beta_{7} - \beta_1) q^{3} + (\beta_{9} + \beta_{6} - \beta_{4} + 1) q^{4} - \beta_{7} q^{5} + ( - \beta_{10} + \beta_{7} + \cdots + \beta_1) q^{6} + (\beta_{7} + \beta_{5}) q^{7}+ \cdots + ( - 3 \beta_{10} - 3 \beta_{7} + \cdots + 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 12 q^{4} - 12 q^{8} - 4 q^{9} - 8 q^{15} + 4 q^{16} + 28 q^{18} + 24 q^{19} + 16 q^{21} - 12 q^{25} + 24 q^{26} + 8 q^{30} + 12 q^{32} - 16 q^{33} + 16 q^{35} + 20 q^{36} - 24 q^{38} + 16 q^{42}+ \cdots - 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{10} + 16\nu^{8} + 50\nu^{6} + 36\nu^{4} - 13\nu^{2} - 2 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{11} + 15\nu^{9} + 34\nu^{7} - 16\nu^{5} - 75\nu^{3} - 27\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{10} - 18\nu^{8} - 84\nu^{6} - 166\nu^{4} - 133\nu^{2} - 18 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{11} + 19\nu^{9} + 98\nu^{7} + 188\nu^{5} + 125\nu^{3} + 17\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{10} + 19\nu^{8} + 98\nu^{6} + 188\nu^{4} + 125\nu^{2} + 13 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 2\nu^{11} + 37\nu^{9} + 182\nu^{7} + 354\nu^{5} + 258\nu^{3} + 31\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -3\nu^{10} - 52\nu^{8} - 216\nu^{6} - 338\nu^{4} - 183\nu^{2} - 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 4\nu^{10} + 65\nu^{8} + 218\nu^{6} + 222\nu^{4} + 36\nu^{2} - 1 ) / 4 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -5\nu^{11} - 87\nu^{9} - 366\nu^{7} - 592\nu^{5} - 369\nu^{3} - 61\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -7\nu^{11} - 124\nu^{9} - 546\nu^{7} - 916\nu^{5} - 553\nu^{3} - 42\nu ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{9} + \beta_{8} + \beta_{6} - 2\beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{11} - \beta_{10} + 2\beta_{7} + 3\beta_{5} + 2\beta_{3} - 9\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -12\beta_{9} - 9\beta_{8} - 10\beta_{6} - 3\beta_{4} + 28\beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -28\beta_{11} + 12\beta_{10} - 32\beta_{7} - 41\beta_{5} - 31\beta_{3} + 102\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 145\beta_{9} + 102\beta_{8} + 115\beta_{6} + 41\beta_{4} - 348\beta_{2} - 123 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 348\beta_{11} - 145\beta_{10} + 408\beta_{7} + 504\beta_{5} + 391\beta_{3} - 1222\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -1758\beta_{9} - 1222\beta_{8} - 1378\beta_{6} - 504\beta_{4} + 4240\beta_{2} + 1447 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -4240\beta_{11} + 1758\beta_{10} - 4996\beta_{7} - 6122\beta_{5} - 4776\beta_{3} + 14789\beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 21323\beta_{9} + 14789\beta_{8} + 16671\beta_{6} + 6122\beta_{4} - 51470\beta_{2} - 17458 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 51470\beta_{11} - 21323\beta_{10} + 60706\beta_{7} + 74263\beta_{5} + 58004\beta_{3} - 179303\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
866.1
0.254679i
0.254679i
1.52346i
1.52346i
3.48265i
3.48265i
1.35757i
1.35757i
0.455023i
0.455023i
1.19804i
1.19804i
−2.51230 1.25468i 4.31167 1.00000i 3.15213i 1.61485i −5.80761 1.42578 2.51230i
866.2 −2.51230 1.25468i 4.31167 1.00000i 3.15213i 1.61485i −5.80761 1.42578 2.51230i
866.3 −2.07061 2.52346i 2.28744 1.00000i 5.22511i 0.368961i −0.595174 −3.36786 2.07061i
866.4 −2.07061 2.52346i 2.28744 1.00000i 5.22511i 0.368961i −0.595174 −3.36786 2.07061i
866.5 −1.12708 2.48265i −0.729699 1.00000i 2.79814i 2.44256i 3.07658 −3.16356 1.12708i
866.6 −1.12708 2.48265i −0.729699 1.00000i 2.79814i 2.44256i 3.07658 −3.16356 1.12708i
866.7 0.677603 2.35757i −1.54085 1.00000i 1.59750i 4.27746i −2.39929 −2.55814 0.677603i
866.8 0.677603 2.35757i −1.54085 1.00000i 1.59750i 4.27746i −2.39929 −2.55814 0.677603i
866.9 0.783476 0.544977i −1.38617 1.00000i 0.426976i 1.18848i −2.65298 2.70300 0.783476i
866.10 0.783476 0.544977i −1.38617 1.00000i 0.426976i 1.18848i −2.65298 2.70300 0.783476i
866.11 2.24891 0.198035i 3.05761 1.00000i 0.445364i 1.89231i 2.37848 2.96078 2.24891i
866.12 2.24891 0.198035i 3.05761 1.00000i 0.445364i 1.89231i 2.37848 2.96078 2.24891i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 866.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1445.2.d.g 12
17.b even 2 1 inner 1445.2.d.g 12
17.c even 4 1 1445.2.a.n 6
17.c even 4 1 1445.2.a.o 6
17.d even 8 2 85.2.e.a 12
51.g odd 8 2 765.2.k.b 12
68.g odd 8 2 1360.2.bt.d 12
85.j even 4 1 7225.2.a.z 6
85.j even 4 1 7225.2.a.bb 6
85.k odd 8 2 425.2.j.c 12
85.m even 8 2 425.2.e.f 12
85.n odd 8 2 425.2.j.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.e.a 12 17.d even 8 2
425.2.e.f 12 85.m even 8 2
425.2.j.b 12 85.n odd 8 2
425.2.j.c 12 85.k odd 8 2
765.2.k.b 12 51.g odd 8 2
1360.2.bt.d 12 68.g odd 8 2
1445.2.a.n 6 17.c even 4 1
1445.2.a.o 6 17.c even 4 1
1445.2.d.g 12 1.a even 1 1 trivial
1445.2.d.g 12 17.b even 2 1 inner
7225.2.a.z 6 85.j even 4 1
7225.2.a.bb 6 85.j even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1445, [\chi])\):

\( T_{2}^{6} + 2T_{2}^{5} - 7T_{2}^{4} - 12T_{2}^{3} + 11T_{2}^{2} + 10T_{2} - 7 \) Copy content Toggle raw display
\( T_{3}^{12} + 20T_{3}^{10} + 144T_{3}^{8} + 436T_{3}^{6} + 476T_{3}^{4} + 120T_{3}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{6} + 2 T^{5} - 7 T^{4} + \cdots - 7)^{2} \) Copy content Toggle raw display
$3$ \( T^{12} + 20 T^{10} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{12} + 32 T^{10} + \cdots + 196 \) Copy content Toggle raw display
$11$ \( T^{12} + 52 T^{10} + \cdots + 198916 \) Copy content Toggle raw display
$13$ \( (T^{6} - 58 T^{4} + \cdots - 316)^{2} \) Copy content Toggle raw display
$17$ \( T^{12} \) Copy content Toggle raw display
$19$ \( (T^{6} - 12 T^{5} + \cdots - 1472)^{2} \) Copy content Toggle raw display
$23$ \( T^{12} + 84 T^{10} + \cdots + 196 \) Copy content Toggle raw display
$29$ \( T^{12} + 172 T^{10} + \cdots + 5345344 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 1645275844 \) Copy content Toggle raw display
$37$ \( T^{12} + 236 T^{10} + \cdots + 3655744 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 192876544 \) Copy content Toggle raw display
$43$ \( (T^{6} + 8 T^{5} + \cdots - 15004)^{2} \) Copy content Toggle raw display
$47$ \( (T^{6} - 24 T^{5} + \cdots - 18076)^{2} \) Copy content Toggle raw display
$53$ \( (T^{6} - 216 T^{4} + \cdots - 132112)^{2} \) Copy content Toggle raw display
$59$ \( (T^{6} - 16 T^{5} + \cdots + 896)^{2} \) Copy content Toggle raw display
$61$ \( T^{12} + 184 T^{10} + \cdots + 984064 \) Copy content Toggle raw display
$67$ \( (T^{6} + 4 T^{5} - 46 T^{4} + \cdots - 92)^{2} \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 29133710596 \) Copy content Toggle raw display
$73$ \( T^{12} + 416 T^{10} + \cdots + 541696 \) Copy content Toggle raw display
$79$ \( T^{12} + 424 T^{10} + \cdots + 15225604 \) Copy content Toggle raw display
$83$ \( (T^{6} + 20 T^{5} + \cdots + 11204)^{2} \) Copy content Toggle raw display
$89$ \( (T^{6} + 12 T^{5} + \cdots - 31292)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 227086559296 \) Copy content Toggle raw display
show more
show less