Properties

Label 1445.2.d.e.866.4
Level $1445$
Weight $2$
Character 1445.866
Analytic conductor $11.538$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(866,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.866");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 866.4
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1445.866
Dual form 1445.2.d.e.866.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{2} +2.73205i q^{3} +1.00000 q^{4} +1.00000i q^{5} +4.73205i q^{6} +2.73205i q^{7} -1.73205 q^{8} -4.46410 q^{9} +1.73205i q^{10} -4.73205i q^{11} +2.73205i q^{12} -4.00000 q^{13} +4.73205i q^{14} -2.73205 q^{15} -5.00000 q^{16} -7.73205 q^{18} +1.46410 q^{19} +1.00000i q^{20} -7.46410 q^{21} -8.19615i q^{22} +8.19615i q^{23} -4.73205i q^{24} -1.00000 q^{25} -6.92820 q^{26} -4.00000i q^{27} +2.73205i q^{28} -3.46410i q^{29} -4.73205 q^{30} +3.26795i q^{31} -5.19615 q^{32} +12.9282 q^{33} -2.73205 q^{35} -4.46410 q^{36} -0.535898i q^{37} +2.53590 q^{38} -10.9282i q^{39} -1.73205i q^{40} +3.46410i q^{41} -12.9282 q^{42} +0.535898 q^{43} -4.73205i q^{44} -4.46410i q^{45} +14.1962i q^{46} +12.9282 q^{47} -13.6603i q^{48} -0.464102 q^{49} -1.73205 q^{50} -4.00000 q^{52} -6.00000 q^{53} -6.92820i q^{54} +4.73205 q^{55} -4.73205i q^{56} +4.00000i q^{57} -6.00000i q^{58} -2.53590 q^{59} -2.73205 q^{60} +4.92820i q^{61} +5.66025i q^{62} -12.1962i q^{63} +1.00000 q^{64} -4.00000i q^{65} +22.3923 q^{66} -10.0000 q^{67} -22.3923 q^{69} -4.73205 q^{70} +11.6603i q^{71} +7.73205 q^{72} +6.39230i q^{73} -0.928203i q^{74} -2.73205i q^{75} +1.46410 q^{76} +12.9282 q^{77} -18.9282i q^{78} -14.5885i q^{79} -5.00000i q^{80} -2.46410 q^{81} +6.00000i q^{82} -8.53590 q^{83} -7.46410 q^{84} +0.928203 q^{86} +9.46410 q^{87} +8.19615i q^{88} +4.39230 q^{89} -7.73205i q^{90} -10.9282i q^{91} +8.19615i q^{92} -8.92820 q^{93} +22.3923 q^{94} +1.46410i q^{95} -14.1962i q^{96} -4.92820i q^{97} -0.803848 q^{98} +21.1244i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 4 q^{9} - 16 q^{13} - 4 q^{15} - 20 q^{16} - 24 q^{18} - 8 q^{19} - 16 q^{21} - 4 q^{25} - 12 q^{30} + 24 q^{33} - 4 q^{35} - 4 q^{36} + 24 q^{38} - 24 q^{42} + 16 q^{43} + 24 q^{47} + 12 q^{49}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.22474 0.612372 0.790569i \(-0.290215\pi\)
0.612372 + 0.790569i \(0.290215\pi\)
\(3\) 2.73205i 1.57735i 0.614810 + 0.788675i \(0.289233\pi\)
−0.614810 + 0.788675i \(0.710767\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000i 0.447214i
\(6\) 4.73205i 1.93185i
\(7\) 2.73205i 1.03262i 0.856402 + 0.516309i \(0.172694\pi\)
−0.856402 + 0.516309i \(0.827306\pi\)
\(8\) −1.73205 −0.612372
\(9\) −4.46410 −1.48803
\(10\) 1.73205i 0.547723i
\(11\) − 4.73205i − 1.42677i −0.700774 0.713384i \(-0.747162\pi\)
0.700774 0.713384i \(-0.252838\pi\)
\(12\) 2.73205i 0.788675i
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 4.73205i 1.26469i
\(15\) −2.73205 −0.705412
\(16\) −5.00000 −1.25000
\(17\) 0 0
\(18\) −7.73205 −1.82246
\(19\) 1.46410 0.335888 0.167944 0.985797i \(-0.446287\pi\)
0.167944 + 0.985797i \(0.446287\pi\)
\(20\) 1.00000i 0.223607i
\(21\) −7.46410 −1.62880
\(22\) − 8.19615i − 1.74743i
\(23\) 8.19615i 1.70902i 0.519438 + 0.854508i \(0.326141\pi\)
−0.519438 + 0.854508i \(0.673859\pi\)
\(24\) − 4.73205i − 0.965926i
\(25\) −1.00000 −0.200000
\(26\) −6.92820 −1.35873
\(27\) − 4.00000i − 0.769800i
\(28\) 2.73205i 0.516309i
\(29\) − 3.46410i − 0.643268i −0.946864 0.321634i \(-0.895768\pi\)
0.946864 0.321634i \(-0.104232\pi\)
\(30\) −4.73205 −0.863950
\(31\) 3.26795i 0.586941i 0.955968 + 0.293471i \(0.0948102\pi\)
−0.955968 + 0.293471i \(0.905190\pi\)
\(32\) −5.19615 −0.918559
\(33\) 12.9282 2.25051
\(34\) 0 0
\(35\) −2.73205 −0.461801
\(36\) −4.46410 −0.744017
\(37\) − 0.535898i − 0.0881012i −0.999029 0.0440506i \(-0.985974\pi\)
0.999029 0.0440506i \(-0.0140263\pi\)
\(38\) 2.53590 0.411377
\(39\) − 10.9282i − 1.74991i
\(40\) − 1.73205i − 0.273861i
\(41\) 3.46410i 0.541002i 0.962720 + 0.270501i \(0.0871893\pi\)
−0.962720 + 0.270501i \(0.912811\pi\)
\(42\) −12.9282 −1.99487
\(43\) 0.535898 0.0817237 0.0408619 0.999165i \(-0.486990\pi\)
0.0408619 + 0.999165i \(0.486990\pi\)
\(44\) − 4.73205i − 0.713384i
\(45\) − 4.46410i − 0.665469i
\(46\) 14.1962i 2.09311i
\(47\) 12.9282 1.88577 0.942886 0.333115i \(-0.108100\pi\)
0.942886 + 0.333115i \(0.108100\pi\)
\(48\) − 13.6603i − 1.97169i
\(49\) −0.464102 −0.0663002
\(50\) −1.73205 −0.244949
\(51\) 0 0
\(52\) −4.00000 −0.554700
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) − 6.92820i − 0.942809i
\(55\) 4.73205 0.638070
\(56\) − 4.73205i − 0.632347i
\(57\) 4.00000i 0.529813i
\(58\) − 6.00000i − 0.787839i
\(59\) −2.53590 −0.330146 −0.165073 0.986281i \(-0.552786\pi\)
−0.165073 + 0.986281i \(0.552786\pi\)
\(60\) −2.73205 −0.352706
\(61\) 4.92820i 0.630992i 0.948927 + 0.315496i \(0.102171\pi\)
−0.948927 + 0.315496i \(0.897829\pi\)
\(62\) 5.66025i 0.718853i
\(63\) − 12.1962i − 1.53657i
\(64\) 1.00000 0.125000
\(65\) − 4.00000i − 0.496139i
\(66\) 22.3923 2.75630
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) 0 0
\(69\) −22.3923 −2.69572
\(70\) −4.73205 −0.565588
\(71\) 11.6603i 1.38382i 0.721985 + 0.691909i \(0.243230\pi\)
−0.721985 + 0.691909i \(0.756770\pi\)
\(72\) 7.73205 0.911231
\(73\) 6.39230i 0.748163i 0.927396 + 0.374081i \(0.122042\pi\)
−0.927396 + 0.374081i \(0.877958\pi\)
\(74\) − 0.928203i − 0.107901i
\(75\) − 2.73205i − 0.315470i
\(76\) 1.46410 0.167944
\(77\) 12.9282 1.47331
\(78\) − 18.9282i − 2.14320i
\(79\) − 14.5885i − 1.64133i −0.571410 0.820665i \(-0.693603\pi\)
0.571410 0.820665i \(-0.306397\pi\)
\(80\) − 5.00000i − 0.559017i
\(81\) −2.46410 −0.273789
\(82\) 6.00000i 0.662589i
\(83\) −8.53590 −0.936937 −0.468468 0.883480i \(-0.655194\pi\)
−0.468468 + 0.883480i \(0.655194\pi\)
\(84\) −7.46410 −0.814400
\(85\) 0 0
\(86\) 0.928203 0.100091
\(87\) 9.46410 1.01466
\(88\) 8.19615i 0.873713i
\(89\) 4.39230 0.465583 0.232792 0.972527i \(-0.425214\pi\)
0.232792 + 0.972527i \(0.425214\pi\)
\(90\) − 7.73205i − 0.815030i
\(91\) − 10.9282i − 1.14559i
\(92\) 8.19615i 0.854508i
\(93\) −8.92820 −0.925812
\(94\) 22.3923 2.30959
\(95\) 1.46410i 0.150214i
\(96\) − 14.1962i − 1.44889i
\(97\) − 4.92820i − 0.500383i −0.968196 0.250192i \(-0.919506\pi\)
0.968196 0.250192i \(-0.0804936\pi\)
\(98\) −0.803848 −0.0812009
\(99\) 21.1244i 2.12308i
\(100\) −1.00000 −0.100000
\(101\) −9.46410 −0.941713 −0.470857 0.882210i \(-0.656055\pi\)
−0.470857 + 0.882210i \(0.656055\pi\)
\(102\) 0 0
\(103\) 8.92820 0.879722 0.439861 0.898066i \(-0.355028\pi\)
0.439861 + 0.898066i \(0.355028\pi\)
\(104\) 6.92820 0.679366
\(105\) − 7.46410i − 0.728422i
\(106\) −10.3923 −1.00939
\(107\) 17.6603i 1.70728i 0.520862 + 0.853641i \(0.325610\pi\)
−0.520862 + 0.853641i \(0.674390\pi\)
\(108\) − 4.00000i − 0.384900i
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 8.19615 0.781472
\(111\) 1.46410 0.138966
\(112\) − 13.6603i − 1.29077i
\(113\) 17.3205i 1.62938i 0.579899 + 0.814688i \(0.303092\pi\)
−0.579899 + 0.814688i \(0.696908\pi\)
\(114\) 6.92820i 0.648886i
\(115\) −8.19615 −0.764295
\(116\) − 3.46410i − 0.321634i
\(117\) 17.8564 1.65083
\(118\) −4.39230 −0.404344
\(119\) 0 0
\(120\) 4.73205 0.431975
\(121\) −11.3923 −1.03566
\(122\) 8.53590i 0.772804i
\(123\) −9.46410 −0.853349
\(124\) 3.26795i 0.293471i
\(125\) − 1.00000i − 0.0894427i
\(126\) − 21.1244i − 1.88191i
\(127\) 14.3923 1.27711 0.638555 0.769576i \(-0.279532\pi\)
0.638555 + 0.769576i \(0.279532\pi\)
\(128\) 12.1244 1.07165
\(129\) 1.46410i 0.128907i
\(130\) − 6.92820i − 0.607644i
\(131\) − 2.19615i − 0.191879i −0.995387 0.0959394i \(-0.969415\pi\)
0.995387 0.0959394i \(-0.0305855\pi\)
\(132\) 12.9282 1.12526
\(133\) 4.00000i 0.346844i
\(134\) −17.3205 −1.49626
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) −38.7846 −3.30157
\(139\) − 3.66025i − 0.310459i −0.987878 0.155229i \(-0.950388\pi\)
0.987878 0.155229i \(-0.0496117\pi\)
\(140\) −2.73205 −0.230900
\(141\) 35.3205i 2.97452i
\(142\) 20.1962i 1.69482i
\(143\) 18.9282i 1.58286i
\(144\) 22.3205 1.86004
\(145\) 3.46410 0.287678
\(146\) 11.0718i 0.916308i
\(147\) − 1.26795i − 0.104579i
\(148\) − 0.535898i − 0.0440506i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) − 4.73205i − 0.386370i
\(151\) 1.46410 0.119147 0.0595734 0.998224i \(-0.481026\pi\)
0.0595734 + 0.998224i \(0.481026\pi\)
\(152\) −2.53590 −0.205689
\(153\) 0 0
\(154\) 22.3923 1.80442
\(155\) −3.26795 −0.262488
\(156\) − 10.9282i − 0.874957i
\(157\) 8.92820 0.712548 0.356274 0.934381i \(-0.384047\pi\)
0.356274 + 0.934381i \(0.384047\pi\)
\(158\) − 25.2679i − 2.01021i
\(159\) − 16.3923i − 1.29999i
\(160\) − 5.19615i − 0.410792i
\(161\) −22.3923 −1.76476
\(162\) −4.26795 −0.335322
\(163\) 0.196152i 0.0153638i 0.999970 + 0.00768192i \(0.00244526\pi\)
−0.999970 + 0.00768192i \(0.997555\pi\)
\(164\) 3.46410i 0.270501i
\(165\) 12.9282i 1.00646i
\(166\) −14.7846 −1.14751
\(167\) 12.5885i 0.974124i 0.873367 + 0.487062i \(0.161931\pi\)
−0.873367 + 0.487062i \(0.838069\pi\)
\(168\) 12.9282 0.997433
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −6.53590 −0.499813
\(172\) 0.535898 0.0408619
\(173\) 3.46410i 0.263371i 0.991292 + 0.131685i \(0.0420389\pi\)
−0.991292 + 0.131685i \(0.957961\pi\)
\(174\) 16.3923 1.24270
\(175\) − 2.73205i − 0.206524i
\(176\) 23.6603i 1.78346i
\(177\) − 6.92820i − 0.520756i
\(178\) 7.60770 0.570221
\(179\) 11.3205 0.846135 0.423067 0.906098i \(-0.360953\pi\)
0.423067 + 0.906098i \(0.360953\pi\)
\(180\) − 4.46410i − 0.332734i
\(181\) 2.39230i 0.177819i 0.996040 + 0.0889093i \(0.0283381\pi\)
−0.996040 + 0.0889093i \(0.971662\pi\)
\(182\) − 18.9282i − 1.40305i
\(183\) −13.4641 −0.995295
\(184\) − 14.1962i − 1.04655i
\(185\) 0.535898 0.0394000
\(186\) −15.4641 −1.13388
\(187\) 0 0
\(188\) 12.9282 0.942886
\(189\) 10.9282 0.794910
\(190\) 2.53590i 0.183973i
\(191\) 1.85641 0.134325 0.0671624 0.997742i \(-0.478605\pi\)
0.0671624 + 0.997742i \(0.478605\pi\)
\(192\) 2.73205i 0.197169i
\(193\) − 16.5359i − 1.19028i −0.803622 0.595140i \(-0.797097\pi\)
0.803622 0.595140i \(-0.202903\pi\)
\(194\) − 8.53590i − 0.612842i
\(195\) 10.9282 0.782585
\(196\) −0.464102 −0.0331501
\(197\) − 17.3205i − 1.23404i −0.786949 0.617018i \(-0.788341\pi\)
0.786949 0.617018i \(-0.211659\pi\)
\(198\) 36.5885i 2.60023i
\(199\) 10.1962i 0.722786i 0.932414 + 0.361393i \(0.117699\pi\)
−0.932414 + 0.361393i \(0.882301\pi\)
\(200\) 1.73205 0.122474
\(201\) − 27.3205i − 1.92704i
\(202\) −16.3923 −1.15336
\(203\) 9.46410 0.664250
\(204\) 0 0
\(205\) −3.46410 −0.241943
\(206\) 15.4641 1.07744
\(207\) − 36.5885i − 2.54307i
\(208\) 20.0000 1.38675
\(209\) − 6.92820i − 0.479234i
\(210\) − 12.9282i − 0.892131i
\(211\) − 10.1962i − 0.701932i −0.936388 0.350966i \(-0.885853\pi\)
0.936388 0.350966i \(-0.114147\pi\)
\(212\) −6.00000 −0.412082
\(213\) −31.8564 −2.18277
\(214\) 30.5885i 2.09098i
\(215\) 0.535898i 0.0365480i
\(216\) 6.92820i 0.471405i
\(217\) −8.92820 −0.606086
\(218\) 17.3205i 1.17309i
\(219\) −17.4641 −1.18011
\(220\) 4.73205 0.319035
\(221\) 0 0
\(222\) 2.53590 0.170198
\(223\) 26.3923 1.76736 0.883680 0.468092i \(-0.155058\pi\)
0.883680 + 0.468092i \(0.155058\pi\)
\(224\) − 14.1962i − 0.948520i
\(225\) 4.46410 0.297607
\(226\) 30.0000i 1.99557i
\(227\) − 22.7321i − 1.50878i −0.656427 0.754390i \(-0.727933\pi\)
0.656427 0.754390i \(-0.272067\pi\)
\(228\) 4.00000i 0.264906i
\(229\) 8.39230 0.554579 0.277290 0.960786i \(-0.410564\pi\)
0.277290 + 0.960786i \(0.410564\pi\)
\(230\) −14.1962 −0.936067
\(231\) 35.3205i 2.32392i
\(232\) 6.00000i 0.393919i
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 30.9282 2.02184
\(235\) 12.9282i 0.843343i
\(236\) −2.53590 −0.165073
\(237\) 39.8564 2.58895
\(238\) 0 0
\(239\) −20.7846 −1.34444 −0.672222 0.740349i \(-0.734660\pi\)
−0.672222 + 0.740349i \(0.734660\pi\)
\(240\) 13.6603 0.881766
\(241\) − 5.60770i − 0.361223i −0.983554 0.180612i \(-0.942192\pi\)
0.983554 0.180612i \(-0.0578077\pi\)
\(242\) −19.7321 −1.26842
\(243\) − 18.7321i − 1.20166i
\(244\) 4.92820i 0.315496i
\(245\) − 0.464102i − 0.0296504i
\(246\) −16.3923 −1.04514
\(247\) −5.85641 −0.372634
\(248\) − 5.66025i − 0.359426i
\(249\) − 23.3205i − 1.47788i
\(250\) − 1.73205i − 0.109545i
\(251\) 6.92820 0.437304 0.218652 0.975803i \(-0.429834\pi\)
0.218652 + 0.975803i \(0.429834\pi\)
\(252\) − 12.1962i − 0.768285i
\(253\) 38.7846 2.43837
\(254\) 24.9282 1.56413
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 6.92820 0.432169 0.216085 0.976375i \(-0.430671\pi\)
0.216085 + 0.976375i \(0.430671\pi\)
\(258\) 2.53590i 0.157878i
\(259\) 1.46410 0.0909748
\(260\) − 4.00000i − 0.248069i
\(261\) 15.4641i 0.957204i
\(262\) − 3.80385i − 0.235002i
\(263\) 1.60770 0.0991347 0.0495674 0.998771i \(-0.484216\pi\)
0.0495674 + 0.998771i \(0.484216\pi\)
\(264\) −22.3923 −1.37815
\(265\) − 6.00000i − 0.368577i
\(266\) 6.92820i 0.424795i
\(267\) 12.0000i 0.734388i
\(268\) −10.0000 −0.610847
\(269\) 0.928203i 0.0565935i 0.999600 + 0.0282968i \(0.00900835\pi\)
−0.999600 + 0.0282968i \(0.990992\pi\)
\(270\) 6.92820 0.421637
\(271\) 2.92820 0.177876 0.0889378 0.996037i \(-0.471653\pi\)
0.0889378 + 0.996037i \(0.471653\pi\)
\(272\) 0 0
\(273\) 29.8564 1.80699
\(274\) 0 0
\(275\) 4.73205i 0.285353i
\(276\) −22.3923 −1.34786
\(277\) 20.9282i 1.25745i 0.777626 + 0.628727i \(0.216424\pi\)
−0.777626 + 0.628727i \(0.783576\pi\)
\(278\) − 6.33975i − 0.380233i
\(279\) − 14.5885i − 0.873388i
\(280\) 4.73205 0.282794
\(281\) 12.9282 0.771232 0.385616 0.922659i \(-0.373989\pi\)
0.385616 + 0.922659i \(0.373989\pi\)
\(282\) 61.1769i 3.64303i
\(283\) 5.26795i 0.313147i 0.987666 + 0.156574i \(0.0500448\pi\)
−0.987666 + 0.156574i \(0.949955\pi\)
\(284\) 11.6603i 0.691909i
\(285\) −4.00000 −0.236940
\(286\) 32.7846i 1.93859i
\(287\) −9.46410 −0.558648
\(288\) 23.1962 1.36685
\(289\) 0 0
\(290\) 6.00000 0.352332
\(291\) 13.4641 0.789280
\(292\) 6.39230i 0.374081i
\(293\) −0.928203 −0.0542262 −0.0271131 0.999632i \(-0.508631\pi\)
−0.0271131 + 0.999632i \(0.508631\pi\)
\(294\) − 2.19615i − 0.128082i
\(295\) − 2.53590i − 0.147646i
\(296\) 0.928203i 0.0539507i
\(297\) −18.9282 −1.09833
\(298\) −10.3923 −0.602010
\(299\) − 32.7846i − 1.89598i
\(300\) − 2.73205i − 0.157735i
\(301\) 1.46410i 0.0843894i
\(302\) 2.53590 0.145925
\(303\) − 25.8564i − 1.48541i
\(304\) −7.32051 −0.419860
\(305\) −4.92820 −0.282188
\(306\) 0 0
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 12.9282 0.736653
\(309\) 24.3923i 1.38763i
\(310\) −5.66025 −0.321481
\(311\) − 16.0526i − 0.910257i −0.890426 0.455129i \(-0.849593\pi\)
0.890426 0.455129i \(-0.150407\pi\)
\(312\) 18.9282i 1.07160i
\(313\) 26.3923i 1.49178i 0.666068 + 0.745891i \(0.267976\pi\)
−0.666068 + 0.745891i \(0.732024\pi\)
\(314\) 15.4641 0.872690
\(315\) 12.1962 0.687175
\(316\) − 14.5885i − 0.820665i
\(317\) 24.9282i 1.40011i 0.714090 + 0.700054i \(0.246841\pi\)
−0.714090 + 0.700054i \(0.753159\pi\)
\(318\) − 28.3923i − 1.59216i
\(319\) −16.3923 −0.917793
\(320\) 1.00000i 0.0559017i
\(321\) −48.2487 −2.69298
\(322\) −38.7846 −2.16138
\(323\) 0 0
\(324\) −2.46410 −0.136895
\(325\) 4.00000 0.221880
\(326\) 0.339746i 0.0188168i
\(327\) −27.3205 −1.51083
\(328\) − 6.00000i − 0.331295i
\(329\) 35.3205i 1.94728i
\(330\) 22.3923i 1.23266i
\(331\) 6.53590 0.359245 0.179623 0.983736i \(-0.442512\pi\)
0.179623 + 0.983736i \(0.442512\pi\)
\(332\) −8.53590 −0.468468
\(333\) 2.39230i 0.131097i
\(334\) 21.8038i 1.19305i
\(335\) − 10.0000i − 0.546358i
\(336\) 37.3205 2.03600
\(337\) − 6.78461i − 0.369581i −0.982778 0.184791i \(-0.940839\pi\)
0.982778 0.184791i \(-0.0591607\pi\)
\(338\) 5.19615 0.282633
\(339\) −47.3205 −2.57010
\(340\) 0 0
\(341\) 15.4641 0.837428
\(342\) −11.3205 −0.612143
\(343\) 17.8564i 0.964155i
\(344\) −0.928203 −0.0500454
\(345\) − 22.3923i − 1.20556i
\(346\) 6.00000i 0.322562i
\(347\) − 3.80385i − 0.204201i −0.994774 0.102101i \(-0.967444\pi\)
0.994774 0.102101i \(-0.0325564\pi\)
\(348\) 9.46410 0.507329
\(349\) −10.7846 −0.577287 −0.288643 0.957437i \(-0.593204\pi\)
−0.288643 + 0.957437i \(0.593204\pi\)
\(350\) − 4.73205i − 0.252939i
\(351\) 16.0000i 0.854017i
\(352\) 24.5885i 1.31057i
\(353\) 26.7846 1.42560 0.712800 0.701367i \(-0.247427\pi\)
0.712800 + 0.701367i \(0.247427\pi\)
\(354\) − 12.0000i − 0.637793i
\(355\) −11.6603 −0.618862
\(356\) 4.39230 0.232792
\(357\) 0 0
\(358\) 19.6077 1.03630
\(359\) 21.4641 1.13283 0.566416 0.824119i \(-0.308330\pi\)
0.566416 + 0.824119i \(0.308330\pi\)
\(360\) 7.73205i 0.407515i
\(361\) −16.8564 −0.887179
\(362\) 4.14359i 0.217782i
\(363\) − 31.1244i − 1.63361i
\(364\) − 10.9282i − 0.572793i
\(365\) −6.39230 −0.334589
\(366\) −23.3205 −1.21898
\(367\) 7.80385i 0.407358i 0.979038 + 0.203679i \(0.0652898\pi\)
−0.979038 + 0.203679i \(0.934710\pi\)
\(368\) − 40.9808i − 2.13627i
\(369\) − 15.4641i − 0.805029i
\(370\) 0.928203 0.0482550
\(371\) − 16.3923i − 0.851046i
\(372\) −8.92820 −0.462906
\(373\) 20.0000 1.03556 0.517780 0.855514i \(-0.326758\pi\)
0.517780 + 0.855514i \(0.326758\pi\)
\(374\) 0 0
\(375\) 2.73205 0.141082
\(376\) −22.3923 −1.15479
\(377\) 13.8564i 0.713641i
\(378\) 18.9282 0.973562
\(379\) 17.8038i 0.914522i 0.889332 + 0.457261i \(0.151170\pi\)
−0.889332 + 0.457261i \(0.848830\pi\)
\(380\) 1.46410i 0.0751068i
\(381\) 39.3205i 2.01445i
\(382\) 3.21539 0.164514
\(383\) −15.4641 −0.790179 −0.395089 0.918643i \(-0.629286\pi\)
−0.395089 + 0.918643i \(0.629286\pi\)
\(384\) 33.1244i 1.69037i
\(385\) 12.9282i 0.658882i
\(386\) − 28.6410i − 1.45779i
\(387\) −2.39230 −0.121608
\(388\) − 4.92820i − 0.250192i
\(389\) 4.39230 0.222699 0.111349 0.993781i \(-0.464483\pi\)
0.111349 + 0.993781i \(0.464483\pi\)
\(390\) 18.9282 0.958467
\(391\) 0 0
\(392\) 0.803848 0.0406004
\(393\) 6.00000 0.302660
\(394\) − 30.0000i − 1.51138i
\(395\) 14.5885 0.734025
\(396\) 21.1244i 1.06154i
\(397\) − 14.0000i − 0.702640i −0.936255 0.351320i \(-0.885733\pi\)
0.936255 0.351320i \(-0.114267\pi\)
\(398\) 17.6603i 0.885229i
\(399\) −10.9282 −0.547094
\(400\) 5.00000 0.250000
\(401\) − 12.9282i − 0.645604i −0.946467 0.322802i \(-0.895375\pi\)
0.946467 0.322802i \(-0.104625\pi\)
\(402\) − 47.3205i − 2.36013i
\(403\) − 13.0718i − 0.651153i
\(404\) −9.46410 −0.470857
\(405\) − 2.46410i − 0.122442i
\(406\) 16.3923 0.813536
\(407\) −2.53590 −0.125700
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) −6.00000 −0.296319
\(411\) 0 0
\(412\) 8.92820 0.439861
\(413\) − 6.92820i − 0.340915i
\(414\) − 63.3731i − 3.11462i
\(415\) − 8.53590i − 0.419011i
\(416\) 20.7846 1.01905
\(417\) 10.0000 0.489702
\(418\) − 12.0000i − 0.586939i
\(419\) − 38.1962i − 1.86600i −0.359871 0.933002i \(-0.617179\pi\)
0.359871 0.933002i \(-0.382821\pi\)
\(420\) − 7.46410i − 0.364211i
\(421\) 5.46410 0.266304 0.133152 0.991096i \(-0.457490\pi\)
0.133152 + 0.991096i \(0.457490\pi\)
\(422\) − 17.6603i − 0.859688i
\(423\) −57.7128 −2.80609
\(424\) 10.3923 0.504695
\(425\) 0 0
\(426\) −55.1769 −2.67333
\(427\) −13.4641 −0.651574
\(428\) 17.6603i 0.853641i
\(429\) −51.7128 −2.49672
\(430\) 0.928203i 0.0447619i
\(431\) − 9.80385i − 0.472235i −0.971725 0.236117i \(-0.924125\pi\)
0.971725 0.236117i \(-0.0758750\pi\)
\(432\) 20.0000i 0.962250i
\(433\) 17.8564 0.858124 0.429062 0.903275i \(-0.358844\pi\)
0.429062 + 0.903275i \(0.358844\pi\)
\(434\) −15.4641 −0.742301
\(435\) 9.46410i 0.453769i
\(436\) 10.0000i 0.478913i
\(437\) 12.0000i 0.574038i
\(438\) −30.2487 −1.44534
\(439\) − 20.0526i − 0.957056i −0.878072 0.478528i \(-0.841170\pi\)
0.878072 0.478528i \(-0.158830\pi\)
\(440\) −8.19615 −0.390736
\(441\) 2.07180 0.0986570
\(442\) 0 0
\(443\) −12.9282 −0.614237 −0.307119 0.951671i \(-0.599365\pi\)
−0.307119 + 0.951671i \(0.599365\pi\)
\(444\) 1.46410 0.0694832
\(445\) 4.39230i 0.208215i
\(446\) 45.7128 2.16456
\(447\) − 16.3923i − 0.775329i
\(448\) 2.73205i 0.129077i
\(449\) 34.3923i 1.62307i 0.584302 + 0.811537i \(0.301369\pi\)
−0.584302 + 0.811537i \(0.698631\pi\)
\(450\) 7.73205 0.364492
\(451\) 16.3923 0.771883
\(452\) 17.3205i 0.814688i
\(453\) 4.00000i 0.187936i
\(454\) − 39.3731i − 1.84787i
\(455\) 10.9282 0.512322
\(456\) − 6.92820i − 0.324443i
\(457\) 36.7846 1.72071 0.860356 0.509694i \(-0.170241\pi\)
0.860356 + 0.509694i \(0.170241\pi\)
\(458\) 14.5359 0.679218
\(459\) 0 0
\(460\) −8.19615 −0.382148
\(461\) 24.9282 1.16102 0.580511 0.814252i \(-0.302853\pi\)
0.580511 + 0.814252i \(0.302853\pi\)
\(462\) 61.1769i 2.84621i
\(463\) −23.8564 −1.10870 −0.554351 0.832283i \(-0.687033\pi\)
−0.554351 + 0.832283i \(0.687033\pi\)
\(464\) 17.3205i 0.804084i
\(465\) − 8.92820i − 0.414036i
\(466\) 10.3923i 0.481414i
\(467\) −1.60770 −0.0743953 −0.0371976 0.999308i \(-0.511843\pi\)
−0.0371976 + 0.999308i \(0.511843\pi\)
\(468\) 17.8564 0.825413
\(469\) − 27.3205i − 1.26154i
\(470\) 22.3923i 1.03288i
\(471\) 24.3923i 1.12394i
\(472\) 4.39230 0.202172
\(473\) − 2.53590i − 0.116601i
\(474\) 69.0333 3.17081
\(475\) −1.46410 −0.0671776
\(476\) 0 0
\(477\) 26.7846 1.22638
\(478\) −36.0000 −1.64660
\(479\) − 11.6603i − 0.532771i −0.963867 0.266385i \(-0.914171\pi\)
0.963867 0.266385i \(-0.0858294\pi\)
\(480\) 14.1962 0.647963
\(481\) 2.14359i 0.0977395i
\(482\) − 9.71281i − 0.442407i
\(483\) − 61.1769i − 2.78365i
\(484\) −11.3923 −0.517832
\(485\) 4.92820 0.223778
\(486\) − 32.4449i − 1.47173i
\(487\) − 24.9808i − 1.13199i −0.824410 0.565993i \(-0.808493\pi\)
0.824410 0.565993i \(-0.191507\pi\)
\(488\) − 8.53590i − 0.386402i
\(489\) −0.535898 −0.0242342
\(490\) − 0.803848i − 0.0363141i
\(491\) 19.6077 0.884883 0.442441 0.896797i \(-0.354112\pi\)
0.442441 + 0.896797i \(0.354112\pi\)
\(492\) −9.46410 −0.426675
\(493\) 0 0
\(494\) −10.1436 −0.456382
\(495\) −21.1244 −0.949469
\(496\) − 16.3397i − 0.733676i
\(497\) −31.8564 −1.42896
\(498\) − 40.3923i − 1.81002i
\(499\) 15.6603i 0.701049i 0.936554 + 0.350525i \(0.113997\pi\)
−0.936554 + 0.350525i \(0.886003\pi\)
\(500\) − 1.00000i − 0.0447214i
\(501\) −34.3923 −1.53653
\(502\) 12.0000 0.535586
\(503\) − 15.1244i − 0.674362i −0.941440 0.337181i \(-0.890527\pi\)
0.941440 0.337181i \(-0.109473\pi\)
\(504\) 21.1244i 0.940954i
\(505\) − 9.46410i − 0.421147i
\(506\) 67.1769 2.98638
\(507\) 8.19615i 0.364004i
\(508\) 14.3923 0.638555
\(509\) 19.8564 0.880120 0.440060 0.897968i \(-0.354957\pi\)
0.440060 + 0.897968i \(0.354957\pi\)
\(510\) 0 0
\(511\) −17.4641 −0.772566
\(512\) 8.66025 0.382733
\(513\) − 5.85641i − 0.258567i
\(514\) 12.0000 0.529297
\(515\) 8.92820i 0.393424i
\(516\) 1.46410i 0.0644535i
\(517\) − 61.1769i − 2.69056i
\(518\) 2.53590 0.111421
\(519\) −9.46410 −0.415428
\(520\) 6.92820i 0.303822i
\(521\) − 4.14359i − 0.181534i −0.995872 0.0907671i \(-0.971068\pi\)
0.995872 0.0907671i \(-0.0289319\pi\)
\(522\) 26.7846i 1.17233i
\(523\) −22.0000 −0.961993 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(524\) − 2.19615i − 0.0959394i
\(525\) 7.46410 0.325760
\(526\) 2.78461 0.121415
\(527\) 0 0
\(528\) −64.6410 −2.81314
\(529\) −44.1769 −1.92074
\(530\) − 10.3923i − 0.451413i
\(531\) 11.3205 0.491268
\(532\) 4.00000i 0.173422i
\(533\) − 13.8564i − 0.600188i
\(534\) 20.7846i 0.899438i
\(535\) −17.6603 −0.763519
\(536\) 17.3205 0.748132
\(537\) 30.9282i 1.33465i
\(538\) 1.60770i 0.0693127i
\(539\) 2.19615i 0.0945950i
\(540\) 4.00000 0.172133
\(541\) 39.1769i 1.68435i 0.539207 + 0.842174i \(0.318724\pi\)
−0.539207 + 0.842174i \(0.681276\pi\)
\(542\) 5.07180 0.217852
\(543\) −6.53590 −0.280482
\(544\) 0 0
\(545\) −10.0000 −0.428353
\(546\) 51.7128 2.21310
\(547\) − 39.9090i − 1.70638i −0.521597 0.853192i \(-0.674663\pi\)
0.521597 0.853192i \(-0.325337\pi\)
\(548\) 0 0
\(549\) − 22.0000i − 0.938937i
\(550\) 8.19615i 0.349485i
\(551\) − 5.07180i − 0.216066i
\(552\) 38.7846 1.65078
\(553\) 39.8564 1.69487
\(554\) 36.2487i 1.54006i
\(555\) 1.46410i 0.0621477i
\(556\) − 3.66025i − 0.155229i
\(557\) −6.92820 −0.293557 −0.146779 0.989169i \(-0.546891\pi\)
−0.146779 + 0.989169i \(0.546891\pi\)
\(558\) − 25.2679i − 1.06968i
\(559\) −2.14359 −0.0906643
\(560\) 13.6603 0.577251
\(561\) 0 0
\(562\) 22.3923 0.944562
\(563\) −27.4641 −1.15747 −0.578737 0.815514i \(-0.696454\pi\)
−0.578737 + 0.815514i \(0.696454\pi\)
\(564\) 35.3205i 1.48726i
\(565\) −17.3205 −0.728679
\(566\) 9.12436i 0.383525i
\(567\) − 6.73205i − 0.282720i
\(568\) − 20.1962i − 0.847412i
\(569\) −40.6410 −1.70376 −0.851880 0.523737i \(-0.824537\pi\)
−0.851880 + 0.523737i \(0.824537\pi\)
\(570\) −6.92820 −0.290191
\(571\) 36.4449i 1.52517i 0.646888 + 0.762585i \(0.276070\pi\)
−0.646888 + 0.762585i \(0.723930\pi\)
\(572\) 18.9282i 0.791428i
\(573\) 5.07180i 0.211877i
\(574\) −16.3923 −0.684202
\(575\) − 8.19615i − 0.341803i
\(576\) −4.46410 −0.186004
\(577\) −38.6410 −1.60865 −0.804323 0.594192i \(-0.797472\pi\)
−0.804323 + 0.594192i \(0.797472\pi\)
\(578\) 0 0
\(579\) 45.1769 1.87749
\(580\) 3.46410 0.143839
\(581\) − 23.3205i − 0.967498i
\(582\) 23.3205 0.966666
\(583\) 28.3923i 1.17589i
\(584\) − 11.0718i − 0.458154i
\(585\) 17.8564i 0.738272i
\(586\) −1.60770 −0.0664133
\(587\) −46.3923 −1.91482 −0.957408 0.288740i \(-0.906764\pi\)
−0.957408 + 0.288740i \(0.906764\pi\)
\(588\) − 1.26795i − 0.0522893i
\(589\) 4.78461i 0.197146i
\(590\) − 4.39230i − 0.180828i
\(591\) 47.3205 1.94651
\(592\) 2.67949i 0.110126i
\(593\) −19.8564 −0.815405 −0.407702 0.913115i \(-0.633670\pi\)
−0.407702 + 0.913115i \(0.633670\pi\)
\(594\) −32.7846 −1.34517
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) −27.8564 −1.14009
\(598\) − 56.7846i − 2.32210i
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 4.73205i 0.193185i
\(601\) − 8.24871i − 0.336472i −0.985747 0.168236i \(-0.946193\pi\)
0.985747 0.168236i \(-0.0538071\pi\)
\(602\) 2.53590i 0.103356i
\(603\) 44.6410 1.81792
\(604\) 1.46410 0.0595734
\(605\) − 11.3923i − 0.463163i
\(606\) − 44.7846i − 1.81925i
\(607\) − 21.6603i − 0.879163i −0.898203 0.439581i \(-0.855127\pi\)
0.898203 0.439581i \(-0.144873\pi\)
\(608\) −7.60770 −0.308533
\(609\) 25.8564i 1.04775i
\(610\) −8.53590 −0.345608
\(611\) −51.7128 −2.09208
\(612\) 0 0
\(613\) 15.8564 0.640434 0.320217 0.947344i \(-0.396244\pi\)
0.320217 + 0.947344i \(0.396244\pi\)
\(614\) −17.3205 −0.698999
\(615\) − 9.46410i − 0.381629i
\(616\) −22.3923 −0.902212
\(617\) − 27.4641i − 1.10566i −0.833293 0.552832i \(-0.813547\pi\)
0.833293 0.552832i \(-0.186453\pi\)
\(618\) 42.2487i 1.69949i
\(619\) − 38.5885i − 1.55100i −0.631347 0.775501i \(-0.717498\pi\)
0.631347 0.775501i \(-0.282502\pi\)
\(620\) −3.26795 −0.131244
\(621\) 32.7846 1.31560
\(622\) − 27.8038i − 1.11483i
\(623\) 12.0000i 0.480770i
\(624\) 54.6410i 2.18739i
\(625\) 1.00000 0.0400000
\(626\) 45.7128i 1.82705i
\(627\) 18.9282 0.755920
\(628\) 8.92820 0.356274
\(629\) 0 0
\(630\) 21.1244 0.841614
\(631\) 32.3923 1.28952 0.644759 0.764386i \(-0.276958\pi\)
0.644759 + 0.764386i \(0.276958\pi\)
\(632\) 25.2679i 1.00511i
\(633\) 27.8564 1.10719
\(634\) 43.1769i 1.71477i
\(635\) 14.3923i 0.571141i
\(636\) − 16.3923i − 0.649997i
\(637\) 1.85641 0.0735535
\(638\) −28.3923 −1.12406
\(639\) − 52.0526i − 2.05917i
\(640\) 12.1244i 0.479257i
\(641\) 31.1769i 1.23141i 0.787975 + 0.615707i \(0.211130\pi\)
−0.787975 + 0.615707i \(0.788870\pi\)
\(642\) −83.5692 −3.29821
\(643\) − 24.1962i − 0.954203i −0.878848 0.477102i \(-0.841687\pi\)
0.878848 0.477102i \(-0.158313\pi\)
\(644\) −22.3923 −0.882380
\(645\) −1.46410 −0.0576489
\(646\) 0 0
\(647\) −38.7846 −1.52478 −0.762390 0.647118i \(-0.775974\pi\)
−0.762390 + 0.647118i \(0.775974\pi\)
\(648\) 4.26795 0.167661
\(649\) 12.0000i 0.471041i
\(650\) 6.92820 0.271746
\(651\) − 24.3923i − 0.956010i
\(652\) 0.196152i 0.00768192i
\(653\) 25.6077i 1.00211i 0.865416 + 0.501053i \(0.167054\pi\)
−0.865416 + 0.501053i \(0.832946\pi\)
\(654\) −47.3205 −1.85038
\(655\) 2.19615 0.0858108
\(656\) − 17.3205i − 0.676252i
\(657\) − 28.5359i − 1.11329i
\(658\) 61.1769i 2.38492i
\(659\) −32.7846 −1.27711 −0.638554 0.769577i \(-0.720467\pi\)
−0.638554 + 0.769577i \(0.720467\pi\)
\(660\) 12.9282i 0.503230i
\(661\) 8.14359 0.316749 0.158375 0.987379i \(-0.449375\pi\)
0.158375 + 0.987379i \(0.449375\pi\)
\(662\) 11.3205 0.439984
\(663\) 0 0
\(664\) 14.7846 0.573754
\(665\) −4.00000 −0.155113
\(666\) 4.14359i 0.160561i
\(667\) 28.3923 1.09935
\(668\) 12.5885i 0.487062i
\(669\) 72.1051i 2.78774i
\(670\) − 17.3205i − 0.669150i
\(671\) 23.3205 0.900278
\(672\) 38.7846 1.49615
\(673\) − 23.4641i − 0.904475i −0.891898 0.452237i \(-0.850626\pi\)
0.891898 0.452237i \(-0.149374\pi\)
\(674\) − 11.7513i − 0.452643i
\(675\) 4.00000i 0.153960i
\(676\) 3.00000 0.115385
\(677\) 2.78461i 0.107021i 0.998567 + 0.0535106i \(0.0170411\pi\)
−0.998567 + 0.0535106i \(0.982959\pi\)
\(678\) −81.9615 −3.14771
\(679\) 13.4641 0.516705
\(680\) 0 0
\(681\) 62.1051 2.37987
\(682\) 26.7846 1.02564
\(683\) − 30.8372i − 1.17995i −0.807421 0.589976i \(-0.799137\pi\)
0.807421 0.589976i \(-0.200863\pi\)
\(684\) −6.53590 −0.249906
\(685\) 0 0
\(686\) 30.9282i 1.18084i
\(687\) 22.9282i 0.874766i
\(688\) −2.67949 −0.102155
\(689\) 24.0000 0.914327
\(690\) − 38.7846i − 1.47650i
\(691\) 38.9808i 1.48290i 0.671009 + 0.741449i \(0.265861\pi\)
−0.671009 + 0.741449i \(0.734139\pi\)
\(692\) 3.46410i 0.131685i
\(693\) −57.7128 −2.19233
\(694\) − 6.58846i − 0.250094i
\(695\) 3.66025 0.138841
\(696\) −16.3923 −0.621349
\(697\) 0 0
\(698\) −18.6795 −0.707029
\(699\) −16.3923 −0.620014
\(700\) − 2.73205i − 0.103262i
\(701\) 11.3205 0.427570 0.213785 0.976881i \(-0.431421\pi\)
0.213785 + 0.976881i \(0.431421\pi\)
\(702\) 27.7128i 1.04595i
\(703\) − 0.784610i − 0.0295921i
\(704\) − 4.73205i − 0.178346i
\(705\) −35.3205 −1.33025
\(706\) 46.3923 1.74600
\(707\) − 25.8564i − 0.972430i
\(708\) − 6.92820i − 0.260378i
\(709\) 4.53590i 0.170349i 0.996366 + 0.0851746i \(0.0271448\pi\)
−0.996366 + 0.0851746i \(0.972855\pi\)
\(710\) −20.1962 −0.757948
\(711\) 65.1244i 2.44235i
\(712\) −7.60770 −0.285110
\(713\) −26.7846 −1.00309
\(714\) 0 0
\(715\) −18.9282 −0.707875
\(716\) 11.3205 0.423067
\(717\) − 56.7846i − 2.12066i
\(718\) 37.1769 1.38743
\(719\) − 5.41154i − 0.201816i −0.994896 0.100908i \(-0.967825\pi\)
0.994896 0.100908i \(-0.0321749\pi\)
\(720\) 22.3205i 0.831836i
\(721\) 24.3923i 0.908417i
\(722\) −29.1962 −1.08657
\(723\) 15.3205 0.569776
\(724\) 2.39230i 0.0889093i
\(725\) 3.46410i 0.128654i
\(726\) − 53.9090i − 2.00075i
\(727\) 0.143594 0.00532559 0.00266279 0.999996i \(-0.499152\pi\)
0.00266279 + 0.999996i \(0.499152\pi\)
\(728\) 18.9282i 0.701526i
\(729\) 43.7846 1.62165
\(730\) −11.0718 −0.409786
\(731\) 0 0
\(732\) −13.4641 −0.497648
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) 13.5167i 0.498909i
\(735\) 1.26795 0.0467690
\(736\) − 42.5885i − 1.56983i
\(737\) 47.3205i 1.74307i
\(738\) − 26.7846i − 0.985955i
\(739\) 11.6077 0.426996 0.213498 0.976944i \(-0.431514\pi\)
0.213498 + 0.976944i \(0.431514\pi\)
\(740\) 0.535898 0.0197000
\(741\) − 16.0000i − 0.587775i
\(742\) − 28.3923i − 1.04231i
\(743\) − 22.7321i − 0.833958i −0.908916 0.416979i \(-0.863089\pi\)
0.908916 0.416979i \(-0.136911\pi\)
\(744\) 15.4641 0.566941
\(745\) − 6.00000i − 0.219823i
\(746\) 34.6410 1.26830
\(747\) 38.1051 1.39419
\(748\) 0 0
\(749\) −48.2487 −1.76297
\(750\) 4.73205 0.172790
\(751\) 43.6603i 1.59319i 0.604516 + 0.796593i \(0.293366\pi\)
−0.604516 + 0.796593i \(0.706634\pi\)
\(752\) −64.6410 −2.35722
\(753\) 18.9282i 0.689782i
\(754\) 24.0000i 0.874028i
\(755\) 1.46410i 0.0532841i
\(756\) 10.9282 0.397455
\(757\) −30.6410 −1.11367 −0.556833 0.830624i \(-0.687984\pi\)
−0.556833 + 0.830624i \(0.687984\pi\)
\(758\) 30.8372i 1.12006i
\(759\) 105.962i 3.84616i
\(760\) − 2.53590i − 0.0919867i
\(761\) −28.3923 −1.02922 −0.514610 0.857424i \(-0.672063\pi\)
−0.514610 + 0.857424i \(0.672063\pi\)
\(762\) 68.1051i 2.46719i
\(763\) −27.3205 −0.989069
\(764\) 1.85641 0.0671624
\(765\) 0 0
\(766\) −26.7846 −0.967767
\(767\) 10.1436 0.366264
\(768\) 51.9090i 1.87310i
\(769\) 36.3923 1.31234 0.656170 0.754613i \(-0.272175\pi\)
0.656170 + 0.754613i \(0.272175\pi\)
\(770\) 22.3923i 0.806963i
\(771\) 18.9282i 0.681683i
\(772\) − 16.5359i − 0.595140i
\(773\) 46.6410 1.67756 0.838780 0.544470i \(-0.183269\pi\)
0.838780 + 0.544470i \(0.183269\pi\)
\(774\) −4.14359 −0.148938
\(775\) − 3.26795i − 0.117388i
\(776\) 8.53590i 0.306421i
\(777\) 4.00000i 0.143499i
\(778\) 7.60770 0.272749
\(779\) 5.07180i 0.181716i
\(780\) 10.9282 0.391292
\(781\) 55.1769 1.97439
\(782\) 0 0
\(783\) −13.8564 −0.495188
\(784\) 2.32051 0.0828753
\(785\) 8.92820i 0.318661i
\(786\) 10.3923 0.370681
\(787\) 43.9090i 1.56519i 0.622534 + 0.782593i \(0.286103\pi\)
−0.622534 + 0.782593i \(0.713897\pi\)
\(788\) − 17.3205i − 0.617018i
\(789\) 4.39230i 0.156370i
\(790\) 25.2679 0.898993
\(791\) −47.3205 −1.68252
\(792\) − 36.5885i − 1.30011i
\(793\) − 19.7128i − 0.700023i
\(794\) − 24.2487i − 0.860555i
\(795\) 16.3923 0.581375
\(796\) 10.1962i 0.361393i
\(797\) 24.9282 0.883002 0.441501 0.897261i \(-0.354446\pi\)
0.441501 + 0.897261i \(0.354446\pi\)
\(798\) −18.9282 −0.670051
\(799\) 0 0
\(800\) 5.19615 0.183712
\(801\) −19.6077 −0.692804
\(802\) − 22.3923i − 0.790700i
\(803\) 30.2487 1.06745
\(804\) − 27.3205i − 0.963520i
\(805\) − 22.3923i − 0.789225i
\(806\) − 22.6410i − 0.797496i
\(807\) −2.53590 −0.0892679
\(808\) 16.3923 0.576679
\(809\) 55.8564i 1.96381i 0.189383 + 0.981903i \(0.439351\pi\)
−0.189383 + 0.981903i \(0.560649\pi\)
\(810\) − 4.26795i − 0.149960i
\(811\) 44.8372i 1.57445i 0.616668 + 0.787223i \(0.288482\pi\)
−0.616668 + 0.787223i \(0.711518\pi\)
\(812\) 9.46410 0.332125
\(813\) 8.00000i 0.280572i
\(814\) −4.39230 −0.153950
\(815\) −0.196152 −0.00687092
\(816\) 0 0
\(817\) 0.784610 0.0274500
\(818\) 45.0333 1.57455
\(819\) 48.7846i 1.70467i
\(820\) −3.46410 −0.120972
\(821\) − 24.9282i − 0.870000i −0.900430 0.435000i \(-0.856748\pi\)
0.900430 0.435000i \(-0.143252\pi\)
\(822\) 0 0
\(823\) 8.98076i 0.313050i 0.987674 + 0.156525i \(0.0500291\pi\)
−0.987674 + 0.156525i \(0.949971\pi\)
\(824\) −15.4641 −0.538718
\(825\) −12.9282 −0.450102
\(826\) − 12.0000i − 0.417533i
\(827\) 15.8038i 0.549554i 0.961508 + 0.274777i \(0.0886040\pi\)
−0.961508 + 0.274777i \(0.911396\pi\)
\(828\) − 36.5885i − 1.27154i
\(829\) 17.7128 0.615191 0.307596 0.951517i \(-0.400476\pi\)
0.307596 + 0.951517i \(0.400476\pi\)
\(830\) − 14.7846i − 0.513181i
\(831\) −57.1769 −1.98345
\(832\) −4.00000 −0.138675
\(833\) 0 0
\(834\) 17.3205 0.599760
\(835\) −12.5885 −0.435642
\(836\) − 6.92820i − 0.239617i
\(837\) 13.0718 0.451827
\(838\) − 66.1577i − 2.28538i
\(839\) − 19.2679i − 0.665203i −0.943067 0.332602i \(-0.892074\pi\)
0.943067 0.332602i \(-0.107926\pi\)
\(840\) 12.9282i 0.446065i
\(841\) 17.0000 0.586207
\(842\) 9.46410 0.326154
\(843\) 35.3205i 1.21650i
\(844\) − 10.1962i − 0.350966i
\(845\) 3.00000i 0.103203i
\(846\) −99.9615 −3.43675
\(847\) − 31.1244i − 1.06945i
\(848\) 30.0000 1.03020
\(849\) −14.3923 −0.493943
\(850\) 0 0
\(851\) 4.39230 0.150566
\(852\) −31.8564 −1.09138
\(853\) − 23.1769i − 0.793562i −0.917913 0.396781i \(-0.870127\pi\)
0.917913 0.396781i \(-0.129873\pi\)
\(854\) −23.3205 −0.798011
\(855\) − 6.53590i − 0.223523i
\(856\) − 30.5885i − 1.04549i
\(857\) − 31.1769i − 1.06498i −0.846435 0.532492i \(-0.821256\pi\)
0.846435 0.532492i \(-0.178744\pi\)
\(858\) −89.5692 −3.05784
\(859\) 25.4641 0.868824 0.434412 0.900714i \(-0.356956\pi\)
0.434412 + 0.900714i \(0.356956\pi\)
\(860\) 0.535898i 0.0182740i
\(861\) − 25.8564i − 0.881184i
\(862\) − 16.9808i − 0.578367i
\(863\) 23.0718 0.785373 0.392687 0.919672i \(-0.371546\pi\)
0.392687 + 0.919672i \(0.371546\pi\)
\(864\) 20.7846i 0.707107i
\(865\) −3.46410 −0.117783
\(866\) 30.9282 1.05098
\(867\) 0 0
\(868\) −8.92820 −0.303043
\(869\) −69.0333 −2.34180
\(870\) 16.3923i 0.555751i
\(871\) 40.0000 1.35535
\(872\) − 17.3205i − 0.586546i
\(873\) 22.0000i 0.744587i
\(874\) 20.7846i 0.703050i
\(875\) 2.73205 0.0923602
\(876\) −17.4641 −0.590057
\(877\) 1.21539i 0.0410408i 0.999789 + 0.0205204i \(0.00653231\pi\)
−0.999789 + 0.0205204i \(0.993468\pi\)
\(878\) − 34.7321i − 1.17215i
\(879\) − 2.53590i − 0.0855337i
\(880\) −23.6603 −0.797587
\(881\) − 41.3205i − 1.39212i −0.717982 0.696062i \(-0.754934\pi\)
0.717982 0.696062i \(-0.245066\pi\)
\(882\) 3.58846 0.120830
\(883\) −10.0000 −0.336527 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(884\) 0 0
\(885\) 6.92820 0.232889
\(886\) −22.3923 −0.752284
\(887\) 3.12436i 0.104906i 0.998623 + 0.0524528i \(0.0167039\pi\)
−0.998623 + 0.0524528i \(0.983296\pi\)
\(888\) −2.53590 −0.0850992
\(889\) 39.3205i 1.31877i
\(890\) 7.60770i 0.255011i
\(891\) 11.6603i 0.390633i
\(892\) 26.3923 0.883680
\(893\) 18.9282 0.633408
\(894\) − 28.3923i − 0.949581i
\(895\) 11.3205i 0.378403i
\(896\) 33.1244i 1.10661i
\(897\) 89.5692 2.99063
\(898\) 59.5692i 1.98785i
\(899\) 11.3205 0.377560
\(900\) 4.46410 0.148803
\(901\) 0 0
\(902\) 28.3923 0.945360
\(903\) −4.00000 −0.133112
\(904\) − 30.0000i − 0.997785i
\(905\) −2.39230 −0.0795229
\(906\) 6.92820i 0.230174i
\(907\) − 30.7321i − 1.02044i −0.860044 0.510220i \(-0.829564\pi\)
0.860044 0.510220i \(-0.170436\pi\)
\(908\) − 22.7321i − 0.754390i
\(909\) 42.2487 1.40130
\(910\) 18.9282 0.627464
\(911\) − 36.3397i − 1.20399i −0.798500 0.601995i \(-0.794373\pi\)
0.798500 0.601995i \(-0.205627\pi\)
\(912\) − 20.0000i − 0.662266i
\(913\) 40.3923i 1.33679i
\(914\) 63.7128 2.10743
\(915\) − 13.4641i − 0.445109i
\(916\) 8.39230 0.277290
\(917\) 6.00000 0.198137
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 14.1962 0.468033
\(921\) − 27.3205i − 0.900241i
\(922\) 43.1769 1.42196
\(923\) − 46.6410i − 1.53521i
\(924\) 35.3205i 1.16196i
\(925\) 0.535898i 0.0176202i
\(926\) −41.3205 −1.35788
\(927\) −39.8564 −1.30906
\(928\) 18.0000i 0.590879i
\(929\) 3.46410i 0.113653i 0.998384 + 0.0568267i \(0.0180983\pi\)
−0.998384 + 0.0568267i \(0.981902\pi\)
\(930\) − 15.4641i − 0.507088i
\(931\) −0.679492 −0.0222694
\(932\) 6.00000i 0.196537i
\(933\) 43.8564 1.43579
\(934\) −2.78461 −0.0911152
\(935\) 0 0
\(936\) −30.9282 −1.01092
\(937\) 32.6410 1.06634 0.533168 0.846010i \(-0.321001\pi\)
0.533168 + 0.846010i \(0.321001\pi\)
\(938\) − 47.3205i − 1.54507i
\(939\) −72.1051 −2.35306
\(940\) 12.9282i 0.421671i
\(941\) − 48.2487i − 1.57286i −0.617677 0.786432i \(-0.711926\pi\)
0.617677 0.786432i \(-0.288074\pi\)
\(942\) 42.2487i 1.37654i
\(943\) −28.3923 −0.924581
\(944\) 12.6795 0.412682
\(945\) 10.9282i 0.355494i
\(946\) − 4.39230i − 0.142806i
\(947\) 8.19615i 0.266339i 0.991093 + 0.133170i \(0.0425155\pi\)
−0.991093 + 0.133170i \(0.957485\pi\)
\(948\) 39.8564 1.29448
\(949\) − 25.5692i − 0.830012i
\(950\) −2.53590 −0.0822754
\(951\) −68.1051 −2.20846
\(952\) 0 0
\(953\) −8.78461 −0.284561 −0.142281 0.989826i \(-0.545444\pi\)
−0.142281 + 0.989826i \(0.545444\pi\)
\(954\) 46.3923 1.50201
\(955\) 1.85641i 0.0600719i
\(956\) −20.7846 −0.672222
\(957\) − 44.7846i − 1.44768i
\(958\) − 20.1962i − 0.652508i
\(959\) 0 0
\(960\) −2.73205 −0.0881766
\(961\) 20.3205 0.655500
\(962\) 3.71281i 0.119706i
\(963\) − 78.8372i − 2.54049i
\(964\) − 5.60770i − 0.180612i
\(965\) 16.5359 0.532309
\(966\) − 105.962i − 3.40926i
\(967\) −39.1769 −1.25984 −0.629922 0.776658i \(-0.716913\pi\)
−0.629922 + 0.776658i \(0.716913\pi\)
\(968\) 19.7321 0.634212
\(969\) 0 0
\(970\) 8.53590 0.274071
\(971\) −54.2487 −1.74092 −0.870462 0.492236i \(-0.836180\pi\)
−0.870462 + 0.492236i \(0.836180\pi\)
\(972\) − 18.7321i − 0.600831i
\(973\) 10.0000 0.320585
\(974\) − 43.2679i − 1.38639i
\(975\) 10.9282i 0.349983i
\(976\) − 24.6410i − 0.788740i
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) −0.928203 −0.0296807
\(979\) − 20.7846i − 0.664279i
\(980\) − 0.464102i − 0.0148252i
\(981\) − 44.6410i − 1.42528i
\(982\) 33.9615 1.08376
\(983\) 58.7321i 1.87326i 0.350318 + 0.936631i \(0.386073\pi\)
−0.350318 + 0.936631i \(0.613927\pi\)
\(984\) 16.3923 0.522568
\(985\) 17.3205 0.551877
\(986\) 0 0
\(987\) −96.4974 −3.07155
\(988\) −5.85641 −0.186317
\(989\) 4.39230i 0.139667i
\(990\) −36.5885 −1.16286
\(991\) − 2.98076i − 0.0946870i −0.998879 0.0473435i \(-0.984924\pi\)
0.998879 0.0473435i \(-0.0150755\pi\)
\(992\) − 16.9808i − 0.539140i
\(993\) 17.8564i 0.566656i
\(994\) −55.1769 −1.75011
\(995\) −10.1962 −0.323240
\(996\) − 23.3205i − 0.738939i
\(997\) 2.39230i 0.0757651i 0.999282 + 0.0378825i \(0.0120613\pi\)
−0.999282 + 0.0378825i \(0.987939\pi\)
\(998\) 27.1244i 0.858606i
\(999\) −2.14359 −0.0678203
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.d.e.866.4 4
17.4 even 4 85.2.a.c.1.1 2
17.13 even 4 1445.2.a.g.1.1 2
17.16 even 2 inner 1445.2.d.e.866.3 4
51.38 odd 4 765.2.a.g.1.2 2
68.55 odd 4 1360.2.a.k.1.1 2
85.4 even 4 425.2.a.e.1.2 2
85.38 odd 4 425.2.b.d.324.4 4
85.64 even 4 7225.2.a.l.1.2 2
85.72 odd 4 425.2.b.d.324.1 4
119.55 odd 4 4165.2.a.t.1.1 2
136.21 even 4 5440.2.a.bb.1.1 2
136.123 odd 4 5440.2.a.bl.1.2 2
255.89 odd 4 3825.2.a.v.1.1 2
340.259 odd 4 6800.2.a.bg.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.c.1.1 2 17.4 even 4
425.2.a.e.1.2 2 85.4 even 4
425.2.b.d.324.1 4 85.72 odd 4
425.2.b.d.324.4 4 85.38 odd 4
765.2.a.g.1.2 2 51.38 odd 4
1360.2.a.k.1.1 2 68.55 odd 4
1445.2.a.g.1.1 2 17.13 even 4
1445.2.d.e.866.3 4 17.16 even 2 inner
1445.2.d.e.866.4 4 1.1 even 1 trivial
3825.2.a.v.1.1 2 255.89 odd 4
4165.2.a.t.1.1 2 119.55 odd 4
5440.2.a.bb.1.1 2 136.21 even 4
5440.2.a.bl.1.2 2 136.123 odd 4
6800.2.a.bg.1.2 2 340.259 odd 4
7225.2.a.l.1.2 2 85.64 even 4