Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1445,2,Mod(579,1445)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1445.579");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1445 = 5 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1445.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.5383830921\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 85) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
579.1 | − | 2.30578i | − | 1.87767i | −3.31660 | 1.99336 | + | 1.01316i | −4.32949 | − | 1.54574i | 3.03579i | −0.525655 | 2.33613 | − | 4.59625i | |||||||||||
579.2 | − | 2.30578i | 1.87767i | −3.31660 | −1.99336 | − | 1.01316i | 4.32949 | 1.54574i | 3.03579i | −0.525655 | −2.33613 | + | 4.59625i | |||||||||||||
579.3 | − | 2.10495i | − | 1.80557i | −2.43082 | −0.681948 | + | 2.12954i | −3.80063 | − | 2.68338i | 0.906851i | −0.260076 | 4.48258 | + | 1.43547i | |||||||||||
579.4 | − | 2.10495i | 1.80557i | −2.43082 | 0.681948 | − | 2.12954i | 3.80063 | 2.68338i | 0.906851i | −0.260076 | −4.48258 | − | 1.43547i | |||||||||||||
579.5 | − | 1.74231i | − | 0.598698i | −1.03565 | 2.14480 | − | 0.632313i | −1.04312 | − | 1.03798i | − | 1.68020i | 2.64156 | −1.10169 | − | 3.73692i | ||||||||||
579.6 | − | 1.74231i | 0.598698i | −1.03565 | −2.14480 | + | 0.632313i | 1.04312 | 1.03798i | − | 1.68020i | 2.64156 | 1.10169 | + | 3.73692i | ||||||||||||
579.7 | − | 0.951739i | − | 2.47483i | 1.09419 | 2.23233 | + | 0.129310i | −2.35540 | − | 0.533377i | − | 2.94486i | −3.12480 | 0.123069 | − | 2.12459i | ||||||||||
579.8 | − | 0.951739i | 2.47483i | 1.09419 | −2.23233 | − | 0.129310i | 2.35540 | 0.533377i | − | 2.94486i | −3.12480 | −0.123069 | + | 2.12459i | ||||||||||||
579.9 | − | 0.499161i | − | 0.171281i | 1.75084 | 1.06651 | − | 1.96534i | −0.0854968 | − | 3.87301i | − | 1.87227i | 2.97066 | −0.981018 | − | 0.532362i | ||||||||||
579.10 | − | 0.499161i | 0.171281i | 1.75084 | −1.06651 | + | 1.96534i | 0.0854968 | 3.87301i | − | 1.87227i | 2.97066 | 0.981018 | + | 0.532362i | ||||||||||||
579.11 | − | 0.248918i | − | 1.64368i | 1.93804 | 0.916806 | − | 2.03948i | −0.409143 | 1.43109i | − | 0.980251i | 0.298307 | −0.507663 | − | 0.228210i | |||||||||||
579.12 | − | 0.248918i | 1.64368i | 1.93804 | −0.916806 | + | 2.03948i | 0.409143 | − | 1.43109i | − | 0.980251i | 0.298307 | 0.507663 | + | 0.228210i | |||||||||||
579.13 | 0.248918i | − | 1.64368i | 1.93804 | −0.916806 | − | 2.03948i | 0.409143 | 1.43109i | 0.980251i | 0.298307 | 0.507663 | − | 0.228210i | |||||||||||||
579.14 | 0.248918i | 1.64368i | 1.93804 | 0.916806 | + | 2.03948i | −0.409143 | − | 1.43109i | 0.980251i | 0.298307 | −0.507663 | + | 0.228210i | |||||||||||||
579.15 | 0.499161i | − | 0.171281i | 1.75084 | −1.06651 | − | 1.96534i | 0.0854968 | − | 3.87301i | 1.87227i | 2.97066 | 0.981018 | − | 0.532362i | ||||||||||||
579.16 | 0.499161i | 0.171281i | 1.75084 | 1.06651 | + | 1.96534i | −0.0854968 | 3.87301i | 1.87227i | 2.97066 | −0.981018 | + | 0.532362i | ||||||||||||||
579.17 | 0.951739i | − | 2.47483i | 1.09419 | −2.23233 | + | 0.129310i | 2.35540 | − | 0.533377i | 2.94486i | −3.12480 | −0.123069 | − | 2.12459i | ||||||||||||
579.18 | 0.951739i | 2.47483i | 1.09419 | 2.23233 | − | 0.129310i | −2.35540 | 0.533377i | 2.94486i | −3.12480 | 0.123069 | + | 2.12459i | ||||||||||||||
579.19 | 1.74231i | − | 0.598698i | −1.03565 | −2.14480 | − | 0.632313i | 1.04312 | − | 1.03798i | 1.68020i | 2.64156 | 1.10169 | − | 3.73692i | ||||||||||||
579.20 | 1.74231i | 0.598698i | −1.03565 | 2.14480 | + | 0.632313i | −1.04312 | 1.03798i | 1.68020i | 2.64156 | −1.10169 | + | 3.73692i | ||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
17.b | even | 2 | 1 | inner |
85.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1445.2.b.i | 24 | |
5.b | even | 2 | 1 | inner | 1445.2.b.i | 24 | |
5.c | odd | 4 | 2 | 7225.2.a.by | 24 | ||
17.b | even | 2 | 1 | inner | 1445.2.b.i | 24 | |
17.e | odd | 16 | 2 | 85.2.m.a | ✓ | 24 | |
51.i | even | 16 | 2 | 765.2.bh.b | 24 | ||
85.c | even | 2 | 1 | inner | 1445.2.b.i | 24 | |
85.g | odd | 4 | 2 | 7225.2.a.by | 24 | ||
85.o | even | 16 | 2 | 425.2.m.e | 24 | ||
85.p | odd | 16 | 2 | 85.2.m.a | ✓ | 24 | |
85.r | even | 16 | 2 | 425.2.m.e | 24 | ||
255.be | even | 16 | 2 | 765.2.bh.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
85.2.m.a | ✓ | 24 | 17.e | odd | 16 | 2 | |
85.2.m.a | ✓ | 24 | 85.p | odd | 16 | 2 | |
425.2.m.e | 24 | 85.o | even | 16 | 2 | ||
425.2.m.e | 24 | 85.r | even | 16 | 2 | ||
765.2.bh.b | 24 | 51.i | even | 16 | 2 | ||
765.2.bh.b | 24 | 255.be | even | 16 | 2 | ||
1445.2.b.i | 24 | 1.a | even | 1 | 1 | trivial | |
1445.2.b.i | 24 | 5.b | even | 2 | 1 | inner | |
1445.2.b.i | 24 | 17.b | even | 2 | 1 | inner | |
1445.2.b.i | 24 | 85.c | even | 2 | 1 | inner | |
7225.2.a.by | 24 | 5.c | odd | 4 | 2 | ||
7225.2.a.by | 24 | 85.g | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1445, [\chi])\):
\( T_{2}^{12} + 14T_{2}^{10} + 69T_{2}^{8} + 140T_{2}^{6} + 103T_{2}^{4} + 22T_{2}^{2} + 1 \) |
\( T_{11}^{12} - 60T_{11}^{10} + 1270T_{11}^{8} - 11252T_{11}^{6} + 38776T_{11}^{4} - 27936T_{11}^{2} + 162 \) |