Properties

Label 1445.2.b.f.579.6
Level $1445$
Weight $2$
Character 1445.579
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(579,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.579"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{10} - 9x^{8} + 228x^{6} - 225x^{4} - 1250x^{2} + 15625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 579.6
Root \(-2.08313 + 0.812746i\) of defining polynomial
Character \(\chi\) \(=\) 1445.579
Dual form 1445.2.b.f.579.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.232389i q^{2} +2.39435i q^{3} +1.94600 q^{4} +(2.08313 - 0.812746i) q^{5} +0.556420 q^{6} -2.06570i q^{7} -0.917007i q^{8} -2.73289 q^{9} +(-0.188874 - 0.484098i) q^{10} +0.480046 q^{11} +4.65939i q^{12} -4.07073i q^{13} -0.480046 q^{14} +(1.94600 + 4.98774i) q^{15} +3.67889 q^{16} +0.635095i q^{18} -4.00000 q^{19} +(4.05377 - 1.58160i) q^{20} +4.94600 q^{21} -0.111558i q^{22} +8.15123i q^{23} +2.19563 q^{24} +(3.67889 - 3.38612i) q^{25} -0.945995 q^{26} +0.639548i q^{27} -4.01984i q^{28} +1.03647 q^{29} +(1.15910 - 0.452229i) q^{30} +6.06053 q^{31} -2.68895i q^{32} +1.14940i q^{33} +(-1.67889 - 4.30312i) q^{35} -5.31820 q^{36} +1.29684i q^{37} +0.929557i q^{38} +9.74675 q^{39} +(-0.745294 - 1.91025i) q^{40} +10.7832 q^{41} -1.14940i q^{42} -7.45685i q^{43} +0.934167 q^{44} +(-5.69298 + 2.22115i) q^{45} +1.89426 q^{46} +3.60596i q^{47} +8.80853i q^{48} +2.73289 q^{49} +(-0.786897 - 0.854934i) q^{50} -7.92163i q^{52} -6.14969i q^{53} +0.148624 q^{54} +(1.00000 - 0.390156i) q^{55} -1.89426 q^{56} -9.57738i q^{57} -0.240864i q^{58} -6.00000 q^{59} +(3.78690 + 9.70612i) q^{60} -5.65685 q^{61} -1.40840i q^{62} +5.64533i q^{63} +6.73289 q^{64} +(-3.30847 - 8.47988i) q^{65} +0.267107 q^{66} +3.14118i q^{67} -19.5169 q^{69} +(-1.00000 + 0.390156i) q^{70} -1.81789 q^{71} +2.50608i q^{72} +12.1711i q^{73} +0.301373 q^{74} +(8.10753 + 8.80853i) q^{75} -7.78398 q^{76} -0.991630i q^{77} -2.26504i q^{78} -10.2268 q^{79} +(7.66361 - 2.99000i) q^{80} -9.72998 q^{81} -2.50590i q^{82} -2.23672i q^{83} +9.62488 q^{84} -1.73289 q^{86} +2.48166i q^{87} -0.440206i q^{88} +9.37220 q^{89} +(0.516171 + 1.32299i) q^{90} -8.40891 q^{91} +15.8623i q^{92} +14.5110i q^{93} +0.837986 q^{94} +(-8.33253 + 3.25098i) q^{95} +6.43827 q^{96} -16.7189i q^{97} -0.635095i q^{98} -1.31191 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 28 q^{9} - 12 q^{15} + 4 q^{16} - 48 q^{19} + 24 q^{21} + 4 q^{25} + 24 q^{26} - 52 q^{30} + 20 q^{35} + 68 q^{36} + 28 q^{49} - 40 q^{50} + 12 q^{55} - 72 q^{59} + 76 q^{60} + 76 q^{64}+ \cdots - 96 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.232389i 0.164324i −0.996619 0.0821620i \(-0.973817\pi\)
0.996619 0.0821620i \(-0.0261825\pi\)
\(3\) 2.39435i 1.38238i 0.722675 + 0.691188i \(0.242912\pi\)
−0.722675 + 0.691188i \(0.757088\pi\)
\(4\) 1.94600 0.972998
\(5\) 2.08313 0.812746i 0.931605 0.363471i
\(6\) 0.556420 0.227158
\(7\) 2.06570i 0.780760i −0.920654 0.390380i \(-0.872344\pi\)
0.920654 0.390380i \(-0.127656\pi\)
\(8\) 0.917007i 0.324211i
\(9\) −2.73289 −0.910964
\(10\) −0.188874 0.484098i −0.0597270 0.153085i
\(11\) 0.480046 0.144739 0.0723697 0.997378i \(-0.476944\pi\)
0.0723697 + 0.997378i \(0.476944\pi\)
\(12\) 4.65939i 1.34505i
\(13\) 4.07073i 1.12902i −0.825427 0.564509i \(-0.809065\pi\)
0.825427 0.564509i \(-0.190935\pi\)
\(14\) −0.480046 −0.128298
\(15\) 1.94600 + 4.98774i 0.502454 + 1.28783i
\(16\) 3.67889 0.919722
\(17\) 0 0
\(18\) 0.635095i 0.149693i
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 4.05377 1.58160i 0.906450 0.353656i
\(21\) 4.94600 1.07930
\(22\) 0.111558i 0.0237842i
\(23\) 8.15123i 1.69965i 0.527065 + 0.849825i \(0.323292\pi\)
−0.527065 + 0.849825i \(0.676708\pi\)
\(24\) 2.19563 0.448182
\(25\) 3.67889 3.38612i 0.735778 0.677223i
\(26\) −0.945995 −0.185525
\(27\) 0.639548i 0.123081i
\(28\) 4.01984i 0.759678i
\(29\) 1.03647 0.192467 0.0962335 0.995359i \(-0.469320\pi\)
0.0962335 + 0.995359i \(0.469320\pi\)
\(30\) 1.15910 0.452229i 0.211621 0.0825653i
\(31\) 6.06053 1.08850 0.544251 0.838922i \(-0.316814\pi\)
0.544251 + 0.838922i \(0.316814\pi\)
\(32\) 2.68895i 0.475343i
\(33\) 1.14940i 0.200084i
\(34\) 0 0
\(35\) −1.67889 4.30312i −0.283784 0.727361i
\(36\) −5.31820 −0.886366
\(37\) 1.29684i 0.213200i 0.994302 + 0.106600i \(0.0339964\pi\)
−0.994302 + 0.106600i \(0.966004\pi\)
\(38\) 0.929557i 0.150794i
\(39\) 9.74675 1.56073
\(40\) −0.745294 1.91025i −0.117841 0.302037i
\(41\) 10.7832 1.68405 0.842027 0.539435i \(-0.181362\pi\)
0.842027 + 0.539435i \(0.181362\pi\)
\(42\) 1.14940i 0.177356i
\(43\) 7.45685i 1.13716i −0.822628 0.568580i \(-0.807493\pi\)
0.822628 0.568580i \(-0.192507\pi\)
\(44\) 0.934167 0.140831
\(45\) −5.69298 + 2.22115i −0.848659 + 0.331109i
\(46\) 1.89426 0.279293
\(47\) 3.60596i 0.525983i 0.964798 + 0.262991i \(0.0847091\pi\)
−0.964798 + 0.262991i \(0.915291\pi\)
\(48\) 8.80853i 1.27140i
\(49\) 2.73289 0.390413
\(50\) −0.786897 0.854934i −0.111284 0.120906i
\(51\) 0 0
\(52\) 7.92163i 1.09853i
\(53\) 6.14969i 0.844725i −0.906427 0.422362i \(-0.861201\pi\)
0.906427 0.422362i \(-0.138799\pi\)
\(54\) 0.148624 0.0202252
\(55\) 1.00000 0.390156i 0.134840 0.0526086i
\(56\) −1.89426 −0.253131
\(57\) 9.57738i 1.26856i
\(58\) 0.240864i 0.0316270i
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 3.78690 + 9.70612i 0.488886 + 1.25305i
\(61\) −5.65685 −0.724286 −0.362143 0.932123i \(-0.617955\pi\)
−0.362143 + 0.932123i \(0.617955\pi\)
\(62\) 1.40840i 0.178867i
\(63\) 5.64533i 0.711245i
\(64\) 6.73289 0.841612
\(65\) −3.30847 8.47988i −0.410366 1.05180i
\(66\) 0.267107 0.0328787
\(67\) 3.14118i 0.383756i 0.981419 + 0.191878i \(0.0614578\pi\)
−0.981419 + 0.191878i \(0.938542\pi\)
\(68\) 0 0
\(69\) −19.5169 −2.34956
\(70\) −1.00000 + 0.390156i −0.119523 + 0.0466325i
\(71\) −1.81789 −0.215743 −0.107872 0.994165i \(-0.534404\pi\)
−0.107872 + 0.994165i \(0.534404\pi\)
\(72\) 2.50608i 0.295345i
\(73\) 12.1711i 1.42452i 0.701918 + 0.712258i \(0.252327\pi\)
−0.701918 + 0.712258i \(0.747673\pi\)
\(74\) 0.301373 0.0350339
\(75\) 8.10753 + 8.80853i 0.936177 + 1.01712i
\(76\) −7.78398 −0.892884
\(77\) 0.991630i 0.113007i
\(78\) 2.26504i 0.256465i
\(79\) −10.2268 −1.15060 −0.575302 0.817941i \(-0.695115\pi\)
−0.575302 + 0.817941i \(0.695115\pi\)
\(80\) 7.66361 2.99000i 0.856818 0.334292i
\(81\) −9.72998 −1.08111
\(82\) 2.50590i 0.276731i
\(83\) 2.23672i 0.245512i −0.992437 0.122756i \(-0.960827\pi\)
0.992437 0.122756i \(-0.0391732\pi\)
\(84\) 9.62488 1.05016
\(85\) 0 0
\(86\) −1.73289 −0.186863
\(87\) 2.48166i 0.266062i
\(88\) 0.440206i 0.0469261i
\(89\) 9.37220 0.993451 0.496726 0.867908i \(-0.334536\pi\)
0.496726 + 0.867908i \(0.334536\pi\)
\(90\) 0.516171 + 1.32299i 0.0544092 + 0.139455i
\(91\) −8.40891 −0.881493
\(92\) 15.8623i 1.65376i
\(93\) 14.5110i 1.50472i
\(94\) 0.837986 0.0864316
\(95\) −8.33253 + 3.25098i −0.854900 + 0.333544i
\(96\) 6.43827 0.657103
\(97\) 16.7189i 1.69755i −0.528757 0.848774i \(-0.677342\pi\)
0.528757 0.848774i \(-0.322658\pi\)
\(98\) 0.635095i 0.0641543i
\(99\) −1.31191 −0.131852
\(100\) 7.15910 6.58937i 0.715910 0.658937i
\(101\) −4.41178 −0.438989 −0.219494 0.975614i \(-0.570441\pi\)
−0.219494 + 0.975614i \(0.570441\pi\)
\(102\) 0 0
\(103\) 17.4323i 1.71766i 0.512262 + 0.858829i \(0.328808\pi\)
−0.512262 + 0.858829i \(0.671192\pi\)
\(104\) −3.73289 −0.366040
\(105\) 10.3032 4.01984i 1.00549 0.392296i
\(106\) −1.42912 −0.138809
\(107\) 5.21115i 0.503781i −0.967756 0.251890i \(-0.918948\pi\)
0.967756 0.251890i \(-0.0810522\pi\)
\(108\) 1.24456i 0.119758i
\(109\) −8.10753 −0.776561 −0.388280 0.921541i \(-0.626931\pi\)
−0.388280 + 0.921541i \(0.626931\pi\)
\(110\) −0.0906680 0.232389i −0.00864485 0.0221575i
\(111\) −3.10509 −0.294722
\(112\) 7.59947i 0.718082i
\(113\) 3.47410i 0.326816i 0.986559 + 0.163408i \(0.0522487\pi\)
−0.986559 + 0.163408i \(0.947751\pi\)
\(114\) −2.22568 −0.208454
\(115\) 6.62488 + 16.9801i 0.617774 + 1.58340i
\(116\) 2.01696 0.187270
\(117\) 11.1249i 1.02850i
\(118\) 1.39434i 0.128359i
\(119\) 0 0
\(120\) 4.57379 1.78449i 0.417528 0.162901i
\(121\) −10.7696 −0.979051
\(122\) 1.31459i 0.119018i
\(123\) 25.8187i 2.32800i
\(124\) 11.7938 1.05911
\(125\) 4.91156 10.0437i 0.439303 0.898339i
\(126\) 1.31191 0.116875
\(127\) 2.98341i 0.264735i 0.991201 + 0.132367i \(0.0422579\pi\)
−0.991201 + 0.132367i \(0.957742\pi\)
\(128\) 6.94255i 0.613640i
\(129\) 17.8543 1.57198
\(130\) −1.97063 + 0.768854i −0.172836 + 0.0674329i
\(131\) 7.19377 0.628522 0.314261 0.949337i \(-0.398243\pi\)
0.314261 + 0.949337i \(0.398243\pi\)
\(132\) 2.23672i 0.194681i
\(133\) 8.26279i 0.716475i
\(134\) 0.729976 0.0630603
\(135\) 0.519790 + 1.33226i 0.0447364 + 0.114663i
\(136\) 0 0
\(137\) 0.526852i 0.0450120i −0.999747 0.0225060i \(-0.992836\pi\)
0.999747 0.0225060i \(-0.00716448\pi\)
\(138\) 4.53551i 0.386089i
\(139\) −17.6756 −1.49923 −0.749613 0.661877i \(-0.769760\pi\)
−0.749613 + 0.661877i \(0.769760\pi\)
\(140\) −3.26711 8.37386i −0.276121 0.707720i
\(141\) −8.63391 −0.727106
\(142\) 0.422457i 0.0354518i
\(143\) 1.95414i 0.163413i
\(144\) −10.0540 −0.837834
\(145\) 2.15910 0.842384i 0.179303 0.0699562i
\(146\) 2.82843 0.234082
\(147\) 6.54349i 0.539698i
\(148\) 2.52365i 0.207443i
\(149\) −7.32111 −0.599769 −0.299884 0.953976i \(-0.596948\pi\)
−0.299884 + 0.953976i \(0.596948\pi\)
\(150\) 2.04701 1.88410i 0.167138 0.153836i
\(151\) 7.46579 0.607557 0.303778 0.952743i \(-0.401752\pi\)
0.303778 + 0.952743i \(0.401752\pi\)
\(152\) 3.66803i 0.297516i
\(153\) 0 0
\(154\) −0.230444 −0.0185697
\(155\) 12.6249 4.92567i 1.01405 0.395639i
\(156\) 18.9671 1.51859
\(157\) 12.4571i 0.994188i −0.867697 0.497094i \(-0.834400\pi\)
0.867697 0.497094i \(-0.165600\pi\)
\(158\) 2.37660i 0.189072i
\(159\) 14.7245 1.16773
\(160\) −2.18543 5.60144i −0.172774 0.442833i
\(161\) 16.8380 1.32702
\(162\) 2.26114i 0.177652i
\(163\) 8.56767i 0.671071i 0.942027 + 0.335536i \(0.108917\pi\)
−0.942027 + 0.335536i \(0.891083\pi\)
\(164\) 20.9841 1.63858
\(165\) 0.934167 + 2.39435i 0.0727248 + 0.186400i
\(166\) −0.519790 −0.0403435
\(167\) 9.44808i 0.731114i −0.930789 0.365557i \(-0.880878\pi\)
0.930789 0.365557i \(-0.119122\pi\)
\(168\) 4.53551i 0.349922i
\(169\) −3.57088 −0.274683
\(170\) 0 0
\(171\) 10.9316 0.835958
\(172\) 14.5110i 1.10645i
\(173\) 16.5433i 1.25777i 0.777500 + 0.628883i \(0.216488\pi\)
−0.777500 + 0.628883i \(0.783512\pi\)
\(174\) 0.576711 0.0437204
\(175\) −6.99469 7.59947i −0.528749 0.574466i
\(176\) 1.76604 0.133120
\(177\) 14.3661i 1.07982i
\(178\) 2.17800i 0.163248i
\(179\) −19.5313 −1.45984 −0.729919 0.683534i \(-0.760442\pi\)
−0.729919 + 0.683534i \(0.760442\pi\)
\(180\) −11.0785 + 4.32234i −0.825743 + 0.322168i
\(181\) −10.4818 −0.779109 −0.389555 0.921003i \(-0.627371\pi\)
−0.389555 + 0.921003i \(0.627371\pi\)
\(182\) 1.95414i 0.144851i
\(183\) 13.5445i 1.00124i
\(184\) 7.47474 0.551045
\(185\) 1.05400 + 2.70150i 0.0774920 + 0.198618i
\(186\) 3.37220 0.247262
\(187\) 0 0
\(188\) 7.01717i 0.511780i
\(189\) 1.32111 0.0960968
\(190\) 0.755494 + 1.93639i 0.0548093 + 0.140481i
\(191\) 5.32111 0.385022 0.192511 0.981295i \(-0.438337\pi\)
0.192511 + 0.981295i \(0.438337\pi\)
\(192\) 16.1209i 1.16342i
\(193\) 12.4820i 0.898472i 0.893413 + 0.449236i \(0.148304\pi\)
−0.893413 + 0.449236i \(0.851696\pi\)
\(194\) −3.88529 −0.278948
\(195\) 20.3038 7.92163i 1.45398 0.567280i
\(196\) 5.31820 0.379871
\(197\) 0.551763i 0.0393115i 0.999807 + 0.0196558i \(0.00625702\pi\)
−0.999807 + 0.0196558i \(0.993743\pi\)
\(198\) 0.304875i 0.0216665i
\(199\) −17.5992 −1.24758 −0.623788 0.781593i \(-0.714407\pi\)
−0.623788 + 0.781593i \(0.714407\pi\)
\(200\) −3.10509 3.37357i −0.219563 0.238547i
\(201\) −7.52106 −0.530495
\(202\) 1.02525i 0.0721364i
\(203\) 2.14103i 0.150271i
\(204\) 0 0
\(205\) 22.4629 8.76401i 1.56887 0.612105i
\(206\) 4.05109 0.282253
\(207\) 22.2764i 1.54832i
\(208\) 14.9758i 1.03838i
\(209\) −1.92018 −0.132822
\(210\) −0.934167 2.39435i −0.0644637 0.165226i
\(211\) −12.8302 −0.883269 −0.441634 0.897195i \(-0.645601\pi\)
−0.441634 + 0.897195i \(0.645601\pi\)
\(212\) 11.9673i 0.821915i
\(213\) 4.35265i 0.298238i
\(214\) −1.21102 −0.0827833
\(215\) −6.06053 15.5336i −0.413324 1.05938i
\(216\) 0.586470 0.0399042
\(217\) 12.5192i 0.849860i
\(218\) 1.88410i 0.127608i
\(219\) −29.1418 −1.96922
\(220\) 1.94600 0.759241i 0.131199 0.0511880i
\(221\) 0 0
\(222\) 0.721590i 0.0484300i
\(223\) 4.07073i 0.272597i −0.990668 0.136298i \(-0.956479\pi\)
0.990668 0.136298i \(-0.0435206\pi\)
\(224\) −5.55456 −0.371129
\(225\) −10.0540 + 9.25389i −0.670267 + 0.616926i
\(226\) 0.807344 0.0537037
\(227\) 15.7745i 1.04699i 0.852029 + 0.523494i \(0.175372\pi\)
−0.852029 + 0.523494i \(0.824628\pi\)
\(228\) 18.6375i 1.23430i
\(229\) −14.9460 −0.987659 −0.493830 0.869559i \(-0.664403\pi\)
−0.493830 + 0.869559i \(0.664403\pi\)
\(230\) 3.94600 1.53955i 0.260191 0.101515i
\(231\) 2.37431 0.156218
\(232\) 0.950447i 0.0623999i
\(233\) 0.727332i 0.0476491i −0.999716 0.0238246i \(-0.992416\pi\)
0.999716 0.0238246i \(-0.00758431\pi\)
\(234\) 2.58530 0.169007
\(235\) 2.93073 + 7.51169i 0.191179 + 0.490008i
\(236\) −11.6760 −0.760041
\(237\) 24.4865i 1.59057i
\(238\) 0 0
\(239\) −9.57379 −0.619277 −0.309639 0.950854i \(-0.600208\pi\)
−0.309639 + 0.950854i \(0.600208\pi\)
\(240\) 7.15910 + 18.3493i 0.462118 + 1.18444i
\(241\) −8.48528 −0.546585 −0.273293 0.961931i \(-0.588113\pi\)
−0.273293 + 0.961931i \(0.588113\pi\)
\(242\) 2.50273i 0.160882i
\(243\) 21.3783i 1.37142i
\(244\) −11.0082 −0.704729
\(245\) 5.69298 2.22115i 0.363711 0.141904i
\(246\) 6.00000 0.382546
\(247\) 16.2829i 1.03606i
\(248\) 5.55755i 0.352905i
\(249\) 5.35548 0.339390
\(250\) −2.33406 1.14139i −0.147619 0.0721881i
\(251\) 6.03666 0.381031 0.190515 0.981684i \(-0.438984\pi\)
0.190515 + 0.981684i \(0.438984\pi\)
\(252\) 10.9858i 0.692039i
\(253\) 3.91297i 0.246006i
\(254\) 0.693313 0.0435023
\(255\) 0 0
\(256\) 11.8524 0.740776
\(257\) 27.2752i 1.70138i 0.525670 + 0.850689i \(0.323815\pi\)
−0.525670 + 0.850689i \(0.676185\pi\)
\(258\) 4.14914i 0.258314i
\(259\) 2.67889 0.166458
\(260\) −6.43827 16.5018i −0.399285 1.02340i
\(261\) −2.83255 −0.175331
\(262\) 1.67175i 0.103281i
\(263\) 12.3700i 0.762765i −0.924417 0.381382i \(-0.875448\pi\)
0.924417 0.381382i \(-0.124552\pi\)
\(264\) 1.05400 0.0648695
\(265\) −4.99813 12.8106i −0.307033 0.786950i
\(266\) 1.92018 0.117734
\(267\) 22.4403i 1.37332i
\(268\) 6.11272i 0.373394i
\(269\) −20.0758 −1.22405 −0.612023 0.790840i \(-0.709644\pi\)
−0.612023 + 0.790840i \(0.709644\pi\)
\(270\) 0.309604 0.120794i 0.0188419 0.00735127i
\(271\) −24.2102 −1.47066 −0.735332 0.677707i \(-0.762974\pi\)
−0.735332 + 0.677707i \(0.762974\pi\)
\(272\) 0 0
\(273\) 20.1338i 1.21855i
\(274\) −0.122435 −0.00739655
\(275\) 1.76604 1.62549i 0.106496 0.0980209i
\(276\) −37.9797 −2.28611
\(277\) 6.76058i 0.406204i −0.979158 0.203102i \(-0.934898\pi\)
0.979158 0.203102i \(-0.0651023\pi\)
\(278\) 4.10762i 0.246359i
\(279\) −16.5628 −0.991587
\(280\) −3.94600 + 1.53955i −0.235818 + 0.0920058i
\(281\) 18.0367 1.07598 0.537989 0.842952i \(-0.319184\pi\)
0.537989 + 0.842952i \(0.319184\pi\)
\(282\) 2.00643i 0.119481i
\(283\) 25.2165i 1.49897i −0.662023 0.749484i \(-0.730302\pi\)
0.662023 0.749484i \(-0.269698\pi\)
\(284\) −3.53760 −0.209918
\(285\) −7.78398 19.9510i −0.461083 1.18179i
\(286\) −0.454121 −0.0268528
\(287\) 22.2749i 1.31484i
\(288\) 7.34861i 0.433021i
\(289\) 0 0
\(290\) −0.195761 0.501751i −0.0114955 0.0294639i
\(291\) 40.0308 2.34665
\(292\) 23.6848i 1.38605i
\(293\) 26.2584i 1.53403i −0.641627 0.767017i \(-0.721740\pi\)
0.641627 0.767017i \(-0.278260\pi\)
\(294\) 1.52064 0.0886854
\(295\) −12.4988 + 4.87648i −0.727708 + 0.283919i
\(296\) 1.18922 0.0691217
\(297\) 0.307012i 0.0178147i
\(298\) 1.70135i 0.0985565i
\(299\) 33.1815 1.91894
\(300\) 15.7772 + 17.1414i 0.910898 + 0.989657i
\(301\) −15.4036 −0.887849
\(302\) 1.73497i 0.0998362i
\(303\) 10.5633i 0.606847i
\(304\) −14.7156 −0.843995
\(305\) −11.7840 + 4.59759i −0.674749 + 0.263257i
\(306\) 0 0
\(307\) 13.9136i 0.794088i 0.917800 + 0.397044i \(0.129964\pi\)
−0.917800 + 0.397044i \(0.870036\pi\)
\(308\) 1.92971i 0.109955i
\(309\) −41.7390 −2.37445
\(310\) −1.14467 2.93389i −0.0650130 0.166634i
\(311\) −8.74033 −0.495619 −0.247809 0.968809i \(-0.579711\pi\)
−0.247809 + 0.968809i \(0.579711\pi\)
\(312\) 8.93784i 0.506005i
\(313\) 6.94820i 0.392735i 0.980530 + 0.196368i \(0.0629146\pi\)
−0.980530 + 0.196368i \(0.937085\pi\)
\(314\) −2.89491 −0.163369
\(315\) 4.58822 + 11.7600i 0.258517 + 0.662600i
\(316\) −19.9013 −1.11953
\(317\) 4.21918i 0.236973i 0.992956 + 0.118486i \(0.0378042\pi\)
−0.992956 + 0.118486i \(0.962196\pi\)
\(318\) 3.42181i 0.191886i
\(319\) 0.497552 0.0278575
\(320\) 14.0255 5.47213i 0.784050 0.305901i
\(321\) 12.4773 0.696415
\(322\) 3.91297i 0.218061i
\(323\) 0 0
\(324\) −18.9345 −1.05192
\(325\) −13.7840 14.9758i −0.764598 0.830707i
\(326\) 1.99103 0.110273
\(327\) 19.4122i 1.07350i
\(328\) 9.88828i 0.545989i
\(329\) 7.44881 0.410666
\(330\) 0.556420 0.217091i 0.0306299 0.0119504i
\(331\) 13.6760 0.751699 0.375850 0.926681i \(-0.377351\pi\)
0.375850 + 0.926681i \(0.377351\pi\)
\(332\) 4.35265i 0.238883i
\(333\) 3.54414i 0.194217i
\(334\) −2.19563 −0.120140
\(335\) 2.55298 + 6.54349i 0.139484 + 0.357509i
\(336\) 18.1958 0.992660
\(337\) 6.48422i 0.353218i 0.984281 + 0.176609i \(0.0565128\pi\)
−0.984281 + 0.176609i \(0.943487\pi\)
\(338\) 0.829834i 0.0451370i
\(339\) −8.31820 −0.451782
\(340\) 0 0
\(341\) 2.90933 0.157549
\(342\) 2.54038i 0.137368i
\(343\) 20.1052i 1.08558i
\(344\) −6.83799 −0.368679
\(345\) −40.6562 + 15.8623i −2.18886 + 0.853995i
\(346\) 3.84449 0.206681
\(347\) 5.00578i 0.268724i −0.990932 0.134362i \(-0.957101\pi\)
0.990932 0.134362i \(-0.0428986\pi\)
\(348\) 4.82930i 0.258878i
\(349\) 9.21310 0.493166 0.246583 0.969122i \(-0.420692\pi\)
0.246583 + 0.969122i \(0.420692\pi\)
\(350\) −1.76604 + 1.62549i −0.0943986 + 0.0868862i
\(351\) 2.60343 0.138961
\(352\) 1.29082i 0.0688009i
\(353\) 13.8600i 0.737693i 0.929490 + 0.368847i \(0.120247\pi\)
−0.929490 + 0.368847i \(0.879753\pi\)
\(354\) −3.33852 −0.177440
\(355\) −3.78690 + 1.47748i −0.200988 + 0.0784165i
\(356\) 18.2383 0.966626
\(357\) 0 0
\(358\) 4.53887i 0.239886i
\(359\) 11.5024 0.607076 0.303538 0.952819i \(-0.401832\pi\)
0.303538 + 0.952819i \(0.401832\pi\)
\(360\) 2.03681 + 5.22050i 0.107349 + 0.275145i
\(361\) −3.00000 −0.157895
\(362\) 2.43587i 0.128026i
\(363\) 25.7860i 1.35342i
\(364\) −16.3637 −0.857691
\(365\) 9.89199 + 25.3540i 0.517770 + 1.32709i
\(366\) −3.14759 −0.164527
\(367\) 19.4241i 1.01393i 0.861966 + 0.506966i \(0.169233\pi\)
−0.861966 + 0.506966i \(0.830767\pi\)
\(368\) 29.9875i 1.56321i
\(369\) −29.4694 −1.53411
\(370\) 0.627799 0.244939i 0.0326377 0.0127338i
\(371\) −12.7034 −0.659528
\(372\) 28.2383i 1.46409i
\(373\) 5.58922i 0.289399i −0.989476 0.144699i \(-0.953779\pi\)
0.989476 0.144699i \(-0.0462215\pi\)
\(374\) 0 0
\(375\) 24.0482 + 11.7600i 1.24184 + 0.607282i
\(376\) 3.30669 0.170529
\(377\) 4.21918i 0.217299i
\(378\) 0.307012i 0.0157910i
\(379\) −0.556420 −0.0285814 −0.0142907 0.999898i \(-0.504549\pi\)
−0.0142907 + 0.999898i \(0.504549\pi\)
\(380\) −16.2151 + 6.32640i −0.831815 + 0.324537i
\(381\) −7.14332 −0.365963
\(382\) 1.23657i 0.0632684i
\(383\) 24.8020i 1.26732i 0.773610 + 0.633662i \(0.218449\pi\)
−0.773610 + 0.633662i \(0.781551\pi\)
\(384\) 16.6229 0.848282
\(385\) −0.805944 2.06570i −0.0410747 0.105278i
\(386\) 2.90068 0.147641
\(387\) 20.3788i 1.03591i
\(388\) 32.5349i 1.65171i
\(389\) 8.76664 0.444486 0.222243 0.974991i \(-0.428662\pi\)
0.222243 + 0.974991i \(0.428662\pi\)
\(390\) −1.84090 4.71838i −0.0932177 0.238924i
\(391\) 0 0
\(392\) 2.50608i 0.126576i
\(393\) 17.2244i 0.868854i
\(394\) 0.128224 0.00645983
\(395\) −21.3038 + 8.31179i −1.07191 + 0.418211i
\(396\) −2.55298 −0.128292
\(397\) 7.03598i 0.353126i −0.984289 0.176563i \(-0.943502\pi\)
0.984289 0.176563i \(-0.0564979\pi\)
\(398\) 4.08987i 0.205007i
\(399\) −19.7840 −0.990438
\(400\) 13.5342 12.4571i 0.676711 0.622857i
\(401\) −10.6346 −0.531066 −0.265533 0.964102i \(-0.585548\pi\)
−0.265533 + 0.964102i \(0.585548\pi\)
\(402\) 1.74782i 0.0871731i
\(403\) 24.6708i 1.22894i
\(404\) −8.58530 −0.427135
\(405\) −20.2688 + 7.90800i −1.00717 + 0.392952i
\(406\) −0.497552 −0.0246931
\(407\) 0.622545i 0.0308584i
\(408\) 0 0
\(409\) −2.53421 −0.125309 −0.0626544 0.998035i \(-0.519957\pi\)
−0.0626544 + 0.998035i \(0.519957\pi\)
\(410\) −2.03666 5.22013i −0.100584 0.257804i
\(411\) 1.26146 0.0622235
\(412\) 33.9232i 1.67128i
\(413\) 12.3942i 0.609878i
\(414\) −5.17681 −0.254426
\(415\) −1.81789 4.65939i −0.0892365 0.228720i
\(416\) −10.9460 −0.536672
\(417\) 42.3215i 2.07249i
\(418\) 0.446230i 0.0218258i
\(419\) 26.3614 1.28784 0.643918 0.765094i \(-0.277308\pi\)
0.643918 + 0.765094i \(0.277308\pi\)
\(420\) 20.0499 7.82259i 0.978336 0.381703i
\(421\) 7.94308 0.387122 0.193561 0.981088i \(-0.437996\pi\)
0.193561 + 0.981088i \(0.437996\pi\)
\(422\) 2.98161i 0.145142i
\(423\) 9.85469i 0.479151i
\(424\) −5.63931 −0.273869
\(425\) 0 0
\(426\) −1.01151 −0.0490078
\(427\) 11.6854i 0.565494i
\(428\) 10.1409i 0.490178i
\(429\) 4.67889 0.225899
\(430\) −3.60985 + 1.40840i −0.174082 + 0.0679192i
\(431\) 11.3396 0.546211 0.273105 0.961984i \(-0.411949\pi\)
0.273105 + 0.961984i \(0.411949\pi\)
\(432\) 2.35282i 0.113200i
\(433\) 6.24538i 0.300134i −0.988676 0.150067i \(-0.952051\pi\)
0.988676 0.150067i \(-0.0479489\pi\)
\(434\) −2.90933 −0.139652
\(435\) 2.01696 + 5.16963i 0.0967058 + 0.247865i
\(436\) −15.7772 −0.755592
\(437\) 32.6049i 1.55971i
\(438\) 6.77223i 0.323590i
\(439\) 10.5282 0.502482 0.251241 0.967925i \(-0.419161\pi\)
0.251241 + 0.967925i \(0.419161\pi\)
\(440\) −0.357775 0.917007i −0.0170563 0.0437166i
\(441\) −7.46870 −0.355652
\(442\) 0 0
\(443\) 29.2669i 1.39051i −0.718761 0.695257i \(-0.755291\pi\)
0.718761 0.695257i \(-0.244709\pi\)
\(444\) −6.04250 −0.286764
\(445\) 19.5235 7.61722i 0.925505 0.361091i
\(446\) −0.945995 −0.0447942
\(447\) 17.5293i 0.829106i
\(448\) 13.9081i 0.657097i
\(449\) −32.7274 −1.54450 −0.772250 0.635318i \(-0.780869\pi\)
−0.772250 + 0.635318i \(0.780869\pi\)
\(450\) 2.15051 + 2.33644i 0.101376 + 0.110141i
\(451\) 5.17644 0.243749
\(452\) 6.76058i 0.317991i
\(453\) 17.8757i 0.839872i
\(454\) 3.66582 0.172045
\(455\) −17.5169 + 6.83431i −0.821204 + 0.320397i
\(456\) −8.78253 −0.411280
\(457\) 31.4752i 1.47235i −0.676792 0.736174i \(-0.736631\pi\)
0.676792 0.736174i \(-0.263369\pi\)
\(458\) 3.47329i 0.162296i
\(459\) 0 0
\(460\) 12.8920 + 33.0432i 0.601092 + 1.54065i
\(461\) 26.6442 1.24094 0.620472 0.784228i \(-0.286941\pi\)
0.620472 + 0.784228i \(0.286941\pi\)
\(462\) 0.551763i 0.0256704i
\(463\) 14.2040i 0.660115i 0.943961 + 0.330058i \(0.107068\pi\)
−0.943961 + 0.330058i \(0.892932\pi\)
\(464\) 3.81304 0.177016
\(465\) 11.7938 + 30.2283i 0.546922 + 1.40181i
\(466\) −0.169024 −0.00782990
\(467\) 29.1177i 1.34741i 0.739002 + 0.673703i \(0.235297\pi\)
−0.739002 + 0.673703i \(0.764703\pi\)
\(468\) 21.6490i 1.00072i
\(469\) 6.48872 0.299621
\(470\) 1.74564 0.681069i 0.0805202 0.0314154i
\(471\) 29.8267 1.37434
\(472\) 5.50204i 0.253252i
\(473\) 3.57963i 0.164592i
\(474\) −5.69040 −0.261369
\(475\) −14.7156 + 13.5445i −0.675196 + 0.621463i
\(476\) 0 0
\(477\) 16.8064i 0.769514i
\(478\) 2.22485i 0.101762i
\(479\) 1.96651 0.0898521 0.0449261 0.998990i \(-0.485695\pi\)
0.0449261 + 0.998990i \(0.485695\pi\)
\(480\) 13.4118 5.23268i 0.612161 0.238838i
\(481\) 5.27911 0.240707
\(482\) 1.97189i 0.0898171i
\(483\) 40.3160i 1.83444i
\(484\) −20.9575 −0.952614
\(485\) −13.5882 34.8277i −0.617009 1.58144i
\(486\) −4.96809 −0.225357
\(487\) 4.83495i 0.219093i −0.993982 0.109546i \(-0.965060\pi\)
0.993982 0.109546i \(-0.0349398\pi\)
\(488\) 5.18738i 0.234821i
\(489\) −20.5140 −0.927673
\(490\) −0.516171 1.32299i −0.0233182 0.0597665i
\(491\) 16.8949 0.762456 0.381228 0.924481i \(-0.375501\pi\)
0.381228 + 0.924481i \(0.375501\pi\)
\(492\) 50.2431i 2.26514i
\(493\) 0 0
\(494\) 3.78398 0.170249
\(495\) −2.73289 + 1.06625i −0.122834 + 0.0479245i
\(496\) 22.2960 1.00112
\(497\) 3.75520i 0.168444i
\(498\) 1.24456i 0.0557699i
\(499\) −4.34494 −0.194506 −0.0972531 0.995260i \(-0.531006\pi\)
−0.0972531 + 0.995260i \(0.531006\pi\)
\(500\) 9.55787 19.5451i 0.427441 0.874081i
\(501\) 22.6220 1.01067
\(502\) 1.40286i 0.0626125i
\(503\) 11.5078i 0.513105i 0.966530 + 0.256553i \(0.0825867\pi\)
−0.966530 + 0.256553i \(0.917413\pi\)
\(504\) 5.17681 0.230593
\(505\) −9.19033 + 3.58566i −0.408964 + 0.159560i
\(506\) 0.909332 0.0404247
\(507\) 8.54992i 0.379715i
\(508\) 5.80570i 0.257586i
\(509\) 34.8177 1.54327 0.771634 0.636066i \(-0.219440\pi\)
0.771634 + 0.636066i \(0.219440\pi\)
\(510\) 0 0
\(511\) 25.1418 1.11221
\(512\) 16.6395i 0.735368i
\(513\) 2.55819i 0.112947i
\(514\) 6.33845 0.279577
\(515\) 14.1681 + 36.3139i 0.624319 + 1.60018i
\(516\) 34.7443 1.52953
\(517\) 1.73103i 0.0761304i
\(518\) 0.622545i 0.0273531i
\(519\) −39.6105 −1.73871
\(520\) −7.77611 + 3.03389i −0.341005 + 0.133045i
\(521\) −22.4501 −0.983559 −0.491779 0.870720i \(-0.663653\pi\)
−0.491779 + 0.870720i \(0.663653\pi\)
\(522\) 0.658255i 0.0288110i
\(523\) 16.4943i 0.721243i 0.932712 + 0.360622i \(0.117435\pi\)
−0.932712 + 0.360622i \(0.882565\pi\)
\(524\) 13.9990 0.611551
\(525\) 18.1958 16.7477i 0.794128 0.730930i
\(526\) −2.87465 −0.125341
\(527\) 0 0
\(528\) 4.22850i 0.184022i
\(529\) −43.4426 −1.88881
\(530\) −2.97705 + 1.16151i −0.129315 + 0.0504529i
\(531\) 16.3974 0.711585
\(532\) 16.0794i 0.697128i
\(533\) 43.8956i 1.90133i
\(534\) 5.21488 0.225670
\(535\) −4.23534 10.8555i −0.183110 0.469325i
\(536\) 2.88048 0.124418
\(537\) 46.7647i 2.01805i
\(538\) 4.66541i 0.201140i
\(539\) 1.31191 0.0565082
\(540\) 1.01151 + 2.59258i 0.0435284 + 0.111567i
\(541\) 12.7279 0.547216 0.273608 0.961841i \(-0.411783\pi\)
0.273608 + 0.961841i \(0.411783\pi\)
\(542\) 5.62619i 0.241666i
\(543\) 25.0972i 1.07702i
\(544\) 0 0
\(545\) −16.8891 + 6.58937i −0.723448 + 0.282257i
\(546\) −4.67889 −0.200238
\(547\) 12.5057i 0.534707i 0.963599 + 0.267354i \(0.0861491\pi\)
−0.963599 + 0.267354i \(0.913851\pi\)
\(548\) 1.02525i 0.0437965i
\(549\) 15.4596 0.659799
\(550\) −0.377747 0.410408i −0.0161072 0.0174998i
\(551\) −4.14587 −0.176620
\(552\) 17.8971i 0.761752i
\(553\) 21.1255i 0.898346i
\(554\) −1.57109 −0.0667491
\(555\) −6.46832 + 2.52365i −0.274565 + 0.107123i
\(556\) −34.3966 −1.45874
\(557\) 38.9354i 1.64975i −0.565318 0.824873i \(-0.691247\pi\)
0.565318 0.824873i \(-0.308753\pi\)
\(558\) 3.84901i 0.162942i
\(559\) −30.3549 −1.28387
\(560\) −6.17644 15.8307i −0.261002 0.668970i
\(561\) 0 0
\(562\) 4.19153i 0.176809i
\(563\) 8.17844i 0.344680i 0.985038 + 0.172340i \(0.0551328\pi\)
−0.985038 + 0.172340i \(0.944867\pi\)
\(564\) −16.8015 −0.707472
\(565\) 2.82356 + 7.23701i 0.118788 + 0.304463i
\(566\) −5.86005 −0.246316
\(567\) 20.0992i 0.844087i
\(568\) 1.66701i 0.0699463i
\(569\) 11.8920 0.498538 0.249269 0.968434i \(-0.419810\pi\)
0.249269 + 0.968434i \(0.419810\pi\)
\(570\) −4.63639 + 1.80891i −0.194197 + 0.0757671i
\(571\) −3.96719 −0.166022 −0.0830109 0.996549i \(-0.526454\pi\)
−0.0830109 + 0.996549i \(0.526454\pi\)
\(572\) 3.80275i 0.159001i
\(573\) 12.7406i 0.532246i
\(574\) −5.17644 −0.216060
\(575\) 27.6010 + 29.9875i 1.15104 + 1.25056i
\(576\) −18.4003 −0.766678
\(577\) 6.58601i 0.274179i −0.990559 0.137090i \(-0.956225\pi\)
0.990559 0.137090i \(-0.0437749\pi\)
\(578\) 0 0
\(579\) −29.8862 −1.24203
\(580\) 4.20159 1.63928i 0.174462 0.0680672i
\(581\) −4.62039 −0.191686
\(582\) 9.30274i 0.385611i
\(583\) 2.95213i 0.122265i
\(584\) 11.1610 0.461844
\(585\) 9.04170 + 23.1746i 0.373828 + 0.958152i
\(586\) −6.10218 −0.252079
\(587\) 22.3369i 0.921944i 0.887415 + 0.460972i \(0.152499\pi\)
−0.887415 + 0.460972i \(0.847501\pi\)
\(588\) 12.7336i 0.525125i
\(589\) −24.2421 −0.998879
\(590\) 1.13324 + 2.90459i 0.0466548 + 0.119580i
\(591\) −1.32111 −0.0543433
\(592\) 4.77094i 0.196085i
\(593\) 30.1344i 1.23747i 0.785599 + 0.618736i \(0.212355\pi\)
−0.785599 + 0.618736i \(0.787645\pi\)
\(594\) 0.0713464 0.00292738
\(595\) 0 0
\(596\) −14.2468 −0.583574
\(597\) 42.1387i 1.72462i
\(598\) 7.71103i 0.315327i
\(599\) 8.88907 0.363198 0.181599 0.983373i \(-0.441873\pi\)
0.181599 + 0.983373i \(0.441873\pi\)
\(600\) 8.07748 7.43467i 0.329762 0.303519i
\(601\) −24.2421 −0.988856 −0.494428 0.869219i \(-0.664622\pi\)
−0.494428 + 0.869219i \(0.664622\pi\)
\(602\) 3.57963i 0.145895i
\(603\) 8.58450i 0.349588i
\(604\) 14.5284 0.591151
\(605\) −22.4344 + 8.75291i −0.912089 + 0.355857i
\(606\) −2.45480 −0.0997196
\(607\) 14.9118i 0.605252i 0.953109 + 0.302626i \(0.0978633\pi\)
−0.953109 + 0.302626i \(0.902137\pi\)
\(608\) 10.7558i 0.436205i
\(609\) 5.12636 0.207731
\(610\) 1.06843 + 2.73847i 0.0432595 + 0.110877i
\(611\) 14.6789 0.593844
\(612\) 0 0
\(613\) 31.3459i 1.26605i −0.774132 0.633024i \(-0.781813\pi\)
0.774132 0.633024i \(-0.218187\pi\)
\(614\) 3.23336 0.130488
\(615\) 20.9841 + 53.7839i 0.846160 + 2.16878i
\(616\) −0.909332 −0.0366380
\(617\) 15.4221i 0.620869i −0.950595 0.310434i \(-0.899526\pi\)
0.950595 0.310434i \(-0.100474\pi\)
\(618\) 9.69971i 0.390179i
\(619\) 45.1035 1.81286 0.906431 0.422354i \(-0.138796\pi\)
0.906431 + 0.422354i \(0.138796\pi\)
\(620\) 24.5680 9.58533i 0.986673 0.384956i
\(621\) −5.21310 −0.209195
\(622\) 2.03116i 0.0814421i
\(623\) 19.3601i 0.775647i
\(624\) 35.8572 1.43544
\(625\) 2.06843 24.9143i 0.0827372 0.996571i
\(626\) 1.61469 0.0645359
\(627\) 4.59759i 0.183610i
\(628\) 24.2415i 0.967343i
\(629\) 0 0
\(630\) 2.73289 1.06625i 0.108881 0.0424805i
\(631\) −29.7493 −1.18430 −0.592150 0.805827i \(-0.701721\pi\)
−0.592150 + 0.805827i \(0.701721\pi\)
\(632\) 9.37804i 0.373038i
\(633\) 30.7200i 1.22101i
\(634\) 0.980492 0.0389403
\(635\) 2.42476 + 6.21484i 0.0962235 + 0.246628i
\(636\) 28.6538 1.13620
\(637\) 11.1249i 0.440784i
\(638\) 0.115626i 0.00457767i
\(639\) 4.96809 0.196534
\(640\) −5.64253 14.4623i −0.223041 0.571671i
\(641\) 44.1420 1.74350 0.871752 0.489947i \(-0.162984\pi\)
0.871752 + 0.489947i \(0.162984\pi\)
\(642\) 2.89959i 0.114438i
\(643\) 7.58172i 0.298994i 0.988762 + 0.149497i \(0.0477654\pi\)
−0.988762 + 0.149497i \(0.952235\pi\)
\(644\) 32.7666 1.29119
\(645\) 37.1928 14.5110i 1.46447 0.571370i
\(646\) 0 0
\(647\) 10.2540i 0.403128i −0.979475 0.201564i \(-0.935398\pi\)
0.979475 0.201564i \(-0.0646024\pi\)
\(648\) 8.92246i 0.350507i
\(649\) −2.88028 −0.113061
\(650\) −3.48021 + 3.20325i −0.136505 + 0.125642i
\(651\) 29.9753 1.17483
\(652\) 16.6726i 0.652951i
\(653\) 14.3128i 0.560104i −0.959985 0.280052i \(-0.909648\pi\)
0.959985 0.280052i \(-0.0903518\pi\)
\(654\) −4.51120 −0.176402
\(655\) 14.9856 5.84671i 0.585535 0.228450i
\(656\) 39.6702 1.54886
\(657\) 33.2622i 1.29768i
\(658\) 1.73103i 0.0674824i
\(659\) 43.9653 1.71265 0.856323 0.516441i \(-0.172743\pi\)
0.856323 + 0.516441i \(0.172743\pi\)
\(660\) 1.81789 + 4.65939i 0.0707611 + 0.181366i
\(661\) 20.7077 0.805438 0.402719 0.915324i \(-0.368065\pi\)
0.402719 + 0.915324i \(0.368065\pi\)
\(662\) 3.17815i 0.123522i
\(663\) 0 0
\(664\) −2.05109 −0.0795977
\(665\) 6.71555 + 17.2125i 0.260418 + 0.667472i
\(666\) −0.823619 −0.0319146
\(667\) 8.44848i 0.327126i
\(668\) 18.3859i 0.711372i
\(669\) 9.74675 0.376831
\(670\) 1.52064 0.593285i 0.0587473 0.0229206i
\(671\) −2.71555 −0.104833
\(672\) 13.2995i 0.513040i
\(673\) 46.2662i 1.78343i −0.452598 0.891715i \(-0.649503\pi\)
0.452598 0.891715i \(-0.350497\pi\)
\(674\) 1.50686 0.0580422
\(675\) 2.16558 + 2.35282i 0.0833533 + 0.0905602i
\(676\) −6.94891 −0.267266
\(677\) 1.76082i 0.0676739i 0.999427 + 0.0338370i \(0.0107727\pi\)
−0.999427 + 0.0338370i \(0.989227\pi\)
\(678\) 1.93306i 0.0742387i
\(679\) −34.5362 −1.32538
\(680\) 0 0
\(681\) −37.7696 −1.44733
\(682\) 0.676098i 0.0258891i
\(683\) 22.9635i 0.878675i −0.898322 0.439338i \(-0.855213\pi\)
0.898322 0.439338i \(-0.144787\pi\)
\(684\) 21.2728 0.813385
\(685\) −0.428197 1.09750i −0.0163605 0.0419334i
\(686\) −4.67224 −0.178387
\(687\) 35.7859i 1.36532i
\(688\) 27.4329i 1.04587i
\(689\) −25.0337 −0.953710
\(690\) 3.68622 + 9.44808i 0.140332 + 0.359682i
\(691\) 25.7831 0.980837 0.490418 0.871487i \(-0.336844\pi\)
0.490418 + 0.871487i \(0.336844\pi\)
\(692\) 32.1932i 1.22380i
\(693\) 2.71002i 0.102945i
\(694\) −1.16329 −0.0441579
\(695\) −36.8206 + 14.3658i −1.39669 + 0.544925i
\(696\) 2.27570 0.0862602
\(697\) 0 0
\(698\) 2.14103i 0.0810391i
\(699\) 1.74148 0.0658690
\(700\) −13.6116 14.7885i −0.514472 0.558954i
\(701\) 25.1195 0.948751 0.474376 0.880323i \(-0.342674\pi\)
0.474376 + 0.880323i \(0.342674\pi\)
\(702\) 0.605009i 0.0228346i
\(703\) 5.18738i 0.195646i
\(704\) 3.23210 0.121814
\(705\) −17.9856 + 7.01717i −0.677376 + 0.264282i
\(706\) 3.22092 0.121221
\(707\) 9.11340i 0.342745i
\(708\) 27.9563i 1.05066i
\(709\) −33.5389 −1.25958 −0.629789 0.776766i \(-0.716859\pi\)
−0.629789 + 0.776766i \(0.716859\pi\)
\(710\) 0.343350 + 0.880035i 0.0128857 + 0.0330271i
\(711\) 27.9487 1.04816
\(712\) 8.59437i 0.322088i
\(713\) 49.4008i 1.85007i
\(714\) 0 0
\(715\) −1.58822 4.07073i −0.0593961 0.152237i
\(716\) −38.0078 −1.42042
\(717\) 22.9230i 0.856074i
\(718\) 2.67305i 0.0997572i
\(719\) 41.6927 1.55488 0.777438 0.628960i \(-0.216519\pi\)
0.777438 + 0.628960i \(0.216519\pi\)
\(720\) −20.9438 + 8.17135i −0.780530 + 0.304528i
\(721\) 36.0099 1.34108
\(722\) 0.697168i 0.0259459i
\(723\) 20.3167i 0.755586i
\(724\) −20.3976 −0.758071
\(725\) 3.81304 3.50960i 0.141613 0.130343i
\(726\) −5.99240 −0.222399
\(727\) 12.2458i 0.454172i −0.973875 0.227086i \(-0.927080\pi\)
0.973875 0.227086i \(-0.0729199\pi\)
\(728\) 7.71103i 0.285790i
\(729\) 21.9971 0.814707
\(730\) 5.89199 2.29879i 0.218072 0.0850821i
\(731\) 0 0
\(732\) 26.3575i 0.974200i
\(733\) 32.8393i 1.21295i −0.795104 0.606473i \(-0.792584\pi\)
0.795104 0.606473i \(-0.207416\pi\)
\(734\) 4.51396 0.166613
\(735\) 5.31820 + 13.6310i 0.196165 + 0.502786i
\(736\) 21.9182 0.807917
\(737\) 1.50791i 0.0555446i
\(738\) 6.84837i 0.252092i
\(739\) −6.00000 −0.220714 −0.110357 0.993892i \(-0.535199\pi\)
−0.110357 + 0.993892i \(0.535199\pi\)
\(740\) 2.05109 + 5.25710i 0.0753995 + 0.193255i
\(741\) −38.9870 −1.43222
\(742\) 2.95213i 0.108376i
\(743\) 22.8684i 0.838962i 0.907764 + 0.419481i \(0.137788\pi\)
−0.907764 + 0.419481i \(0.862212\pi\)
\(744\) 13.3067 0.487847
\(745\) −15.2509 + 5.95021i −0.558748 + 0.217999i
\(746\) −1.29887 −0.0475552
\(747\) 6.11272i 0.223653i
\(748\) 0 0
\(749\) −10.7647 −0.393332
\(750\) 2.73289 5.58854i 0.0997911 0.204065i
\(751\) 32.0742 1.17040 0.585202 0.810888i \(-0.301015\pi\)
0.585202 + 0.810888i \(0.301015\pi\)
\(752\) 13.2659i 0.483758i
\(753\) 14.4539i 0.526728i
\(754\) −0.980492 −0.0357074
\(755\) 15.5522 6.06779i 0.566003 0.220829i
\(756\) 2.57088 0.0935019
\(757\) 36.2220i 1.31651i 0.752794 + 0.658256i \(0.228706\pi\)
−0.752794 + 0.658256i \(0.771294\pi\)
\(758\) 0.129306i 0.00469661i
\(759\) −9.36900 −0.340073
\(760\) 2.98118 + 7.64099i 0.108139 + 0.277168i
\(761\) −24.4851 −0.887584 −0.443792 0.896130i \(-0.646367\pi\)
−0.443792 + 0.896130i \(0.646367\pi\)
\(762\) 1.66003i 0.0601366i
\(763\) 16.7477i 0.606308i
\(764\) 10.3549 0.374626
\(765\) 0 0
\(766\) 5.76372 0.208252
\(767\) 24.4244i 0.881914i
\(768\) 28.3788i 1.02403i
\(769\) 5.55937 0.200476 0.100238 0.994963i \(-0.468040\pi\)
0.100238 + 0.994963i \(0.468040\pi\)
\(770\) −0.480046 + 0.187293i −0.0172997 + 0.00674956i
\(771\) −65.3061 −2.35194
\(772\) 24.2899i 0.874211i
\(773\) 36.5376i 1.31416i −0.753819 0.657082i \(-0.771790\pi\)
0.753819 0.657082i \(-0.228210\pi\)
\(774\) 4.73581 0.170225
\(775\) 22.2960 20.5216i 0.800896 0.737159i
\(776\) −15.3314 −0.550363
\(777\) 6.41418i 0.230108i
\(778\) 2.03727i 0.0730398i
\(779\) −43.1329 −1.54539
\(780\) 39.5110 15.4155i 1.41472 0.551962i
\(781\) −0.872669 −0.0312265
\(782\) 0 0
\(783\) 0.662870i 0.0236890i
\(784\) 10.0540 0.359072
\(785\) −10.1245 25.9499i −0.361359 0.926191i
\(786\) 4.00276 0.142774
\(787\) 16.0499i 0.572116i 0.958212 + 0.286058i \(0.0923451\pi\)
−0.958212 + 0.286058i \(0.907655\pi\)
\(788\) 1.07373i 0.0382500i
\(789\) 29.6180 1.05443
\(790\) 1.93157 + 4.95077i 0.0687222 + 0.176140i
\(791\) 7.17644 0.255165
\(792\) 1.20303i 0.0427480i
\(793\) 23.0276i 0.817732i
\(794\) −1.63509 −0.0580271
\(795\) 30.6731 11.9673i 1.08786 0.424435i
\(796\) −34.2480 −1.21389
\(797\) 34.7907i 1.23235i 0.787609 + 0.616175i \(0.211319\pi\)
−0.787609 + 0.616175i \(0.788681\pi\)
\(798\) 4.59759i 0.162753i
\(799\) 0 0
\(800\) −9.10509 9.89234i −0.321914 0.349747i
\(801\) −25.6132 −0.904999
\(802\) 2.47136i 0.0872669i
\(803\) 5.84268i 0.206184i
\(804\) −14.6360 −0.516170
\(805\) 35.0758 13.6850i 1.23626 0.482333i
\(806\) −5.73323 −0.201944
\(807\) 48.0685i 1.69209i
\(808\) 4.04563i 0.142325i
\(809\) −18.8866 −0.664018 −0.332009 0.943276i \(-0.607726\pi\)
−0.332009 + 0.943276i \(0.607726\pi\)
\(810\) 1.83773 + 4.71026i 0.0645714 + 0.165502i
\(811\) −13.1316 −0.461113 −0.230556 0.973059i \(-0.574055\pi\)
−0.230556 + 0.973059i \(0.574055\pi\)
\(812\) 4.16643i 0.146213i
\(813\) 57.9676i 2.03301i
\(814\) 0.144673 0.00507078
\(815\) 6.96334 + 17.8476i 0.243915 + 0.625174i
\(816\) 0 0
\(817\) 29.8274i 1.04353i
\(818\) 0.588924i 0.0205913i
\(819\) 22.9806 0.803009
\(820\) 43.7126 17.0547i 1.52651 0.595577i
\(821\) −39.3443 −1.37313 −0.686563 0.727070i \(-0.740882\pi\)
−0.686563 + 0.727070i \(0.740882\pi\)
\(822\) 0.293151i 0.0102248i
\(823\) 40.2222i 1.40206i −0.713134 0.701028i \(-0.752725\pi\)
0.713134 0.701028i \(-0.247275\pi\)
\(824\) 15.9856 0.556884
\(825\) 3.89199 + 4.22850i 0.135502 + 0.147217i
\(826\) 2.88028 0.100218
\(827\) 33.9078i 1.17909i 0.807736 + 0.589545i \(0.200693\pi\)
−0.807736 + 0.589545i \(0.799307\pi\)
\(828\) 43.3499i 1.50651i
\(829\) 8.18134 0.284150 0.142075 0.989856i \(-0.454623\pi\)
0.142075 + 0.989856i \(0.454623\pi\)
\(830\) −1.08279 + 0.422457i −0.0375842 + 0.0146637i
\(831\) 16.1872 0.561527
\(832\) 27.4078i 0.950195i
\(833\) 0 0
\(834\) −9.83507 −0.340561
\(835\) −7.67889 19.6816i −0.265739 0.681110i
\(836\) −3.73667 −0.129235
\(837\) 3.87600i 0.133974i
\(838\) 6.12610i 0.211623i
\(839\) −21.9742 −0.758634 −0.379317 0.925267i \(-0.623841\pi\)
−0.379317 + 0.925267i \(0.623841\pi\)
\(840\) −3.68622 9.44808i −0.127187 0.325990i
\(841\) −27.9257 −0.962956
\(842\) 1.84589i 0.0636135i
\(843\) 43.1860i 1.48741i
\(844\) −24.9675 −0.859418
\(845\) −7.43861 + 2.90222i −0.255896 + 0.0998393i
\(846\) −2.29012 −0.0787361
\(847\) 22.2466i 0.764404i
\(848\) 22.6240i 0.776912i
\(849\) 60.3771 2.07214
\(850\) 0 0
\(851\) −10.5709 −0.362365
\(852\) 8.47023i 0.290185i
\(853\) 36.9651i 1.26566i 0.774290 + 0.632831i \(0.218107\pi\)
−0.774290 + 0.632831i \(0.781893\pi\)
\(854\) 2.71555 0.0929242
\(855\) 22.7719 8.88459i 0.778783 0.303847i
\(856\) −4.77866 −0.163331
\(857\) 15.0234i 0.513189i 0.966519 + 0.256594i \(0.0826004\pi\)
−0.966519 + 0.256594i \(0.917400\pi\)
\(858\) 1.08732i 0.0371206i
\(859\) 40.2180 1.37222 0.686110 0.727498i \(-0.259317\pi\)
0.686110 + 0.727498i \(0.259317\pi\)
\(860\) −11.7938 30.2283i −0.402164 1.03078i
\(861\) 53.3337 1.81761
\(862\) 2.63521i 0.0897556i
\(863\) 12.3865i 0.421643i −0.977525 0.210822i \(-0.932386\pi\)
0.977525 0.210822i \(-0.0676139\pi\)
\(864\) 1.71971 0.0585058
\(865\) 13.4455 + 34.4620i 0.457162 + 1.17174i
\(866\) −1.45136 −0.0493192
\(867\) 0 0
\(868\) 24.3623i 0.826911i
\(869\) −4.90933 −0.166538
\(870\) 1.20137 0.468720i 0.0407301 0.0158911i
\(871\) 12.7869 0.433267
\(872\) 7.43467i 0.251770i
\(873\) 45.6910i 1.54640i
\(874\) −7.57704 −0.256297
\(875\) −20.7473 10.1458i −0.701387 0.342991i
\(876\) −56.7097 −1.91604
\(877\) 45.1747i 1.52544i 0.646728 + 0.762720i \(0.276137\pi\)
−0.646728 + 0.762720i \(0.723863\pi\)
\(878\) 2.44663i 0.0825699i
\(879\) 62.8717 2.12061
\(880\) 3.67889 1.43534i 0.124015 0.0483853i
\(881\) 17.0224 0.573500 0.286750 0.958006i \(-0.407425\pi\)
0.286750 + 0.958006i \(0.407425\pi\)
\(882\) 1.73565i 0.0584423i
\(883\) 13.3497i 0.449254i −0.974445 0.224627i \(-0.927884\pi\)
0.974445 0.224627i \(-0.0721164\pi\)
\(884\) 0 0
\(885\) −11.6760 29.9264i −0.392483 1.00597i
\(886\) −6.80132 −0.228495
\(887\) 44.5291i 1.49514i 0.664182 + 0.747571i \(0.268780\pi\)
−0.664182 + 0.747571i \(0.731220\pi\)
\(888\) 2.84739i 0.0955522i
\(889\) 6.16283 0.206695
\(890\) −1.77016 4.53706i −0.0593359 0.152083i
\(891\) −4.67084 −0.156479
\(892\) 7.92163i 0.265236i
\(893\) 14.4238i 0.482675i
\(894\) −4.07362 −0.136242
\(895\) −40.6863 + 15.8740i −1.35999 + 0.530609i
\(896\) −14.3412 −0.479106
\(897\) 79.4480i 2.65269i
\(898\) 7.60550i 0.253799i
\(899\) 6.28153 0.209501
\(900\) −19.5650 + 18.0080i −0.652168 + 0.600268i
\(901\) 0 0
\(902\) 1.20295i 0.0400538i
\(903\) 36.8815i 1.22734i
\(904\) 3.18577 0.105957
\(905\) −21.8351 + 8.51907i −0.725822 + 0.283184i
\(906\) 4.15412 0.138011
\(907\) 32.9453i 1.09393i −0.837155 0.546965i \(-0.815783\pi\)
0.837155 0.546965i \(-0.184217\pi\)
\(908\) 30.6971i 1.01872i
\(909\) 12.0569 0.399903
\(910\) 1.58822 + 4.07073i 0.0526490 + 0.134944i
\(911\) 35.5859 1.17901 0.589506 0.807764i \(-0.299322\pi\)
0.589506 + 0.807764i \(0.299322\pi\)
\(912\) 35.2341i 1.16672i
\(913\) 1.07373i 0.0355352i
\(914\) −7.31450 −0.241942
\(915\) −11.0082 28.2149i −0.363920 0.932757i
\(916\) −29.0848 −0.960990
\(917\) 14.8601i 0.490725i
\(918\) 0 0
\(919\) 28.5997 0.943418 0.471709 0.881754i \(-0.343637\pi\)
0.471709 + 0.881754i \(0.343637\pi\)
\(920\) 15.5709 6.07507i 0.513357 0.200289i
\(921\) −33.3139 −1.09773
\(922\) 6.19183i 0.203917i
\(923\) 7.40013i 0.243578i
\(924\) 4.62039 0.152000
\(925\) 4.39126 + 4.77094i 0.144384 + 0.156868i
\(926\) 3.30085 0.108473
\(927\) 47.6407i 1.56473i
\(928\) 2.78701i 0.0914879i
\(929\) 12.7034 0.416785 0.208392 0.978045i \(-0.433177\pi\)
0.208392 + 0.978045i \(0.433177\pi\)
\(930\) 7.02474 2.74074i 0.230350 0.0898725i
\(931\) −10.9316 −0.358268
\(932\) 1.41538i 0.0463625i
\(933\) 20.9274i 0.685131i
\(934\) 6.76664 0.221411
\(935\) 0 0
\(936\) 10.2016 0.333450
\(937\) 30.7655i 1.00506i 0.864558 + 0.502532i \(0.167598\pi\)
−0.864558 + 0.502532i \(0.832402\pi\)
\(938\) 1.50791i 0.0492350i
\(939\) −16.6364 −0.542908
\(940\) 5.70318 + 14.6177i 0.186017 + 0.476777i
\(941\) 39.2476 1.27943 0.639717 0.768611i \(-0.279052\pi\)
0.639717 + 0.768611i \(0.279052\pi\)
\(942\) 6.93141i 0.225837i
\(943\) 87.8965i 2.86230i
\(944\) −22.0733 −0.718426
\(945\) 2.75205 1.07373i 0.0895243 0.0349284i
\(946\) −0.831868 −0.0270464
\(947\) 3.56791i 0.115941i −0.998318 0.0579707i \(-0.981537\pi\)
0.998318 0.0579707i \(-0.0184630\pi\)
\(948\) 47.6506i 1.54762i
\(949\) 49.5452 1.60831
\(950\) 3.14759 + 3.41974i 0.102121 + 0.110951i
\(951\) −10.1022 −0.327586
\(952\) 0 0
\(953\) 53.8491i 1.74434i 0.489200 + 0.872172i \(0.337289\pi\)
−0.489200 + 0.872172i \(0.662711\pi\)
\(954\) 3.90564 0.126450
\(955\) 11.0846 4.32471i 0.358689 0.139944i
\(956\) −18.6306 −0.602555
\(957\) 1.19131i 0.0385096i
\(958\) 0.456996i 0.0147649i
\(959\) −1.08832 −0.0351436
\(960\) 13.1022 + 33.5819i 0.422871 + 1.08385i
\(961\) 5.72998 0.184838
\(962\) 1.22681i 0.0395539i
\(963\) 14.2415i 0.458926i
\(964\) −16.5123 −0.531826
\(965\) 10.1447 + 26.0016i 0.326569 + 0.837021i
\(966\) 9.36900 0.301443
\(967\) 14.6688i 0.471716i 0.971788 + 0.235858i \(0.0757900\pi\)
−0.971788 + 0.235858i \(0.924210\pi\)
\(968\) 9.87576i 0.317419i
\(969\) 0 0
\(970\) −8.09358 + 3.15776i −0.259869 + 0.101389i
\(971\) −14.2468 −0.457203 −0.228602 0.973520i \(-0.573415\pi\)
−0.228602 + 0.973520i \(0.573415\pi\)
\(972\) 41.6020i 1.33439i
\(973\) 36.5125i 1.17054i
\(974\) −1.12359 −0.0360022
\(975\) 35.8572 33.0036i 1.14835 1.05696i
\(976\) −20.8109 −0.666142
\(977\) 20.9141i 0.669103i 0.942378 + 0.334551i \(0.108585\pi\)
−0.942378 + 0.334551i \(0.891415\pi\)
\(978\) 4.76722i 0.152439i
\(979\) 4.49909 0.143791
\(980\) 11.0785 4.32234i 0.353890 0.138072i
\(981\) 22.1570 0.707419
\(982\) 3.92620i 0.125290i
\(983\) 17.4000i 0.554973i 0.960730 + 0.277486i \(0.0895014\pi\)
−0.960730 + 0.277486i \(0.910499\pi\)
\(984\) 23.6760 0.754762
\(985\) 0.448443 + 1.14940i 0.0142886 + 0.0366228i
\(986\) 0 0
\(987\) 17.8350i 0.567696i
\(988\) 31.6865i 1.00808i
\(989\) 60.7825 1.93277
\(990\) 0.247786 + 0.635095i 0.00787515 + 0.0201846i
\(991\) 5.27771 0.167652 0.0838259 0.996480i \(-0.473286\pi\)
0.0838259 + 0.996480i \(0.473286\pi\)
\(992\) 16.2964i 0.517413i
\(993\) 32.7450i 1.03913i
\(994\) 0.872669 0.0276794
\(995\) −36.6615 + 14.3037i −1.16225 + 0.453458i
\(996\) 10.4217 0.330226
\(997\) 25.6390i 0.811995i 0.913874 + 0.405997i \(0.133076\pi\)
−0.913874 + 0.405997i \(0.866924\pi\)
\(998\) 1.00972i 0.0319621i
\(999\) −0.829394 −0.0262409
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.b.f.579.6 12
5.2 odd 4 7225.2.a.bp.1.8 12
5.3 odd 4 7225.2.a.bp.1.5 12
5.4 even 2 inner 1445.2.b.f.579.7 12
17.8 even 8 85.2.j.c.64.3 yes 12
17.15 even 8 85.2.j.c.4.4 yes 12
17.16 even 2 inner 1445.2.b.f.579.5 12
51.8 odd 8 765.2.t.e.64.4 12
51.32 odd 8 765.2.t.e.514.3 12
85.8 odd 8 425.2.e.d.251.4 12
85.32 odd 8 425.2.e.d.276.4 12
85.33 odd 4 7225.2.a.bp.1.6 12
85.42 odd 8 425.2.e.d.251.3 12
85.49 even 8 85.2.j.c.4.3 12
85.59 even 8 85.2.j.c.64.4 yes 12
85.67 odd 4 7225.2.a.bp.1.7 12
85.83 odd 8 425.2.e.d.276.3 12
85.84 even 2 inner 1445.2.b.f.579.8 12
255.59 odd 8 765.2.t.e.64.3 12
255.134 odd 8 765.2.t.e.514.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.3 12 85.49 even 8
85.2.j.c.4.4 yes 12 17.15 even 8
85.2.j.c.64.3 yes 12 17.8 even 8
85.2.j.c.64.4 yes 12 85.59 even 8
425.2.e.d.251.3 12 85.42 odd 8
425.2.e.d.251.4 12 85.8 odd 8
425.2.e.d.276.3 12 85.83 odd 8
425.2.e.d.276.4 12 85.32 odd 8
765.2.t.e.64.3 12 255.59 odd 8
765.2.t.e.64.4 12 51.8 odd 8
765.2.t.e.514.3 12 51.32 odd 8
765.2.t.e.514.4 12 255.134 odd 8
1445.2.b.f.579.5 12 17.16 even 2 inner
1445.2.b.f.579.6 12 1.1 even 1 trivial
1445.2.b.f.579.7 12 5.4 even 2 inner
1445.2.b.f.579.8 12 85.84 even 2 inner
7225.2.a.bp.1.5 12 5.3 odd 4
7225.2.a.bp.1.6 12 85.33 odd 4
7225.2.a.bp.1.7 12 85.67 odd 4
7225.2.a.bp.1.8 12 5.2 odd 4