Properties

Label 1445.2.b.f.579.11
Level $1445$
Weight $2$
Character 1445.579
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(579,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.579"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{10} - 9x^{8} + 228x^{6} - 225x^{4} - 1250x^{2} + 15625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 579.11
Root \(1.90494 + 1.17098i\) of defining polynomial
Character \(\chi\) \(=\) 1445.579
Dual form 1445.2.b.f.579.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.38621i q^{2} -3.15462i q^{3} -3.69399 q^{4} +(-1.90494 - 1.17098i) q^{5} +7.52757 q^{6} -0.219993i q^{7} -4.04223i q^{8} -6.95160 q^{9} +(2.79421 - 4.54559i) q^{10} -0.524950 q^{11} +11.6531i q^{12} -1.96713i q^{13} +0.524950 q^{14} +(-3.69399 + 6.00936i) q^{15} +2.25761 q^{16} -16.5880i q^{18} -4.00000 q^{19} +(7.03685 + 4.32560i) q^{20} -0.693995 q^{21} -1.25264i q^{22} -0.372668i q^{23} -12.7517 q^{24} +(2.25761 + 4.46130i) q^{25} +4.69399 q^{26} +12.4658i q^{27} +0.812655i q^{28} +7.00262 q^{29} +(-14.3396 - 8.81464i) q^{30} -2.92062 q^{31} -2.69733i q^{32} +1.65602i q^{33} +(-0.257608 + 0.419075i) q^{35} +25.6792 q^{36} +5.71657i q^{37} -9.54484i q^{38} -6.20555 q^{39} +(-4.73337 + 7.70021i) q^{40} +0.797070 q^{41} -1.65602i q^{42} +2.49417i q^{43} +1.93916 q^{44} +(13.2424 + 8.14019i) q^{45} +0.889263 q^{46} +6.73955i q^{47} -7.12189i q^{48} +6.95160 q^{49} +(-10.6456 + 5.38713i) q^{50} +7.26658i q^{52} +5.92169i q^{53} -29.7460 q^{54} +(1.00000 + 0.614707i) q^{55} -0.889263 q^{56} +12.6185i q^{57} +16.7097i q^{58} -6.00000 q^{59} +(13.6456 - 22.1985i) q^{60} -5.65685 q^{61} -6.96921i q^{62} +1.52931i q^{63} +10.9516 q^{64} +(-2.30348 + 3.74728i) q^{65} -3.95160 q^{66} +11.5120i q^{67} -1.17562 q^{69} +(-1.00000 - 0.614707i) q^{70} +7.16326 q^{71} +28.1000i q^{72} -1.18532i q^{73} -13.6409 q^{74} +(14.0737 - 7.12189i) q^{75} +14.7760 q^{76} +0.115486i q^{77} -14.8078i q^{78} +6.73050 q^{79} +(-4.30061 - 2.64362i) q^{80} +18.4700 q^{81} +1.90197i q^{82} +6.11732i q^{83} +2.56361 q^{84} -5.95160 q^{86} -22.0906i q^{87} +2.12197i q^{88} -15.9852 q^{89} +(-19.4242 + 31.5991i) q^{90} -0.432757 q^{91} +1.37663i q^{92} +9.21344i q^{93} -16.0820 q^{94} +(7.61977 + 4.68392i) q^{95} -8.50903 q^{96} -9.21517i q^{97} +16.5880i q^{98} +3.64925 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 28 q^{9} - 12 q^{15} + 4 q^{16} - 48 q^{19} + 24 q^{21} + 4 q^{25} + 24 q^{26} - 52 q^{30} + 20 q^{35} + 68 q^{36} + 28 q^{49} - 40 q^{50} + 12 q^{55} - 72 q^{59} + 76 q^{60} + 76 q^{64}+ \cdots - 96 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.38621i 1.68730i 0.536890 + 0.843652i \(0.319599\pi\)
−0.536890 + 0.843652i \(0.680401\pi\)
\(3\) 3.15462i 1.82132i −0.413158 0.910659i \(-0.635574\pi\)
0.413158 0.910659i \(-0.364426\pi\)
\(4\) −3.69399 −1.84700
\(5\) −1.90494 1.17098i −0.851916 0.523679i
\(6\) 7.52757 3.07312
\(7\) 0.219993i 0.0831497i −0.999135 0.0415749i \(-0.986762\pi\)
0.999135 0.0415749i \(-0.0132375\pi\)
\(8\) 4.04223i 1.42914i
\(9\) −6.95160 −2.31720
\(10\) 2.79421 4.54559i 0.883605 1.43744i
\(11\) −0.524950 −0.158278 −0.0791392 0.996864i \(-0.525217\pi\)
−0.0791392 + 0.996864i \(0.525217\pi\)
\(12\) 11.6531i 3.36397i
\(13\) 1.96713i 0.545585i −0.962073 0.272792i \(-0.912053\pi\)
0.962073 0.272792i \(-0.0879472\pi\)
\(14\) 0.524950 0.140299
\(15\) −3.69399 + 6.00936i −0.953785 + 1.55161i
\(16\) 2.25761 0.564402
\(17\) 0 0
\(18\) 16.5880i 3.90982i
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 7.03685 + 4.32560i 1.57349 + 0.967233i
\(21\) −0.693995 −0.151442
\(22\) 1.25264i 0.267064i
\(23\) 0.372668i 0.0777066i −0.999245 0.0388533i \(-0.987629\pi\)
0.999245 0.0388533i \(-0.0123705\pi\)
\(24\) −12.7517 −2.60292
\(25\) 2.25761 + 4.46130i 0.451522 + 0.892260i
\(26\) 4.69399 0.920568
\(27\) 12.4658i 2.39904i
\(28\) 0.812655i 0.153577i
\(29\) 7.00262 1.30035 0.650177 0.759783i \(-0.274695\pi\)
0.650177 + 0.759783i \(0.274695\pi\)
\(30\) −14.3396 8.81464i −2.61804 1.60933i
\(31\) −2.92062 −0.524559 −0.262279 0.964992i \(-0.584474\pi\)
−0.262279 + 0.964992i \(0.584474\pi\)
\(32\) 2.69733i 0.476825i
\(33\) 1.65602i 0.288276i
\(34\) 0 0
\(35\) −0.257608 + 0.419075i −0.0435437 + 0.0708366i
\(36\) 25.6792 4.27986
\(37\) 5.71657i 0.939798i 0.882720 + 0.469899i \(0.155710\pi\)
−0.882720 + 0.469899i \(0.844290\pi\)
\(38\) 9.54484i 1.54838i
\(39\) −6.20555 −0.993684
\(40\) −4.73337 + 7.70021i −0.748411 + 1.21751i
\(41\) 0.797070 0.124481 0.0622407 0.998061i \(-0.480175\pi\)
0.0622407 + 0.998061i \(0.480175\pi\)
\(42\) 1.65602i 0.255529i
\(43\) 2.49417i 0.380357i 0.981750 + 0.190178i \(0.0609066\pi\)
−0.981750 + 0.190178i \(0.939093\pi\)
\(44\) 1.93916 0.292340
\(45\) 13.2424 + 8.14019i 1.97406 + 1.21347i
\(46\) 0.889263 0.131115
\(47\) 6.73955i 0.983065i 0.870859 + 0.491532i \(0.163563\pi\)
−0.870859 + 0.491532i \(0.836437\pi\)
\(48\) 7.12189i 1.02796i
\(49\) 6.95160 0.993086
\(50\) −10.6456 + 5.38713i −1.50551 + 0.761855i
\(51\) 0 0
\(52\) 7.26658i 1.00769i
\(53\) 5.92169i 0.813406i 0.913560 + 0.406703i \(0.133322\pi\)
−0.913560 + 0.406703i \(0.866678\pi\)
\(54\) −29.7460 −4.04792
\(55\) 1.00000 + 0.614707i 0.134840 + 0.0828870i
\(56\) −0.889263 −0.118833
\(57\) 12.6185i 1.67136i
\(58\) 16.7097i 2.19409i
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 13.6456 22.1985i 1.76164 2.86582i
\(61\) −5.65685 −0.724286 −0.362143 0.932123i \(-0.617955\pi\)
−0.362143 + 0.932123i \(0.617955\pi\)
\(62\) 6.96921i 0.885091i
\(63\) 1.52931i 0.192675i
\(64\) 10.9516 1.36895
\(65\) −2.30348 + 3.74728i −0.285711 + 0.464793i
\(66\) −3.95160 −0.486409
\(67\) 11.5120i 1.40641i 0.710987 + 0.703206i \(0.248249\pi\)
−0.710987 + 0.703206i \(0.751751\pi\)
\(68\) 0 0
\(69\) −1.17562 −0.141528
\(70\) −1.00000 0.614707i −0.119523 0.0734715i
\(71\) 7.16326 0.850123 0.425061 0.905165i \(-0.360253\pi\)
0.425061 + 0.905165i \(0.360253\pi\)
\(72\) 28.1000i 3.31161i
\(73\) 1.18532i 0.138731i −0.997591 0.0693657i \(-0.977902\pi\)
0.997591 0.0693657i \(-0.0220975\pi\)
\(74\) −13.6409 −1.58573
\(75\) 14.0737 7.12189i 1.62509 0.822365i
\(76\) 14.7760 1.69492
\(77\) 0.115486i 0.0131608i
\(78\) 14.8078i 1.67665i
\(79\) 6.73050 0.757241 0.378620 0.925552i \(-0.376399\pi\)
0.378620 + 0.925552i \(0.376399\pi\)
\(80\) −4.30061 2.64362i −0.480823 0.295565i
\(81\) 18.4700 2.05222
\(82\) 1.90197i 0.210038i
\(83\) 6.11732i 0.671463i 0.941958 + 0.335731i \(0.108983\pi\)
−0.941958 + 0.335731i \(0.891017\pi\)
\(84\) 2.56361 0.279713
\(85\) 0 0
\(86\) −5.95160 −0.641778
\(87\) 22.0906i 2.36836i
\(88\) 2.12197i 0.226203i
\(89\) −15.9852 −1.69443 −0.847213 0.531253i \(-0.821721\pi\)
−0.847213 + 0.531253i \(0.821721\pi\)
\(90\) −19.4242 + 31.5991i −2.04749 + 3.33084i
\(91\) −0.432757 −0.0453652
\(92\) 1.37663i 0.143524i
\(93\) 9.21344i 0.955389i
\(94\) −16.0820 −1.65873
\(95\) 7.61977 + 4.68392i 0.781772 + 0.480560i
\(96\) −8.50903 −0.868449
\(97\) 9.21517i 0.935659i −0.883819 0.467829i \(-0.845036\pi\)
0.883819 0.467829i \(-0.154964\pi\)
\(98\) 16.5880i 1.67564i
\(99\) 3.64925 0.366763
\(100\) −8.33959 16.4800i −0.833959 1.64800i
\(101\) −7.20921 −0.717343 −0.358672 0.933464i \(-0.616770\pi\)
−0.358672 + 0.933464i \(0.616770\pi\)
\(102\) 0 0
\(103\) 9.52456i 0.938482i 0.883070 + 0.469241i \(0.155472\pi\)
−0.883070 + 0.469241i \(0.844528\pi\)
\(104\) −7.95160 −0.779719
\(105\) 1.32202 + 0.812655i 0.129016 + 0.0793070i
\(106\) −14.1304 −1.37246
\(107\) 10.7838i 1.04251i −0.853401 0.521255i \(-0.825464\pi\)
0.853401 0.521255i \(-0.174536\pi\)
\(108\) 46.0486i 4.43103i
\(109\) −14.0737 −1.34802 −0.674008 0.738724i \(-0.735429\pi\)
−0.674008 + 0.738724i \(0.735429\pi\)
\(110\) −1.46682 + 2.38621i −0.139856 + 0.227516i
\(111\) 18.0336 1.71167
\(112\) 0.496659i 0.0469299i
\(113\) 7.18921i 0.676304i 0.941092 + 0.338152i \(0.109802\pi\)
−0.941092 + 0.338152i \(0.890198\pi\)
\(114\) −30.1103 −2.82009
\(115\) −0.436387 + 0.709910i −0.0406933 + 0.0661995i
\(116\) −25.8677 −2.40175
\(117\) 13.6747i 1.26423i
\(118\) 14.3173i 1.31801i
\(119\) 0 0
\(120\) 24.2912 + 14.9320i 2.21747 + 1.36310i
\(121\) −10.7244 −0.974948
\(122\) 13.4984i 1.22209i
\(123\) 2.51445i 0.226720i
\(124\) 10.7888 0.968859
\(125\) 0.923485 11.1421i 0.0825990 0.996583i
\(126\) −3.64925 −0.325101
\(127\) 9.74047i 0.864327i 0.901795 + 0.432163i \(0.142250\pi\)
−0.901795 + 0.432163i \(0.857750\pi\)
\(128\) 20.7382i 1.83301i
\(129\) 7.86814 0.692751
\(130\) −8.94179 5.49658i −0.784247 0.482082i
\(131\) −19.6859 −1.71996 −0.859980 0.510327i \(-0.829524\pi\)
−0.859980 + 0.510327i \(0.829524\pi\)
\(132\) 6.11732i 0.532444i
\(133\) 0.879974i 0.0763034i
\(134\) −27.4700 −2.37304
\(135\) 14.5972 23.7466i 1.25633 2.04378i
\(136\) 0 0
\(137\) 4.65693i 0.397869i −0.980013 0.198934i \(-0.936252\pi\)
0.980013 0.198934i \(-0.0637480\pi\)
\(138\) 2.80528i 0.238802i
\(139\) 5.24785 0.445117 0.222558 0.974919i \(-0.428559\pi\)
0.222558 + 0.974919i \(0.428559\pi\)
\(140\) 0.951603 1.54806i 0.0804251 0.130835i
\(141\) 21.2607 1.79047
\(142\) 17.0930i 1.43442i
\(143\) 1.03265i 0.0863544i
\(144\) −15.6940 −1.30783
\(145\) −13.3396 8.19994i −1.10779 0.680968i
\(146\) 2.82843 0.234082
\(147\) 21.9296i 1.80873i
\(148\) 21.1170i 1.73581i
\(149\) −8.74239 −0.716205 −0.358102 0.933682i \(-0.616576\pi\)
−0.358102 + 0.933682i \(0.616576\pi\)
\(150\) 16.9943 + 33.5828i 1.38758 + 2.74202i
\(151\) 15.9032 1.29418 0.647092 0.762412i \(-0.275985\pi\)
0.647092 + 0.762412i \(0.275985\pi\)
\(152\) 16.1689i 1.31147i
\(153\) 0 0
\(154\) −0.275573 −0.0222063
\(155\) 5.56361 + 3.41999i 0.446880 + 0.274700i
\(156\) 22.9233 1.83533
\(157\) 10.0719i 0.803823i 0.915679 + 0.401911i \(0.131654\pi\)
−0.915679 + 0.401911i \(0.868346\pi\)
\(158\) 16.0604i 1.27770i
\(159\) 18.6806 1.48147
\(160\) −3.15852 + 5.13825i −0.249703 + 0.406214i
\(161\) −0.0819845 −0.00646128
\(162\) 44.0732i 3.46272i
\(163\) 9.58784i 0.750978i 0.926827 + 0.375489i \(0.122525\pi\)
−0.926827 + 0.375489i \(0.877475\pi\)
\(164\) −2.94437 −0.229917
\(165\) 1.93916 3.15462i 0.150964 0.245587i
\(166\) −14.5972 −1.13296
\(167\) 5.34390i 0.413524i −0.978391 0.206762i \(-0.933707\pi\)
0.978391 0.206762i \(-0.0662925\pi\)
\(168\) 2.80528i 0.216432i
\(169\) 9.13038 0.702337
\(170\) 0 0
\(171\) 27.8064 2.12641
\(172\) 9.21344i 0.702518i
\(173\) 17.4551i 1.32708i −0.748139 0.663542i \(-0.769052\pi\)
0.748139 0.663542i \(-0.230948\pi\)
\(174\) 52.7128 3.99614
\(175\) 0.981457 0.496659i 0.0741912 0.0375439i
\(176\) −1.18513 −0.0893327
\(177\) 18.9277i 1.42269i
\(178\) 38.1440i 2.85901i
\(179\) 21.3248 1.59389 0.796945 0.604052i \(-0.206448\pi\)
0.796945 + 0.604052i \(0.206448\pi\)
\(180\) −48.9174 30.0698i −3.64608 2.24127i
\(181\) −14.4380 −1.07317 −0.536584 0.843847i \(-0.680286\pi\)
−0.536584 + 0.843847i \(0.680286\pi\)
\(182\) 1.03265i 0.0765450i
\(183\) 17.8452i 1.31916i
\(184\) −1.50641 −0.111054
\(185\) 6.69399 10.8897i 0.492152 0.800629i
\(186\) −21.9852 −1.61203
\(187\) 0 0
\(188\) 24.8959i 1.81572i
\(189\) 2.74239 0.199480
\(190\) −11.1768 + 18.1824i −0.810852 + 1.31909i
\(191\) 6.74239 0.487862 0.243931 0.969793i \(-0.421563\pi\)
0.243931 + 0.969793i \(0.421563\pi\)
\(192\) 34.5481i 2.49329i
\(193\) 14.6551i 1.05490i 0.849587 + 0.527448i \(0.176851\pi\)
−0.849587 + 0.527448i \(0.823149\pi\)
\(194\) 21.9893 1.57874
\(195\) 11.8212 + 7.26658i 0.846535 + 0.520371i
\(196\) −25.6792 −1.83423
\(197\) 0.869327i 0.0619370i −0.999520 0.0309685i \(-0.990141\pi\)
0.999520 0.0309685i \(-0.00985915\pi\)
\(198\) 8.70787i 0.618841i
\(199\) 13.3004 0.942838 0.471419 0.881909i \(-0.343742\pi\)
0.471419 + 0.881909i \(0.343742\pi\)
\(200\) 18.0336 9.12576i 1.27517 0.645289i
\(201\) 36.3159 2.56152
\(202\) 17.2027i 1.21038i
\(203\) 1.54053i 0.108124i
\(204\) 0 0
\(205\) −1.51837 0.933353i −0.106048 0.0651882i
\(206\) −22.7276 −1.58351
\(207\) 2.59064i 0.180062i
\(208\) 4.44102i 0.307929i
\(209\) 2.09980 0.145246
\(210\) −1.93916 + 3.15462i −0.133815 + 0.217689i
\(211\) −17.7914 −1.22481 −0.612405 0.790544i \(-0.709798\pi\)
−0.612405 + 0.790544i \(0.709798\pi\)
\(212\) 21.8747i 1.50236i
\(213\) 22.5973i 1.54834i
\(214\) 25.7324 1.75903
\(215\) 2.92062 4.75124i 0.199185 0.324032i
\(216\) 50.3895 3.42857
\(217\) 0.642517i 0.0436169i
\(218\) 33.5828i 2.27451i
\(219\) −3.73924 −0.252674
\(220\) −3.69399 2.27072i −0.249049 0.153092i
\(221\) 0 0
\(222\) 43.0319i 2.88811i
\(223\) 1.96713i 0.131729i −0.997829 0.0658645i \(-0.979019\pi\)
0.997829 0.0658645i \(-0.0209805\pi\)
\(224\) −0.593394 −0.0396478
\(225\) −15.6940 31.0132i −1.04627 2.06755i
\(226\) −17.1550 −1.14113
\(227\) 11.9585i 0.793712i −0.917881 0.396856i \(-0.870101\pi\)
0.917881 0.396856i \(-0.129899\pi\)
\(228\) 46.6125i 3.08699i
\(229\) −9.30601 −0.614958 −0.307479 0.951555i \(-0.599485\pi\)
−0.307479 + 0.951555i \(0.599485\pi\)
\(230\) −1.69399 1.04131i −0.111699 0.0686620i
\(231\) 0.364313 0.0239700
\(232\) 28.3062i 1.85839i
\(233\) 25.8009i 1.69027i −0.534550 0.845137i \(-0.679519\pi\)
0.534550 0.845137i \(-0.320481\pi\)
\(234\) −32.6308 −2.13314
\(235\) 7.89189 12.8385i 0.514810 0.837489i
\(236\) 22.1640 1.44275
\(237\) 21.2322i 1.37918i
\(238\) 0 0
\(239\) −29.2912 −1.89469 −0.947345 0.320215i \(-0.896245\pi\)
−0.947345 + 0.320215i \(0.896245\pi\)
\(240\) −8.33959 + 13.5668i −0.538318 + 0.875732i
\(241\) −8.48528 −0.546585 −0.273293 0.961931i \(-0.588113\pi\)
−0.273293 + 0.961931i \(0.588113\pi\)
\(242\) 25.5907i 1.64503i
\(243\) 20.8683i 1.33870i
\(244\) 20.8964 1.33775
\(245\) −13.2424 8.14019i −0.846026 0.520058i
\(246\) 6.00000 0.382546
\(247\) 7.86854i 0.500663i
\(248\) 11.8058i 0.749670i
\(249\) 19.2978 1.22295
\(250\) 26.5875 + 2.20363i 1.68154 + 0.139370i
\(251\) 1.77282 0.111900 0.0559498 0.998434i \(-0.482181\pi\)
0.0559498 + 0.998434i \(0.482181\pi\)
\(252\) 5.64925i 0.355869i
\(253\) 0.195632i 0.0122993i
\(254\) −23.2428 −1.45838
\(255\) 0 0
\(256\) −27.5824 −1.72390
\(257\) 7.40235i 0.461746i −0.972984 0.230873i \(-0.925842\pi\)
0.972984 0.230873i \(-0.0741582\pi\)
\(258\) 18.7750i 1.16888i
\(259\) 1.25761 0.0781440
\(260\) 8.50903 13.8424i 0.527708 0.858471i
\(261\) −48.6795 −3.01318
\(262\) 46.9746i 2.90210i
\(263\) 7.67291i 0.473132i −0.971615 0.236566i \(-0.923978\pi\)
0.971615 0.236566i \(-0.0760219\pi\)
\(264\) 6.69399 0.411987
\(265\) 6.93418 11.2805i 0.425963 0.692954i
\(266\) −2.09980 −0.128747
\(267\) 50.4271i 3.08609i
\(268\) 42.5252i 2.59764i
\(269\) 7.87260 0.480001 0.240000 0.970773i \(-0.422852\pi\)
0.240000 + 0.970773i \(0.422852\pi\)
\(270\) 56.6644 + 34.8320i 3.44848 + 2.11981i
\(271\) 18.0672 1.09750 0.548751 0.835986i \(-0.315103\pi\)
0.548751 + 0.835986i \(0.315103\pi\)
\(272\) 0 0
\(273\) 1.36518i 0.0826245i
\(274\) 11.1124 0.671326
\(275\) −1.18513 2.34196i −0.0714662 0.141226i
\(276\) 4.34275 0.261403
\(277\) 26.5569i 1.59565i 0.602890 + 0.797824i \(0.294016\pi\)
−0.602890 + 0.797824i \(0.705984\pi\)
\(278\) 12.5225i 0.751047i
\(279\) 20.3030 1.21551
\(280\) 1.69399 + 1.04131i 0.101236 + 0.0622302i
\(281\) 13.7728 0.821618 0.410809 0.911721i \(-0.365246\pi\)
0.410809 + 0.911721i \(0.365246\pi\)
\(282\) 50.7325i 3.02108i
\(283\) 13.7471i 0.817181i 0.912718 + 0.408591i \(0.133980\pi\)
−0.912718 + 0.408591i \(0.866020\pi\)
\(284\) −26.4611 −1.57017
\(285\) 14.7760 24.0374i 0.875253 1.42386i
\(286\) −2.46411 −0.145706
\(287\) 0.175350i 0.0103506i
\(288\) 18.7507i 1.10490i
\(289\) 0 0
\(290\) 19.5668 31.8311i 1.14900 1.86918i
\(291\) −29.0703 −1.70413
\(292\) 4.37857i 0.256237i
\(293\) 19.8873i 1.16183i −0.813966 0.580913i \(-0.802696\pi\)
0.813966 0.580913i \(-0.197304\pi\)
\(294\) 52.3287 3.05187
\(295\) 11.4297 + 7.02588i 0.665460 + 0.409063i
\(296\) 23.1077 1.34311
\(297\) 6.54392i 0.379717i
\(298\) 20.8612i 1.20846i
\(299\) −0.733088 −0.0423955
\(300\) −51.9881 + 26.3082i −3.00154 + 1.51891i
\(301\) 0.548700 0.0316266
\(302\) 37.9484i 2.18368i
\(303\) 22.7423i 1.30651i
\(304\) −9.03043 −0.517931
\(305\) 10.7760 + 6.62407i 0.617031 + 0.379293i
\(306\) 0 0
\(307\) 14.9598i 0.853799i −0.904299 0.426900i \(-0.859606\pi\)
0.904299 0.426900i \(-0.140394\pi\)
\(308\) 0.426603i 0.0243080i
\(309\) 30.0463 1.70928
\(310\) −8.16081 + 13.2759i −0.463503 + 0.754023i
\(311\) −29.6538 −1.68151 −0.840756 0.541414i \(-0.817889\pi\)
−0.840756 + 0.541414i \(0.817889\pi\)
\(312\) 25.0843i 1.42012i
\(313\) 14.3784i 0.812716i 0.913714 + 0.406358i \(0.133201\pi\)
−0.913714 + 0.406358i \(0.866799\pi\)
\(314\) −24.0336 −1.35629
\(315\) 1.79079 2.91324i 0.100900 0.164143i
\(316\) −24.8624 −1.39862
\(317\) 13.7751i 0.773687i 0.922145 + 0.386843i \(0.126435\pi\)
−0.922145 + 0.386843i \(0.873565\pi\)
\(318\) 44.5759i 2.49969i
\(319\) −3.67603 −0.205818
\(320\) −20.8622 12.8241i −1.16623 0.716890i
\(321\) −34.0188 −1.89874
\(322\) 0.195632i 0.0109021i
\(323\) 0 0
\(324\) −68.2280 −3.79044
\(325\) 8.77598 4.44102i 0.486804 0.246343i
\(326\) −22.8786 −1.26713
\(327\) 44.3971i 2.45516i
\(328\) 3.22194i 0.177902i
\(329\) 1.48266 0.0817415
\(330\) 7.52757 + 4.62725i 0.414379 + 0.254722i
\(331\) −20.1640 −1.10831 −0.554156 0.832413i \(-0.686959\pi\)
−0.554156 + 0.832413i \(0.686959\pi\)
\(332\) 22.5973i 1.24019i
\(333\) 39.7393i 2.17770i
\(334\) 12.7517 0.697740
\(335\) 13.4803 21.9296i 0.736507 1.19814i
\(336\) −1.56677 −0.0854742
\(337\) 28.5829i 1.55701i 0.627640 + 0.778504i \(0.284021\pi\)
−0.627640 + 0.778504i \(0.715979\pi\)
\(338\) 21.7870i 1.18506i
\(339\) 22.6792 1.23176
\(340\) 0 0
\(341\) 1.53318 0.0830264
\(342\) 66.3519i 3.58790i
\(343\) 3.06926i 0.165725i
\(344\) 10.0820 0.543584
\(345\) 2.23949 + 1.37663i 0.120570 + 0.0741154i
\(346\) 41.6514 2.23919
\(347\) 10.9365i 0.587101i 0.955944 + 0.293551i \(0.0948369\pi\)
−0.955944 + 0.293551i \(0.905163\pi\)
\(348\) 81.6025i 4.37435i
\(349\) −0.645598 −0.0345581 −0.0172790 0.999851i \(-0.505500\pi\)
−0.0172790 + 0.999851i \(0.505500\pi\)
\(350\) 1.18513 + 2.34196i 0.0633480 + 0.125183i
\(351\) 24.5219 1.30888
\(352\) 1.41596i 0.0754711i
\(353\) 14.3022i 0.761229i −0.924734 0.380615i \(-0.875712\pi\)
0.924734 0.380615i \(-0.124288\pi\)
\(354\) −45.1654 −2.40052
\(355\) −13.6456 8.38804i −0.724233 0.445191i
\(356\) 59.0492 3.12960
\(357\) 0 0
\(358\) 50.8854i 2.68938i
\(359\) 15.6760 0.827349 0.413675 0.910425i \(-0.364245\pi\)
0.413675 + 0.910425i \(0.364245\pi\)
\(360\) 32.9045 53.5288i 1.73422 2.82121i
\(361\) −3.00000 −0.157895
\(362\) 34.4521i 1.81076i
\(363\) 33.8315i 1.77569i
\(364\) 1.59860 0.0837895
\(365\) −1.38799 + 2.25797i −0.0726507 + 0.118188i
\(366\) −42.5824 −2.22582
\(367\) 21.9010i 1.14322i 0.820525 + 0.571610i \(0.193681\pi\)
−0.820525 + 0.571610i \(0.806319\pi\)
\(368\) 0.841338i 0.0438578i
\(369\) −5.54091 −0.288448
\(370\) 25.9852 + 15.9733i 1.35091 + 0.830411i
\(371\) 1.30273 0.0676345
\(372\) 34.0344i 1.76460i
\(373\) 6.50858i 0.337002i −0.985702 0.168501i \(-0.946107\pi\)
0.985702 0.168501i \(-0.0538926\pi\)
\(374\) 0 0
\(375\) −35.1492 2.91324i −1.81509 0.150439i
\(376\) 27.2428 1.40494
\(377\) 13.7751i 0.709454i
\(378\) 6.54392i 0.336583i
\(379\) −7.52757 −0.386666 −0.193333 0.981133i \(-0.561930\pi\)
−0.193333 + 0.981133i \(0.561930\pi\)
\(380\) −28.1474 17.3024i −1.44393 0.887594i
\(381\) 30.7274 1.57421
\(382\) 16.0888i 0.823172i
\(383\) 24.7752i 1.26595i 0.774172 + 0.632976i \(0.218167\pi\)
−0.774172 + 0.632976i \(0.781833\pi\)
\(384\) 65.4209 3.33850
\(385\) 0.135231 0.219993i 0.00689203 0.0112119i
\(386\) −34.9701 −1.77993
\(387\) 17.3385i 0.881363i
\(388\) 34.0408i 1.72816i
\(389\) −23.6971 −1.20149 −0.600747 0.799440i \(-0.705130\pi\)
−0.600747 + 0.799440i \(0.705130\pi\)
\(390\) −17.3396 + 28.2079i −0.878024 + 1.42836i
\(391\) 0 0
\(392\) 28.1000i 1.41926i
\(393\) 62.1013i 3.13260i
\(394\) 2.07440 0.104507
\(395\) −12.8212 7.88129i −0.645106 0.396551i
\(396\) −13.4803 −0.677410
\(397\) 27.7135i 1.39090i −0.718573 0.695451i \(-0.755205\pi\)
0.718573 0.695451i \(-0.244795\pi\)
\(398\) 31.7375i 1.59086i
\(399\) 2.77598 0.138973
\(400\) 5.09679 + 10.0719i 0.254840 + 0.503593i
\(401\) −30.5431 −1.52525 −0.762624 0.646842i \(-0.776089\pi\)
−0.762624 + 0.646842i \(0.776089\pi\)
\(402\) 86.6572i 4.32207i
\(403\) 5.74525i 0.286191i
\(404\) 26.6308 1.32493
\(405\) −35.1842 21.6280i −1.74832 1.07470i
\(406\) 3.67603 0.182438
\(407\) 3.00092i 0.148750i
\(408\) 0 0
\(409\) 5.90321 0.291895 0.145947 0.989292i \(-0.453377\pi\)
0.145947 + 0.989292i \(0.453377\pi\)
\(410\) 2.22718 3.62315i 0.109992 0.178935i
\(411\) −14.6908 −0.724645
\(412\) 35.1837i 1.73337i
\(413\) 1.31996i 0.0649510i
\(414\) −6.18180 −0.303819
\(415\) 7.16326 11.6531i 0.351631 0.572030i
\(416\) −5.30601 −0.260148
\(417\) 16.5549i 0.810699i
\(418\) 5.01057i 0.245075i
\(419\) −32.4867 −1.58708 −0.793539 0.608519i \(-0.791764\pi\)
−0.793539 + 0.608519i \(0.791764\pi\)
\(420\) −4.88353 3.00194i −0.238292 0.146480i
\(421\) −30.1156 −1.46774 −0.733872 0.679288i \(-0.762289\pi\)
−0.733872 + 0.679288i \(0.762289\pi\)
\(422\) 42.4540i 2.06663i
\(423\) 46.8507i 2.27796i
\(424\) 23.9368 1.16247
\(425\) 0 0
\(426\) 53.9220 2.61253
\(427\) 1.24447i 0.0602242i
\(428\) 39.8353i 1.92551i
\(429\) 3.25761 0.157279
\(430\) 11.3375 + 6.96921i 0.546741 + 0.336085i
\(431\) 8.32464 0.400984 0.200492 0.979695i \(-0.435746\pi\)
0.200492 + 0.979695i \(0.435746\pi\)
\(432\) 28.1429i 1.35402i
\(433\) 13.5795i 0.652591i 0.945268 + 0.326295i \(0.105800\pi\)
−0.945268 + 0.326295i \(0.894200\pi\)
\(434\) −1.53318 −0.0735950
\(435\) −25.8677 + 42.0813i −1.24026 + 2.01764i
\(436\) 51.9881 2.48978
\(437\) 1.49067i 0.0713085i
\(438\) 8.92260i 0.426338i
\(439\) −20.3714 −0.972276 −0.486138 0.873882i \(-0.661595\pi\)
−0.486138 + 0.873882i \(0.661595\pi\)
\(440\) 2.48478 4.04223i 0.118457 0.192706i
\(441\) −48.3248 −2.30118
\(442\) 0 0
\(443\) 2.45360i 0.116574i −0.998300 0.0582871i \(-0.981436\pi\)
0.998300 0.0582871i \(-0.0185639\pi\)
\(444\) −66.6160 −3.16145
\(445\) 30.4509 + 18.7184i 1.44351 + 0.887335i
\(446\) 4.69399 0.222267
\(447\) 27.5789i 1.30444i
\(448\) 2.40928i 0.113828i
\(449\) 3.19720 0.150885 0.0754426 0.997150i \(-0.475963\pi\)
0.0754426 + 0.997150i \(0.475963\pi\)
\(450\) 74.0040 37.4492i 3.48858 1.76537i
\(451\) −0.418422 −0.0197027
\(452\) 26.5569i 1.24913i
\(453\) 50.1685i 2.35712i
\(454\) 28.5354 1.33923
\(455\) 0.824376 + 0.506750i 0.0386474 + 0.0237568i
\(456\) 51.0067 2.38861
\(457\) 30.1803i 1.41177i 0.708325 + 0.705887i \(0.249451\pi\)
−0.708325 + 0.705887i \(0.750549\pi\)
\(458\) 22.2061i 1.03762i
\(459\) 0 0
\(460\) 1.61201 2.62241i 0.0751604 0.122270i
\(461\) 5.41527 0.252214 0.126107 0.992017i \(-0.459752\pi\)
0.126107 + 0.992017i \(0.459752\pi\)
\(462\) 0.869327i 0.0404447i
\(463\) 15.7574i 0.732307i 0.930555 + 0.366153i \(0.119325\pi\)
−0.930555 + 0.366153i \(0.880675\pi\)
\(464\) 15.8092 0.733923
\(465\) 10.7888 17.5511i 0.500317 0.813911i
\(466\) 61.5664 2.85201
\(467\) 10.7690i 0.498331i 0.968461 + 0.249166i \(0.0801563\pi\)
−0.968461 + 0.249166i \(0.919844\pi\)
\(468\) 50.5144i 2.33503i
\(469\) 2.53256 0.116943
\(470\) 30.6352 + 18.8317i 1.41310 + 0.868641i
\(471\) 31.7729 1.46402
\(472\) 24.2534i 1.11635i
\(473\) 1.30931i 0.0602023i
\(474\) 50.6644 2.32709
\(475\) −9.03043 17.8452i −0.414345 0.818794i
\(476\) 0 0
\(477\) 41.1652i 1.88483i
\(478\) 69.8949i 3.19692i
\(479\) −36.9092 −1.68643 −0.843213 0.537579i \(-0.819339\pi\)
−0.843213 + 0.537579i \(0.819339\pi\)
\(480\) 16.2092 + 9.96391i 0.739846 + 0.454788i
\(481\) 11.2453 0.512740
\(482\) 20.2477i 0.922256i
\(483\) 0.258629i 0.0117680i
\(484\) 39.6160 1.80073
\(485\) −10.7908 + 17.5544i −0.489984 + 0.797103i
\(486\) 49.7961 2.25880
\(487\) 38.3234i 1.73660i −0.496041 0.868299i \(-0.665214\pi\)
0.496041 0.868299i \(-0.334786\pi\)
\(488\) 22.8663i 1.03511i
\(489\) 30.2460 1.36777
\(490\) 19.4242 31.5991i 0.877496 1.42750i
\(491\) 38.0336 1.71643 0.858216 0.513289i \(-0.171573\pi\)
0.858216 + 0.513289i \(0.171573\pi\)
\(492\) 9.28836i 0.418752i
\(493\) 0 0
\(494\) −18.7760 −0.844771
\(495\) −6.95160 4.27320i −0.312451 0.192066i
\(496\) −6.59362 −0.296062
\(497\) 1.57587i 0.0706875i
\(498\) 46.0486i 2.06349i
\(499\) −9.30610 −0.416598 −0.208299 0.978065i \(-0.566793\pi\)
−0.208299 + 0.978065i \(0.566793\pi\)
\(500\) −3.41135 + 41.1590i −0.152560 + 1.84069i
\(501\) −16.8580 −0.753158
\(502\) 4.23033i 0.188809i
\(503\) 1.56864i 0.0699421i −0.999388 0.0349710i \(-0.988866\pi\)
0.999388 0.0349710i \(-0.0111339\pi\)
\(504\) 6.18180 0.275359
\(505\) 13.7331 + 8.44185i 0.611116 + 0.375657i
\(506\) −0.466819 −0.0207526
\(507\) 28.8028i 1.27918i
\(508\) 35.9812i 1.59641i
\(509\) −24.4247 −1.08261 −0.541304 0.840827i \(-0.682069\pi\)
−0.541304 + 0.840827i \(0.682069\pi\)
\(510\) 0 0
\(511\) −0.260763 −0.0115355
\(512\) 24.3410i 1.07573i
\(513\) 49.8632i 2.20151i
\(514\) 17.6636 0.779106
\(515\) 11.1531 18.1437i 0.491463 0.799508i
\(516\) −29.0649 −1.27951
\(517\) 3.53793i 0.155598i
\(518\) 3.00092i 0.131853i
\(519\) −55.0640 −2.41704
\(520\) 15.1473 + 9.31117i 0.664255 + 0.408322i
\(521\) 7.50829 0.328944 0.164472 0.986382i \(-0.447408\pi\)
0.164472 + 0.986382i \(0.447408\pi\)
\(522\) 116.159i 5.08416i
\(523\) 8.98247i 0.392776i 0.980526 + 0.196388i \(0.0629212\pi\)
−0.980526 + 0.196388i \(0.937079\pi\)
\(524\) 72.7194 3.17676
\(525\) −1.56677 3.09612i −0.0683794 0.135126i
\(526\) 18.3092 0.798317
\(527\) 0 0
\(528\) 3.73864i 0.162703i
\(529\) 22.8611 0.993962
\(530\) 26.9176 + 16.5464i 1.16922 + 0.718730i
\(531\) 41.7096 1.81004
\(532\) 3.25062i 0.140932i
\(533\) 1.56794i 0.0679152i
\(534\) −120.330 −5.20718
\(535\) −12.6276 + 20.5425i −0.545940 + 0.888131i
\(536\) 46.5340 2.00996
\(537\) 67.2715i 2.90298i
\(538\) 18.7857i 0.809908i
\(539\) −3.64925 −0.157184
\(540\) −53.9220 + 87.7198i −2.32043 + 3.77486i
\(541\) 12.7279 0.547216 0.273608 0.961841i \(-0.411783\pi\)
0.273608 + 0.961841i \(0.411783\pi\)
\(542\) 43.1121i 1.85182i
\(543\) 45.5464i 1.95458i
\(544\) 0 0
\(545\) 26.8096 + 16.4800i 1.14840 + 0.705927i
\(546\) −3.25761 −0.139413
\(547\) 2.57260i 0.109997i 0.998486 + 0.0549983i \(0.0175153\pi\)
−0.998486 + 0.0549983i \(0.982485\pi\)
\(548\) 17.2027i 0.734862i
\(549\) 39.3242 1.67832
\(550\) 5.58841 2.82797i 0.238291 0.120585i
\(551\) −28.0105 −1.19329
\(552\) 4.75214i 0.202264i
\(553\) 1.48067i 0.0629644i
\(554\) −63.3703 −2.69235
\(555\) −34.3529 21.1170i −1.45820 0.896366i
\(556\) −19.3855 −0.822129
\(557\) 21.0162i 0.890487i −0.895410 0.445243i \(-0.853117\pi\)
0.895410 0.445243i \(-0.146883\pi\)
\(558\) 48.4472i 2.05093i
\(559\) 4.90636 0.207517
\(560\) −0.581578 + 0.946106i −0.0245762 + 0.0399803i
\(561\) 0 0
\(562\) 32.8648i 1.38632i
\(563\) 40.5377i 1.70846i 0.519893 + 0.854231i \(0.325972\pi\)
−0.519893 + 0.854231i \(0.674028\pi\)
\(564\) −78.5369 −3.30700
\(565\) 8.41842 13.6950i 0.354166 0.576154i
\(566\) −32.8035 −1.37883
\(567\) 4.06327i 0.170641i
\(568\) 28.9555i 1.21495i
\(569\) 0.612010 0.0256568 0.0128284 0.999918i \(-0.495916\pi\)
0.0128284 + 0.999918i \(0.495916\pi\)
\(570\) 57.3584 + 35.2586i 2.40248 + 1.47682i
\(571\) −14.8945 −0.623316 −0.311658 0.950194i \(-0.600884\pi\)
−0.311658 + 0.950194i \(0.600884\pi\)
\(572\) 3.81460i 0.159496i
\(573\) 21.2697i 0.888553i
\(574\) 0.418422 0.0174646
\(575\) 1.66258 0.841338i 0.0693345 0.0350862i
\(576\) −76.1312 −3.17213
\(577\) 37.2107i 1.54910i 0.632513 + 0.774550i \(0.282024\pi\)
−0.632513 + 0.774550i \(0.717976\pi\)
\(578\) 0 0
\(579\) 46.2311 1.92130
\(580\) 49.2764 + 30.2905i 2.04609 + 1.25775i
\(581\) 1.34577 0.0558319
\(582\) 69.3679i 2.87539i
\(583\) 3.10859i 0.128745i
\(584\) −4.79134 −0.198267
\(585\) 16.0129 26.0496i 0.662050 1.07702i
\(586\) 47.4552 1.96035
\(587\) 9.60470i 0.396428i 0.980159 + 0.198214i \(0.0635142\pi\)
−0.980159 + 0.198214i \(0.936486\pi\)
\(588\) 81.0080i 3.34071i
\(589\) 11.6825 0.481368
\(590\) −16.7652 + 27.2735i −0.690214 + 1.12283i
\(591\) −2.74239 −0.112807
\(592\) 12.9058i 0.530424i
\(593\) 16.5206i 0.678419i −0.940711 0.339210i \(-0.889840\pi\)
0.940711 0.339210i \(-0.110160\pi\)
\(594\) 15.6152 0.640698
\(595\) 0 0
\(596\) 32.2944 1.32283
\(597\) 41.9576i 1.71721i
\(598\) 1.74930i 0.0715342i
\(599\) −34.8096 −1.42228 −0.711140 0.703050i \(-0.751821\pi\)
−0.711140 + 0.703050i \(0.751821\pi\)
\(600\) −28.7883 56.8890i −1.17528 2.32249i
\(601\) 11.6825 0.476538 0.238269 0.971199i \(-0.423420\pi\)
0.238269 + 0.971199i \(0.423420\pi\)
\(602\) 1.30931i 0.0533636i
\(603\) 80.0267i 3.25894i
\(604\) −58.7464 −2.39036
\(605\) 20.4294 + 12.5581i 0.830574 + 0.510559i
\(606\) −54.2679 −2.20448
\(607\) 26.9296i 1.09304i −0.837447 0.546519i \(-0.815953\pi\)
0.837447 0.546519i \(-0.184047\pi\)
\(608\) 10.7893i 0.437564i
\(609\) −4.85978 −0.196928
\(610\) −15.8064 + 25.7137i −0.639983 + 1.04112i
\(611\) 13.2576 0.536345
\(612\) 0 0
\(613\) 5.43522i 0.219526i 0.993958 + 0.109763i \(0.0350092\pi\)
−0.993958 + 0.109763i \(0.964991\pi\)
\(614\) 35.6971 1.44062
\(615\) −2.94437 + 4.78988i −0.118728 + 0.193147i
\(616\) 0.466819 0.0188087
\(617\) 3.49860i 0.140848i −0.997517 0.0704242i \(-0.977565\pi\)
0.997517 0.0704242i \(-0.0224353\pi\)
\(618\) 71.6968i 2.88407i
\(619\) 12.1301 0.487549 0.243774 0.969832i \(-0.421614\pi\)
0.243774 + 0.969832i \(0.421614\pi\)
\(620\) −20.5520 12.6334i −0.825387 0.507371i
\(621\) 4.64560 0.186421
\(622\) 70.7602i 2.83722i
\(623\) 3.51664i 0.140891i
\(624\) −14.0097 −0.560837
\(625\) −14.8064 + 20.1437i −0.592256 + 0.805750i
\(626\) −34.3099 −1.37130
\(627\) 6.62407i 0.264540i
\(628\) 37.2054i 1.48466i
\(629\) 0 0
\(630\) 6.95160 + 4.27320i 0.276958 + 0.170248i
\(631\) 12.6183 0.502327 0.251164 0.967945i \(-0.419187\pi\)
0.251164 + 0.967945i \(0.419187\pi\)
\(632\) 27.2062i 1.08221i
\(633\) 56.1250i 2.23077i
\(634\) −32.8703 −1.30545
\(635\) 11.4059 18.5550i 0.452629 0.736334i
\(636\) −69.0062 −2.73627
\(637\) 13.6747i 0.541813i
\(638\) 8.77178i 0.347278i
\(639\) −49.7961 −1.96991
\(640\) 24.2840 39.5050i 0.959909 1.56157i
\(641\) 30.1997 1.19282 0.596408 0.802681i \(-0.296594\pi\)
0.596408 + 0.802681i \(0.296594\pi\)
\(642\) 81.1759i 3.20376i
\(643\) 19.7117i 0.777352i 0.921374 + 0.388676i \(0.127068\pi\)
−0.921374 + 0.388676i \(0.872932\pi\)
\(644\) 0.302850 0.0119340
\(645\) −14.9883 9.21344i −0.590166 0.362779i
\(646\) 0 0
\(647\) 21.0418i 0.827237i 0.910450 + 0.413618i \(0.135735\pi\)
−0.910450 + 0.413618i \(0.864265\pi\)
\(648\) 74.6598i 2.93291i
\(649\) 3.14970 0.123637
\(650\) 10.5972 + 20.9413i 0.415656 + 0.821386i
\(651\) 2.02690 0.0794403
\(652\) 35.4174i 1.38705i
\(653\) 38.7173i 1.51513i −0.652762 0.757563i \(-0.726390\pi\)
0.652762 0.757563i \(-0.273610\pi\)
\(654\) −105.941 −4.14261
\(655\) 37.5004 + 23.0518i 1.46526 + 0.900707i
\(656\) 1.79947 0.0702575
\(657\) 8.23989i 0.321469i
\(658\) 3.53793i 0.137923i
\(659\) 24.1577 0.941049 0.470524 0.882387i \(-0.344065\pi\)
0.470524 + 0.882387i \(0.344065\pi\)
\(660\) −7.16326 + 11.6531i −0.278830 + 0.453598i
\(661\) −25.7432 −1.00129 −0.500647 0.865651i \(-0.666905\pi\)
−0.500647 + 0.865651i \(0.666905\pi\)
\(662\) 48.1155i 1.87006i
\(663\) 0 0
\(664\) 24.7276 0.959616
\(665\) 1.03043 1.67630i 0.0399585 0.0650041i
\(666\) 94.8264 3.67445
\(667\) 2.60965i 0.101046i
\(668\) 19.7404i 0.763777i
\(669\) −6.20555 −0.239921
\(670\) 52.3287 + 32.1668i 2.02163 + 1.24271i
\(671\) 2.96957 0.114639
\(672\) 1.87193i 0.0722113i
\(673\) 10.4958i 0.404583i −0.979325 0.202292i \(-0.935161\pi\)
0.979325 0.202292i \(-0.0648389\pi\)
\(674\) −68.2047 −2.62715
\(675\) −55.6136 + 28.1429i −2.14057 + 1.08322i
\(676\) −33.7276 −1.29721
\(677\) 8.48787i 0.326215i −0.986608 0.163108i \(-0.947848\pi\)
0.986608 0.163108i \(-0.0521518\pi\)
\(678\) 54.1173i 2.07836i
\(679\) −2.02728 −0.0777998
\(680\) 0 0
\(681\) −37.7244 −1.44560
\(682\) 3.65849i 0.140091i
\(683\) 14.2898i 0.546784i 0.961903 + 0.273392i \(0.0881456\pi\)
−0.961903 + 0.273392i \(0.911854\pi\)
\(684\) −102.717 −3.92747
\(685\) −5.45318 + 8.87119i −0.208355 + 0.338951i
\(686\) 7.32390 0.279628
\(687\) 29.3569i 1.12003i
\(688\) 5.63085i 0.214674i
\(689\) 11.6488 0.443782
\(690\) −3.28493 + 5.34390i −0.125055 + 0.203439i
\(691\) 8.82584 0.335751 0.167875 0.985808i \(-0.446309\pi\)
0.167875 + 0.985808i \(0.446309\pi\)
\(692\) 64.4789i 2.45112i
\(693\) 0.802810i 0.0304962i
\(694\) −26.0967 −0.990619
\(695\) −9.99684 6.14513i −0.379202 0.233098i
\(696\) −89.2952 −3.38472
\(697\) 0 0
\(698\) 1.54053i 0.0583100i
\(699\) −81.3920 −3.07853
\(700\) −3.62550 + 1.83466i −0.137031 + 0.0693435i
\(701\) −18.5340 −0.700019 −0.350010 0.936746i \(-0.613822\pi\)
−0.350010 + 0.936746i \(0.613822\pi\)
\(702\) 58.5144i 2.20848i
\(703\) 22.8663i 0.862418i
\(704\) −5.74905 −0.216675
\(705\) −40.5004 24.8959i −1.52533 0.937633i
\(706\) 34.1280 1.28443
\(707\) 1.58598i 0.0596469i
\(708\) 69.9188i 2.62771i
\(709\) −25.4989 −0.957631 −0.478815 0.877916i \(-0.658934\pi\)
−0.478815 + 0.877916i \(0.658934\pi\)
\(710\) 20.0156 32.5613i 0.751173 1.22200i
\(711\) −46.7878 −1.75468
\(712\) 64.6158i 2.42158i
\(713\) 1.08842i 0.0407617i
\(714\) 0 0
\(715\) 1.20921 1.96713i 0.0452219 0.0735667i
\(716\) −78.7736 −2.94391
\(717\) 92.4025i 3.45083i
\(718\) 37.4063i 1.39599i
\(719\) 4.76313 0.177635 0.0888174 0.996048i \(-0.471691\pi\)
0.0888174 + 0.996048i \(0.471691\pi\)
\(720\) 29.8961 + 18.3774i 1.11416 + 0.684884i
\(721\) 2.09534 0.0780345
\(722\) 7.15863i 0.266417i
\(723\) 26.7678i 0.995505i
\(724\) 53.3339 1.98214
\(725\) 15.8092 + 31.2408i 0.587138 + 1.16025i
\(726\) −80.7289 −2.99613
\(727\) 11.1858i 0.414858i 0.978250 + 0.207429i \(0.0665096\pi\)
−0.978250 + 0.207429i \(0.933490\pi\)
\(728\) 1.74930i 0.0648334i
\(729\) −10.4216 −0.385984
\(730\) −5.38799 3.31203i −0.199418 0.122584i
\(731\) 0 0
\(732\) 65.9201i 2.43648i
\(733\) 26.2804i 0.970687i −0.874324 0.485344i \(-0.838695\pi\)
0.874324 0.485344i \(-0.161305\pi\)
\(734\) −52.2603 −1.92896
\(735\) −25.6792 + 41.7747i −0.947191 + 1.54088i
\(736\) −1.00521 −0.0370524
\(737\) 6.04321i 0.222605i
\(738\) 13.2218i 0.486700i
\(739\) −6.00000 −0.220714 −0.110357 0.993892i \(-0.535199\pi\)
−0.110357 + 0.993892i \(0.535199\pi\)
\(740\) −24.7276 + 40.2266i −0.909004 + 1.47876i
\(741\) 24.8222 0.911867
\(742\) 3.10859i 0.114120i
\(743\) 34.0401i 1.24881i 0.781101 + 0.624405i \(0.214659\pi\)
−0.781101 + 0.624405i \(0.785341\pi\)
\(744\) 37.2428 1.36539
\(745\) 16.6537 + 10.2372i 0.610146 + 0.375061i
\(746\) 15.5308 0.568624
\(747\) 42.5252i 1.55591i
\(748\) 0 0
\(749\) −2.37237 −0.0866844
\(750\) 6.95160 83.8733i 0.253837 3.06262i
\(751\) 13.0431 0.475949 0.237974 0.971271i \(-0.423517\pi\)
0.237974 + 0.971271i \(0.423517\pi\)
\(752\) 15.2153i 0.554844i
\(753\) 5.59258i 0.203805i
\(754\) 32.8703 1.19707
\(755\) −30.2947 18.6223i −1.10254 0.677737i
\(756\) −10.1304 −0.368438
\(757\) 31.8716i 1.15839i −0.815188 0.579197i \(-0.803366\pi\)
0.815188 0.579197i \(-0.196634\pi\)
\(758\) 17.9624i 0.652423i
\(759\) 0.617144 0.0224009
\(760\) 18.9335 30.8008i 0.686789 1.11726i
\(761\) −18.7549 −0.679863 −0.339932 0.940450i \(-0.610404\pi\)
−0.339932 + 0.940450i \(0.610404\pi\)
\(762\) 73.3221i 2.65618i
\(763\) 3.09612i 0.112087i
\(764\) −24.9064 −0.901081
\(765\) 0 0
\(766\) −59.1187 −2.13605
\(767\) 11.8028i 0.426175i
\(768\) 87.0119i 3.13977i
\(769\) 47.7916 1.72341 0.861705 0.507410i \(-0.169397\pi\)
0.861705 + 0.507410i \(0.169397\pi\)
\(770\) 0.524950 + 0.322691i 0.0189179 + 0.0116290i
\(771\) −23.3516 −0.840987
\(772\) 54.1358i 1.94839i
\(773\) 28.3286i 1.01891i 0.860497 + 0.509455i \(0.170153\pi\)
−0.860497 + 0.509455i \(0.829847\pi\)
\(774\) 41.3732 1.48713
\(775\) −6.59362 13.0298i −0.236850 0.468043i
\(776\) −37.2498 −1.33719
\(777\) 3.96727i 0.142325i
\(778\) 56.5464i 2.02729i
\(779\) −3.18828 −0.114232
\(780\) −43.6675 26.8427i −1.56355 0.961124i
\(781\) −3.76036 −0.134556
\(782\) 0 0
\(783\) 87.2932i 3.11961i
\(784\) 15.6940 0.560500
\(785\) 11.7940 19.1863i 0.420945 0.684789i
\(786\) −148.187 −5.28565
\(787\) 42.3119i 1.50826i 0.656727 + 0.754129i \(0.271941\pi\)
−0.656727 + 0.754129i \(0.728059\pi\)
\(788\) 3.21129i 0.114397i
\(789\) −24.2051 −0.861723
\(790\) 18.8064 30.5941i 0.669102 1.08849i
\(791\) 1.58158 0.0562344
\(792\) 14.7511i 0.524157i
\(793\) 11.1278i 0.395160i
\(794\) 66.1303 2.34688
\(795\) −35.5855 21.8747i −1.26209 0.775815i
\(796\) −49.1315 −1.74142
\(797\) 54.1578i 1.91837i −0.282780 0.959185i \(-0.591257\pi\)
0.282780 0.959185i \(-0.408743\pi\)
\(798\) 6.62407i 0.234489i
\(799\) 0 0
\(800\) 12.0336 6.08951i 0.425452 0.215297i
\(801\) 111.123 3.92633
\(802\) 72.8821i 2.57356i
\(803\) 0.622235i 0.0219582i
\(804\) −134.151 −4.73113
\(805\) 0.156176 + 0.0960022i 0.00550447 + 0.00338363i
\(806\) −13.7094 −0.482892
\(807\) 24.8350i 0.874234i
\(808\) 29.1413i 1.02519i
\(809\) 30.9803 1.08921 0.544604 0.838693i \(-0.316680\pi\)
0.544604 + 0.838693i \(0.316680\pi\)
\(810\) 51.6089 83.9569i 1.81335 2.94995i
\(811\) −4.15045 −0.145742 −0.0728710 0.997341i \(-0.523216\pi\)
−0.0728710 + 0.997341i \(0.523216\pi\)
\(812\) 5.69071i 0.199705i
\(813\) 56.9950i 1.99890i
\(814\) 7.16081 0.250986
\(815\) 11.2272 18.2643i 0.393271 0.639770i
\(816\) 0 0
\(817\) 9.97667i 0.349039i
\(818\) 14.0863i 0.492515i
\(819\) 3.00835 0.105120
\(820\) 5.60886 + 3.44780i 0.195870 + 0.120402i
\(821\) −1.40975 −0.0492007 −0.0246003 0.999697i \(-0.507831\pi\)
−0.0246003 + 0.999697i \(0.507831\pi\)
\(822\) 35.0554i 1.22270i
\(823\) 20.2090i 0.704442i 0.935917 + 0.352221i \(0.114573\pi\)
−0.935917 + 0.352221i \(0.885427\pi\)
\(824\) 38.5004 1.34123
\(825\) −7.38799 + 3.73864i −0.257217 + 0.130163i
\(826\) −3.14970 −0.109592
\(827\) 11.3584i 0.394971i 0.980306 + 0.197486i \(0.0632776\pi\)
−0.980306 + 0.197486i \(0.936722\pi\)
\(828\) 9.56980i 0.332574i
\(829\) 10.9336 0.379741 0.189870 0.981809i \(-0.439193\pi\)
0.189870 + 0.981809i \(0.439193\pi\)
\(830\) 27.8068 + 17.0930i 0.965189 + 0.593308i
\(831\) 83.7768 2.90618
\(832\) 21.5433i 0.746879i
\(833\) 0 0
\(834\) 39.5036 1.36790
\(835\) −6.25761 + 10.1798i −0.216553 + 0.352287i
\(836\) −7.75666 −0.268270
\(837\) 36.4078i 1.25844i
\(838\) 77.5200i 2.67788i
\(839\) −38.8677 −1.34186 −0.670931 0.741520i \(-0.734105\pi\)
−0.670931 + 0.741520i \(0.734105\pi\)
\(840\) 3.28493 5.34390i 0.113341 0.184382i
\(841\) 20.0367 0.690922
\(842\) 71.8621i 2.47653i
\(843\) 43.4480i 1.49643i
\(844\) 65.7213 2.26222
\(845\) −17.3928 10.6915i −0.598332 0.367799i
\(846\) 111.796 3.84361
\(847\) 2.35930i 0.0810666i
\(848\) 13.3688i 0.459088i
\(849\) 43.3669 1.48835
\(850\) 0 0
\(851\) 2.13038 0.0730285
\(852\) 83.4745i 2.85979i
\(853\) 32.0255i 1.09653i −0.836304 0.548266i \(-0.815288\pi\)
0.836304 0.548266i \(-0.184712\pi\)
\(854\) −2.96957 −0.101617
\(855\) −52.9696 32.5608i −1.81152 1.11355i
\(856\) −43.5906 −1.48990
\(857\) 25.6769i 0.877107i −0.898705 0.438553i \(-0.855491\pi\)
0.898705 0.438553i \(-0.144509\pi\)
\(858\) 7.77333i 0.265377i
\(859\) 38.7065 1.32065 0.660324 0.750981i \(-0.270419\pi\)
0.660324 + 0.750981i \(0.270419\pi\)
\(860\) −10.7888 + 17.5511i −0.367894 + 0.598486i
\(861\) −0.553162 −0.0188517
\(862\) 19.8643i 0.676582i
\(863\) 29.5881i 1.00719i 0.863939 + 0.503596i \(0.167990\pi\)
−0.863939 + 0.503596i \(0.832010\pi\)
\(864\) 33.6243 1.14392
\(865\) −20.4395 + 33.2509i −0.694965 + 1.13056i
\(866\) −32.4036 −1.10112
\(867\) 0 0
\(868\) 2.37346i 0.0805603i
\(869\) −3.53318 −0.119855
\(870\) −100.415 61.7256i −3.40438 2.09270i
\(871\) 22.6456 0.767317
\(872\) 56.8890i 1.92651i
\(873\) 64.0602i 2.16811i
\(874\) −3.55705 −0.120319
\(875\) −2.45120 0.203161i −0.0828656 0.00686808i
\(876\) 13.8127 0.466689
\(877\) 26.4995i 0.894825i 0.894328 + 0.447413i \(0.147654\pi\)
−0.894328 + 0.447413i \(0.852346\pi\)
\(878\) 48.6105i 1.64053i
\(879\) −62.7367 −2.11606
\(880\) 2.25761 + 1.38777i 0.0761040 + 0.0467816i
\(881\) 10.9924 0.370344 0.185172 0.982706i \(-0.440716\pi\)
0.185172 + 0.982706i \(0.440716\pi\)
\(882\) 115.313i 3.88279i
\(883\) 56.2202i 1.89196i 0.324225 + 0.945980i \(0.394896\pi\)
−0.324225 + 0.945980i \(0.605104\pi\)
\(884\) 0 0
\(885\) 22.1640 36.0562i 0.745034 1.21201i
\(886\) 5.85481 0.196696
\(887\) 6.90120i 0.231720i 0.993266 + 0.115860i \(0.0369623\pi\)
−0.993266 + 0.115860i \(0.963038\pi\)
\(888\) 72.8958i 2.44622i
\(889\) 2.14284 0.0718685
\(890\) −44.6659 + 72.6621i −1.49720 + 2.43564i
\(891\) −9.69582 −0.324822
\(892\) 7.26658i 0.243303i
\(893\) 26.9582i 0.902122i
\(894\) −65.8090 −2.20098
\(895\) −40.6225 24.9709i −1.35786 0.834685i
\(896\) 4.56226 0.152414
\(897\) 2.31261i 0.0772158i
\(898\) 7.62919i 0.254589i
\(899\) −20.4520 −0.682113
\(900\) 57.9735 + 114.563i 1.93245 + 3.81875i
\(901\) 0 0
\(902\) 0.998442i 0.0332445i
\(903\) 1.73094i 0.0576020i
\(904\) 29.0604 0.966534
\(905\) 27.5036 + 16.9066i 0.914249 + 0.561995i
\(906\) 119.713 3.97718
\(907\) 31.2128i 1.03640i 0.855258 + 0.518202i \(0.173399\pi\)
−0.855258 + 0.518202i \(0.826601\pi\)
\(908\) 44.1746i 1.46598i
\(909\) 50.1156 1.66223
\(910\) −1.20921 + 1.96713i −0.0400850 + 0.0652099i
\(911\) 42.4932 1.40786 0.703931 0.710268i \(-0.251426\pi\)
0.703931 + 0.710268i \(0.251426\pi\)
\(912\) 28.4875i 0.943317i
\(913\) 3.21129i 0.106278i
\(914\) −72.0164 −2.38209
\(915\) 20.8964 33.9941i 0.690813 1.12381i
\(916\) 34.3763 1.13583
\(917\) 4.33076i 0.143014i
\(918\) 0 0
\(919\) −29.1312 −0.960949 −0.480475 0.877009i \(-0.659536\pi\)
−0.480475 + 0.877009i \(0.659536\pi\)
\(920\) 2.86962 + 1.76397i 0.0946085 + 0.0581565i
\(921\) −47.1923 −1.55504
\(922\) 12.9220i 0.425562i
\(923\) 14.0911i 0.463814i
\(924\) −1.34577 −0.0442726
\(925\) −25.5033 + 12.9058i −0.838545 + 0.424339i
\(926\) −37.6004 −1.23562
\(927\) 66.2109i 2.17465i
\(928\) 18.8884i 0.620041i
\(929\) −1.30273 −0.0427412 −0.0213706 0.999772i \(-0.506803\pi\)
−0.0213706 + 0.999772i \(0.506803\pi\)
\(930\) 41.8805 + 25.7442i 1.37332 + 0.844187i
\(931\) −27.8064 −0.911318
\(932\) 95.3084i 3.12193i
\(933\) 93.5463i 3.06257i
\(934\) −25.6971 −0.840836
\(935\) 0 0
\(936\) 55.2764 1.80677
\(937\) 9.43458i 0.308214i −0.988054 0.154107i \(-0.950750\pi\)
0.988054 0.154107i \(-0.0492501\pi\)
\(938\) 6.04321i 0.197318i
\(939\) 45.3584 1.48021
\(940\) −29.1526 + 47.4252i −0.950853 + 1.54684i
\(941\) 25.1776 0.820767 0.410383 0.911913i \(-0.365395\pi\)
0.410383 + 0.911913i \(0.365395\pi\)
\(942\) 75.8167i 2.47024i
\(943\) 0.297042i 0.00967302i
\(944\) −13.5456 −0.440873
\(945\) −5.22410 3.21129i −0.169940 0.104463i
\(946\) 3.12430 0.101580
\(947\) 27.6569i 0.898727i −0.893349 0.449364i \(-0.851651\pi\)
0.893349 0.449364i \(-0.148349\pi\)
\(948\) 78.4315i 2.54734i
\(949\) −2.33169 −0.0756898
\(950\) 42.5824 21.5485i 1.38156 0.699126i
\(951\) 43.4552 1.40913
\(952\) 0 0
\(953\) 16.0279i 0.519195i 0.965717 + 0.259598i \(0.0835899\pi\)
−0.965717 + 0.259598i \(0.916410\pi\)
\(954\) 98.2288 3.18027
\(955\) −12.8439 7.89521i −0.415618 0.255483i
\(956\) 108.202 3.49949
\(957\) 11.5965i 0.374860i
\(958\) 88.0732i 2.84552i
\(959\) −1.02449 −0.0330827
\(960\) −40.4552 + 65.8121i −1.30568 + 2.12408i
\(961\) −22.4700 −0.724838
\(962\) 26.8336i 0.865149i
\(963\) 74.9648i 2.41571i
\(964\) 31.3446 1.00954
\(965\) 17.1608 27.9171i 0.552426 0.898682i
\(966\) −0.617144 −0.0198563
\(967\) 10.9849i 0.353252i 0.984278 + 0.176626i \(0.0565183\pi\)
−0.984278 + 0.176626i \(0.943482\pi\)
\(968\) 43.3506i 1.39334i
\(969\) 0 0
\(970\) −41.8884 25.7491i −1.34496 0.826753i
\(971\) 32.2944 1.03638 0.518188 0.855267i \(-0.326607\pi\)
0.518188 + 0.855267i \(0.326607\pi\)
\(972\) 77.0874i 2.47258i
\(973\) 1.15449i 0.0370113i
\(974\) 91.4476 2.93017
\(975\) −14.0097 27.6848i −0.448670 0.886625i
\(976\) −12.7710 −0.408788
\(977\) 2.59459i 0.0830084i −0.999138 0.0415042i \(-0.986785\pi\)
0.999138 0.0415042i \(-0.0132150\pi\)
\(978\) 72.1732i 2.30784i
\(979\) 8.39143 0.268191
\(980\) 48.9174 + 30.0698i 1.56261 + 0.960546i
\(981\) 97.8347 3.12362
\(982\) 90.7561i 2.89614i
\(983\) 9.61652i 0.306719i −0.988170 0.153360i \(-0.950991\pi\)
0.988170 0.153360i \(-0.0490093\pi\)
\(984\) −10.1640 −0.324015
\(985\) −1.01796 + 1.65602i −0.0324351 + 0.0527651i
\(986\) 0 0
\(987\) 4.67721i 0.148877i
\(988\) 29.0663i 0.924723i
\(989\) 0.929495 0.0295562
\(990\) 10.1967 16.5880i 0.324074 0.527201i
\(991\) 28.2650 0.897867 0.448933 0.893565i \(-0.351804\pi\)
0.448933 + 0.893565i \(0.351804\pi\)
\(992\) 7.87787i 0.250123i
\(993\) 63.6096i 2.01859i
\(994\) 3.76036 0.119271
\(995\) −25.3364 15.5745i −0.803219 0.493744i
\(996\) −71.2859 −2.25878
\(997\) 3.34593i 0.105967i 0.998595 + 0.0529833i \(0.0168730\pi\)
−0.998595 + 0.0529833i \(0.983127\pi\)
\(998\) 22.2063i 0.702928i
\(999\) −71.2616 −2.25462
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.b.f.579.11 12
5.2 odd 4 7225.2.a.bp.1.1 12
5.3 odd 4 7225.2.a.bp.1.12 12
5.4 even 2 inner 1445.2.b.f.579.2 12
17.8 even 8 85.2.j.c.64.6 yes 12
17.15 even 8 85.2.j.c.4.1 12
17.16 even 2 inner 1445.2.b.f.579.12 12
51.8 odd 8 765.2.t.e.64.1 12
51.32 odd 8 765.2.t.e.514.6 12
85.8 odd 8 425.2.e.d.251.1 12
85.32 odd 8 425.2.e.d.276.1 12
85.33 odd 4 7225.2.a.bp.1.11 12
85.42 odd 8 425.2.e.d.251.6 12
85.49 even 8 85.2.j.c.4.6 yes 12
85.59 even 8 85.2.j.c.64.1 yes 12
85.67 odd 4 7225.2.a.bp.1.2 12
85.83 odd 8 425.2.e.d.276.6 12
85.84 even 2 inner 1445.2.b.f.579.1 12
255.59 odd 8 765.2.t.e.64.6 12
255.134 odd 8 765.2.t.e.514.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.1 12 17.15 even 8
85.2.j.c.4.6 yes 12 85.49 even 8
85.2.j.c.64.1 yes 12 85.59 even 8
85.2.j.c.64.6 yes 12 17.8 even 8
425.2.e.d.251.1 12 85.8 odd 8
425.2.e.d.251.6 12 85.42 odd 8
425.2.e.d.276.1 12 85.32 odd 8
425.2.e.d.276.6 12 85.83 odd 8
765.2.t.e.64.1 12 51.8 odd 8
765.2.t.e.64.6 12 255.59 odd 8
765.2.t.e.514.1 12 255.134 odd 8
765.2.t.e.514.6 12 51.32 odd 8
1445.2.b.f.579.1 12 85.84 even 2 inner
1445.2.b.f.579.2 12 5.4 even 2 inner
1445.2.b.f.579.11 12 1.1 even 1 trivial
1445.2.b.f.579.12 12 17.16 even 2 inner
7225.2.a.bp.1.1 12 5.2 odd 4
7225.2.a.bp.1.2 12 85.67 odd 4
7225.2.a.bp.1.11 12 85.33 odd 4
7225.2.a.bp.1.12 12 5.3 odd 4