Properties

Label 1445.2.a.q.1.9
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(1,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-4,8,12,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-0.747914\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.747914 q^{2} +3.07503 q^{3} -1.44062 q^{4} -1.00000 q^{5} +2.29986 q^{6} +3.23262 q^{7} -2.57329 q^{8} +6.45581 q^{9} -0.747914 q^{10} -2.73509 q^{11} -4.42996 q^{12} +4.31833 q^{13} +2.41772 q^{14} -3.07503 q^{15} +0.956646 q^{16} +4.82839 q^{18} +1.26892 q^{19} +1.44062 q^{20} +9.94040 q^{21} -2.04561 q^{22} -0.492367 q^{23} -7.91295 q^{24} +1.00000 q^{25} +3.22974 q^{26} +10.6267 q^{27} -4.65699 q^{28} +0.444360 q^{29} -2.29986 q^{30} +5.52836 q^{31} +5.86207 q^{32} -8.41047 q^{33} -3.23262 q^{35} -9.30039 q^{36} +10.6999 q^{37} +0.949042 q^{38} +13.2790 q^{39} +2.57329 q^{40} -2.17048 q^{41} +7.43457 q^{42} -2.16182 q^{43} +3.94023 q^{44} -6.45581 q^{45} -0.368248 q^{46} -8.39597 q^{47} +2.94172 q^{48} +3.44983 q^{49} +0.747914 q^{50} -6.22109 q^{52} -1.81698 q^{53} +7.94786 q^{54} +2.73509 q^{55} -8.31847 q^{56} +3.90196 q^{57} +0.332343 q^{58} -3.01987 q^{59} +4.42996 q^{60} -12.2233 q^{61} +4.13474 q^{62} +20.8692 q^{63} +2.47104 q^{64} -4.31833 q^{65} -6.29031 q^{66} +4.21389 q^{67} -1.51404 q^{69} -2.41772 q^{70} -3.89165 q^{71} -16.6127 q^{72} -6.47062 q^{73} +8.00263 q^{74} +3.07503 q^{75} -1.82803 q^{76} -8.84149 q^{77} +9.93155 q^{78} +7.22150 q^{79} -0.956646 q^{80} +13.3100 q^{81} -1.62333 q^{82} +0.227499 q^{83} -14.3204 q^{84} -1.61686 q^{86} +1.36642 q^{87} +7.03818 q^{88} -13.3408 q^{89} -4.82839 q^{90} +13.9595 q^{91} +0.709315 q^{92} +16.9999 q^{93} -6.27946 q^{94} -1.26892 q^{95} +18.0260 q^{96} +14.8075 q^{97} +2.58018 q^{98} -17.6572 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 8 q^{3} + 12 q^{4} - 12 q^{5} + 8 q^{6} + 16 q^{7} - 12 q^{8} + 12 q^{9} + 4 q^{10} + 16 q^{11} + 16 q^{12} - 8 q^{13} - 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} - 12 q^{20} + 16 q^{21}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.747914 0.528855 0.264428 0.964406i \(-0.414817\pi\)
0.264428 + 0.964406i \(0.414817\pi\)
\(3\) 3.07503 1.77537 0.887684 0.460452i \(-0.152313\pi\)
0.887684 + 0.460452i \(0.152313\pi\)
\(4\) −1.44062 −0.720312
\(5\) −1.00000 −0.447214
\(6\) 2.29986 0.938913
\(7\) 3.23262 1.22182 0.610908 0.791702i \(-0.290805\pi\)
0.610908 + 0.791702i \(0.290805\pi\)
\(8\) −2.57329 −0.909796
\(9\) 6.45581 2.15194
\(10\) −0.747914 −0.236511
\(11\) −2.73509 −0.824660 −0.412330 0.911035i \(-0.635285\pi\)
−0.412330 + 0.911035i \(0.635285\pi\)
\(12\) −4.42996 −1.27882
\(13\) 4.31833 1.19769 0.598845 0.800865i \(-0.295627\pi\)
0.598845 + 0.800865i \(0.295627\pi\)
\(14\) 2.41772 0.646164
\(15\) −3.07503 −0.793969
\(16\) 0.956646 0.239162
\(17\) 0 0
\(18\) 4.82839 1.13806
\(19\) 1.26892 0.291110 0.145555 0.989350i \(-0.453503\pi\)
0.145555 + 0.989350i \(0.453503\pi\)
\(20\) 1.44062 0.322133
\(21\) 9.94040 2.16917
\(22\) −2.04561 −0.436126
\(23\) −0.492367 −0.102666 −0.0513328 0.998682i \(-0.516347\pi\)
−0.0513328 + 0.998682i \(0.516347\pi\)
\(24\) −7.91295 −1.61522
\(25\) 1.00000 0.200000
\(26\) 3.22974 0.633404
\(27\) 10.6267 2.04511
\(28\) −4.65699 −0.880088
\(29\) 0.444360 0.0825156 0.0412578 0.999149i \(-0.486863\pi\)
0.0412578 + 0.999149i \(0.486863\pi\)
\(30\) −2.29986 −0.419895
\(31\) 5.52836 0.992923 0.496462 0.868059i \(-0.334632\pi\)
0.496462 + 0.868059i \(0.334632\pi\)
\(32\) 5.86207 1.03628
\(33\) −8.41047 −1.46408
\(34\) 0 0
\(35\) −3.23262 −0.546412
\(36\) −9.30039 −1.55006
\(37\) 10.6999 1.75906 0.879529 0.475845i \(-0.157858\pi\)
0.879529 + 0.475845i \(0.157858\pi\)
\(38\) 0.949042 0.153955
\(39\) 13.2790 2.12634
\(40\) 2.57329 0.406873
\(41\) −2.17048 −0.338972 −0.169486 0.985533i \(-0.554211\pi\)
−0.169486 + 0.985533i \(0.554211\pi\)
\(42\) 7.43457 1.14718
\(43\) −2.16182 −0.329675 −0.164837 0.986321i \(-0.552710\pi\)
−0.164837 + 0.986321i \(0.552710\pi\)
\(44\) 3.94023 0.594012
\(45\) −6.45581 −0.962375
\(46\) −0.368248 −0.0542952
\(47\) −8.39597 −1.22468 −0.612339 0.790595i \(-0.709771\pi\)
−0.612339 + 0.790595i \(0.709771\pi\)
\(48\) 2.94172 0.424600
\(49\) 3.44983 0.492833
\(50\) 0.747914 0.105771
\(51\) 0 0
\(52\) −6.22109 −0.862710
\(53\) −1.81698 −0.249581 −0.124791 0.992183i \(-0.539826\pi\)
−0.124791 + 0.992183i \(0.539826\pi\)
\(54\) 7.94786 1.08157
\(55\) 2.73509 0.368799
\(56\) −8.31847 −1.11160
\(57\) 3.90196 0.516827
\(58\) 0.332343 0.0436388
\(59\) −3.01987 −0.393153 −0.196577 0.980488i \(-0.562982\pi\)
−0.196577 + 0.980488i \(0.562982\pi\)
\(60\) 4.42996 0.571906
\(61\) −12.2233 −1.56503 −0.782514 0.622633i \(-0.786063\pi\)
−0.782514 + 0.622633i \(0.786063\pi\)
\(62\) 4.13474 0.525113
\(63\) 20.8692 2.62927
\(64\) 2.47104 0.308880
\(65\) −4.31833 −0.535623
\(66\) −6.29031 −0.774284
\(67\) 4.21389 0.514808 0.257404 0.966304i \(-0.417133\pi\)
0.257404 + 0.966304i \(0.417133\pi\)
\(68\) 0 0
\(69\) −1.51404 −0.182269
\(70\) −2.41772 −0.288973
\(71\) −3.89165 −0.461854 −0.230927 0.972971i \(-0.574176\pi\)
−0.230927 + 0.972971i \(0.574176\pi\)
\(72\) −16.6127 −1.95782
\(73\) −6.47062 −0.757329 −0.378664 0.925534i \(-0.623617\pi\)
−0.378664 + 0.925534i \(0.623617\pi\)
\(74\) 8.00263 0.930287
\(75\) 3.07503 0.355074
\(76\) −1.82803 −0.209690
\(77\) −8.84149 −1.00758
\(78\) 9.93155 1.12453
\(79\) 7.22150 0.812482 0.406241 0.913766i \(-0.366839\pi\)
0.406241 + 0.913766i \(0.366839\pi\)
\(80\) −0.956646 −0.106956
\(81\) 13.3100 1.47889
\(82\) −1.62333 −0.179267
\(83\) 0.227499 0.0249713 0.0124856 0.999922i \(-0.496026\pi\)
0.0124856 + 0.999922i \(0.496026\pi\)
\(84\) −14.3204 −1.56248
\(85\) 0 0
\(86\) −1.61686 −0.174350
\(87\) 1.36642 0.146496
\(88\) 7.03818 0.750272
\(89\) −13.3408 −1.41413 −0.707064 0.707150i \(-0.749981\pi\)
−0.707064 + 0.707150i \(0.749981\pi\)
\(90\) −4.82839 −0.508957
\(91\) 13.9595 1.46336
\(92\) 0.709315 0.0739512
\(93\) 16.9999 1.76281
\(94\) −6.27946 −0.647677
\(95\) −1.26892 −0.130188
\(96\) 18.0260 1.83978
\(97\) 14.8075 1.50347 0.751734 0.659466i \(-0.229218\pi\)
0.751734 + 0.659466i \(0.229218\pi\)
\(98\) 2.58018 0.260637
\(99\) −17.6572 −1.77461
\(100\) −1.44062 −0.144062
\(101\) 0.284213 0.0282803 0.0141401 0.999900i \(-0.495499\pi\)
0.0141401 + 0.999900i \(0.495499\pi\)
\(102\) 0 0
\(103\) −14.0842 −1.38775 −0.693877 0.720093i \(-0.744099\pi\)
−0.693877 + 0.720093i \(0.744099\pi\)
\(104\) −11.1123 −1.08965
\(105\) −9.94040 −0.970084
\(106\) −1.35894 −0.131992
\(107\) 18.7099 1.80875 0.904375 0.426738i \(-0.140337\pi\)
0.904375 + 0.426738i \(0.140337\pi\)
\(108\) −15.3091 −1.47312
\(109\) −3.53078 −0.338187 −0.169094 0.985600i \(-0.554084\pi\)
−0.169094 + 0.985600i \(0.554084\pi\)
\(110\) 2.04561 0.195041
\(111\) 32.9026 3.12298
\(112\) 3.09247 0.292211
\(113\) −2.84155 −0.267310 −0.133655 0.991028i \(-0.542671\pi\)
−0.133655 + 0.991028i \(0.542671\pi\)
\(114\) 2.91833 0.273327
\(115\) 0.492367 0.0459134
\(116\) −0.640156 −0.0594370
\(117\) 27.8783 2.57735
\(118\) −2.25860 −0.207921
\(119\) 0 0
\(120\) 7.91295 0.722350
\(121\) −3.51930 −0.319937
\(122\) −9.14195 −0.827673
\(123\) −6.67430 −0.601801
\(124\) −7.96429 −0.715215
\(125\) −1.00000 −0.0894427
\(126\) 15.6083 1.39050
\(127\) 5.46515 0.484954 0.242477 0.970157i \(-0.422040\pi\)
0.242477 + 0.970157i \(0.422040\pi\)
\(128\) −9.87602 −0.872925
\(129\) −6.64767 −0.585295
\(130\) −3.22974 −0.283267
\(131\) −9.97951 −0.871914 −0.435957 0.899968i \(-0.643590\pi\)
−0.435957 + 0.899968i \(0.643590\pi\)
\(132\) 12.1163 1.05459
\(133\) 4.10193 0.355682
\(134\) 3.15163 0.272259
\(135\) −10.6267 −0.914601
\(136\) 0 0
\(137\) −3.07772 −0.262947 −0.131474 0.991320i \(-0.541971\pi\)
−0.131474 + 0.991320i \(0.541971\pi\)
\(138\) −1.13237 −0.0963941
\(139\) −6.70991 −0.569127 −0.284564 0.958657i \(-0.591849\pi\)
−0.284564 + 0.958657i \(0.591849\pi\)
\(140\) 4.65699 0.393587
\(141\) −25.8178 −2.17425
\(142\) −2.91062 −0.244254
\(143\) −11.8110 −0.987686
\(144\) 6.17592 0.514660
\(145\) −0.444360 −0.0369021
\(146\) −4.83947 −0.400517
\(147\) 10.6083 0.874960
\(148\) −15.4146 −1.26707
\(149\) −22.9914 −1.88353 −0.941764 0.336276i \(-0.890833\pi\)
−0.941764 + 0.336276i \(0.890833\pi\)
\(150\) 2.29986 0.187783
\(151\) 0.195743 0.0159294 0.00796468 0.999968i \(-0.497465\pi\)
0.00796468 + 0.999968i \(0.497465\pi\)
\(152\) −3.26530 −0.264850
\(153\) 0 0
\(154\) −6.61268 −0.532865
\(155\) −5.52836 −0.444049
\(156\) −19.1300 −1.53163
\(157\) 11.8582 0.946391 0.473196 0.880957i \(-0.343100\pi\)
0.473196 + 0.880957i \(0.343100\pi\)
\(158\) 5.40106 0.429685
\(159\) −5.58726 −0.443099
\(160\) −5.86207 −0.463438
\(161\) −1.59163 −0.125438
\(162\) 9.95474 0.782118
\(163\) 5.34472 0.418631 0.209315 0.977848i \(-0.432877\pi\)
0.209315 + 0.977848i \(0.432877\pi\)
\(164\) 3.12685 0.244166
\(165\) 8.41047 0.654754
\(166\) 0.170150 0.0132062
\(167\) 11.5900 0.896859 0.448429 0.893818i \(-0.351984\pi\)
0.448429 + 0.893818i \(0.351984\pi\)
\(168\) −25.5796 −1.97351
\(169\) 5.64797 0.434459
\(170\) 0 0
\(171\) 8.19188 0.626449
\(172\) 3.11437 0.237469
\(173\) 11.0271 0.838373 0.419187 0.907900i \(-0.362315\pi\)
0.419187 + 0.907900i \(0.362315\pi\)
\(174\) 1.02197 0.0774750
\(175\) 3.23262 0.244363
\(176\) −2.61651 −0.197227
\(177\) −9.28618 −0.697992
\(178\) −9.97781 −0.747869
\(179\) −21.0731 −1.57508 −0.787539 0.616265i \(-0.788645\pi\)
−0.787539 + 0.616265i \(0.788645\pi\)
\(180\) 9.30039 0.693210
\(181\) −22.6592 −1.68425 −0.842123 0.539285i \(-0.818695\pi\)
−0.842123 + 0.539285i \(0.818695\pi\)
\(182\) 10.4405 0.773903
\(183\) −37.5869 −2.77850
\(184\) 1.26700 0.0934047
\(185\) −10.6999 −0.786675
\(186\) 12.7145 0.932269
\(187\) 0 0
\(188\) 12.0954 0.882150
\(189\) 34.3521 2.49875
\(190\) −0.949042 −0.0688507
\(191\) −3.50162 −0.253368 −0.126684 0.991943i \(-0.540433\pi\)
−0.126684 + 0.991943i \(0.540433\pi\)
\(192\) 7.59851 0.548375
\(193\) −12.2942 −0.884959 −0.442479 0.896779i \(-0.645901\pi\)
−0.442479 + 0.896779i \(0.645901\pi\)
\(194\) 11.0747 0.795117
\(195\) −13.2790 −0.950928
\(196\) −4.96991 −0.354993
\(197\) −16.9757 −1.20947 −0.604734 0.796427i \(-0.706721\pi\)
−0.604734 + 0.796427i \(0.706721\pi\)
\(198\) −13.2061 −0.938514
\(199\) −11.5779 −0.820735 −0.410367 0.911920i \(-0.634600\pi\)
−0.410367 + 0.911920i \(0.634600\pi\)
\(200\) −2.57329 −0.181959
\(201\) 12.9578 0.913975
\(202\) 0.212567 0.0149562
\(203\) 1.43645 0.100819
\(204\) 0 0
\(205\) 2.17048 0.151593
\(206\) −10.5338 −0.733921
\(207\) −3.17862 −0.220930
\(208\) 4.13111 0.286441
\(209\) −3.47060 −0.240066
\(210\) −7.43457 −0.513034
\(211\) 6.66380 0.458755 0.229378 0.973338i \(-0.426331\pi\)
0.229378 + 0.973338i \(0.426331\pi\)
\(212\) 2.61758 0.179776
\(213\) −11.9669 −0.819962
\(214\) 13.9934 0.956567
\(215\) 2.16182 0.147435
\(216\) −27.3456 −1.86063
\(217\) 17.8711 1.21317
\(218\) −2.64072 −0.178852
\(219\) −19.8973 −1.34454
\(220\) −3.94023 −0.265650
\(221\) 0 0
\(222\) 24.6083 1.65160
\(223\) −12.5928 −0.843273 −0.421637 0.906765i \(-0.638544\pi\)
−0.421637 + 0.906765i \(0.638544\pi\)
\(224\) 18.9499 1.26614
\(225\) 6.45581 0.430387
\(226\) −2.12523 −0.141368
\(227\) 8.04265 0.533809 0.266905 0.963723i \(-0.413999\pi\)
0.266905 + 0.963723i \(0.413999\pi\)
\(228\) −5.62126 −0.372277
\(229\) −21.6295 −1.42932 −0.714658 0.699474i \(-0.753418\pi\)
−0.714658 + 0.699474i \(0.753418\pi\)
\(230\) 0.368248 0.0242816
\(231\) −27.1879 −1.78883
\(232\) −1.14347 −0.0750724
\(233\) 21.9506 1.43803 0.719014 0.694995i \(-0.244594\pi\)
0.719014 + 0.694995i \(0.244594\pi\)
\(234\) 20.8506 1.36304
\(235\) 8.39597 0.547692
\(236\) 4.35050 0.283193
\(237\) 22.2063 1.44246
\(238\) 0 0
\(239\) 5.90132 0.381725 0.190862 0.981617i \(-0.438872\pi\)
0.190862 + 0.981617i \(0.438872\pi\)
\(240\) −2.94172 −0.189887
\(241\) 13.3115 0.857466 0.428733 0.903431i \(-0.358960\pi\)
0.428733 + 0.903431i \(0.358960\pi\)
\(242\) −2.63214 −0.169200
\(243\) 9.04855 0.580464
\(244\) 17.6091 1.12731
\(245\) −3.44983 −0.220402
\(246\) −4.99180 −0.318266
\(247\) 5.47960 0.348659
\(248\) −14.2261 −0.903358
\(249\) 0.699566 0.0443332
\(250\) −0.747914 −0.0473023
\(251\) 3.59367 0.226831 0.113415 0.993548i \(-0.463821\pi\)
0.113415 + 0.993548i \(0.463821\pi\)
\(252\) −30.0646 −1.89389
\(253\) 1.34667 0.0846641
\(254\) 4.08746 0.256470
\(255\) 0 0
\(256\) −12.3285 −0.770531
\(257\) 24.5491 1.53133 0.765665 0.643239i \(-0.222410\pi\)
0.765665 + 0.643239i \(0.222410\pi\)
\(258\) −4.97189 −0.309536
\(259\) 34.5888 2.14924
\(260\) 6.22109 0.385816
\(261\) 2.86870 0.177568
\(262\) −7.46382 −0.461116
\(263\) 14.6401 0.902749 0.451375 0.892335i \(-0.350934\pi\)
0.451375 + 0.892335i \(0.350934\pi\)
\(264\) 21.6426 1.33201
\(265\) 1.81698 0.111616
\(266\) 3.06789 0.188104
\(267\) −41.0235 −2.51060
\(268\) −6.07063 −0.370823
\(269\) 18.7597 1.14380 0.571900 0.820323i \(-0.306206\pi\)
0.571900 + 0.820323i \(0.306206\pi\)
\(270\) −7.94786 −0.483692
\(271\) −5.76388 −0.350131 −0.175065 0.984557i \(-0.556014\pi\)
−0.175065 + 0.984557i \(0.556014\pi\)
\(272\) 0 0
\(273\) 42.9259 2.59800
\(274\) −2.30187 −0.139061
\(275\) −2.73509 −0.164932
\(276\) 2.18117 0.131291
\(277\) 0.123252 0.00740547 0.00370273 0.999993i \(-0.498821\pi\)
0.00370273 + 0.999993i \(0.498821\pi\)
\(278\) −5.01844 −0.300986
\(279\) 35.6900 2.13671
\(280\) 8.31847 0.497124
\(281\) 1.82363 0.108789 0.0543944 0.998520i \(-0.482677\pi\)
0.0543944 + 0.998520i \(0.482677\pi\)
\(282\) −19.3095 −1.14987
\(283\) −28.6278 −1.70174 −0.850872 0.525373i \(-0.823926\pi\)
−0.850872 + 0.525373i \(0.823926\pi\)
\(284\) 5.60641 0.332679
\(285\) −3.90196 −0.231132
\(286\) −8.83362 −0.522343
\(287\) −7.01634 −0.414162
\(288\) 37.8444 2.23000
\(289\) 0 0
\(290\) −0.332343 −0.0195159
\(291\) 45.5333 2.66921
\(292\) 9.32173 0.545513
\(293\) −1.41607 −0.0827278 −0.0413639 0.999144i \(-0.513170\pi\)
−0.0413639 + 0.999144i \(0.513170\pi\)
\(294\) 7.93412 0.462727
\(295\) 3.01987 0.175824
\(296\) −27.5340 −1.60038
\(297\) −29.0649 −1.68652
\(298\) −17.1956 −0.996113
\(299\) −2.12620 −0.122961
\(300\) −4.42996 −0.255764
\(301\) −6.98835 −0.402802
\(302\) 0.146399 0.00842433
\(303\) 0.873965 0.0502080
\(304\) 1.21391 0.0696222
\(305\) 12.2233 0.699902
\(306\) 0 0
\(307\) −21.7364 −1.24056 −0.620281 0.784379i \(-0.712982\pi\)
−0.620281 + 0.784379i \(0.712982\pi\)
\(308\) 12.7373 0.725773
\(309\) −43.3092 −2.46378
\(310\) −4.13474 −0.234838
\(311\) 8.65102 0.490554 0.245277 0.969453i \(-0.421121\pi\)
0.245277 + 0.969453i \(0.421121\pi\)
\(312\) −34.1707 −1.93454
\(313\) 10.2820 0.581175 0.290587 0.956848i \(-0.406149\pi\)
0.290587 + 0.956848i \(0.406149\pi\)
\(314\) 8.86896 0.500504
\(315\) −20.8692 −1.17584
\(316\) −10.4035 −0.585241
\(317\) 1.12766 0.0633359 0.0316680 0.999498i \(-0.489918\pi\)
0.0316680 + 0.999498i \(0.489918\pi\)
\(318\) −4.17879 −0.234335
\(319\) −1.21536 −0.0680473
\(320\) −2.47104 −0.138135
\(321\) 57.5334 3.21120
\(322\) −1.19041 −0.0663387
\(323\) 0 0
\(324\) −19.1747 −1.06526
\(325\) 4.31833 0.239538
\(326\) 3.99739 0.221395
\(327\) −10.8573 −0.600407
\(328\) 5.58528 0.308396
\(329\) −27.1410 −1.49633
\(330\) 6.29031 0.346270
\(331\) −34.2599 −1.88310 −0.941548 0.336878i \(-0.890629\pi\)
−0.941548 + 0.336878i \(0.890629\pi\)
\(332\) −0.327741 −0.0179871
\(333\) 69.0767 3.78538
\(334\) 8.66830 0.474309
\(335\) −4.21389 −0.230229
\(336\) 9.50945 0.518783
\(337\) 13.7463 0.748806 0.374403 0.927266i \(-0.377848\pi\)
0.374403 + 0.927266i \(0.377848\pi\)
\(338\) 4.22420 0.229766
\(339\) −8.73784 −0.474574
\(340\) 0 0
\(341\) −15.1206 −0.818824
\(342\) 6.12683 0.331301
\(343\) −11.4763 −0.619665
\(344\) 5.56300 0.299937
\(345\) 1.51404 0.0815133
\(346\) 8.24731 0.443378
\(347\) 18.8786 1.01346 0.506728 0.862106i \(-0.330855\pi\)
0.506728 + 0.862106i \(0.330855\pi\)
\(348\) −1.96850 −0.105523
\(349\) −7.04988 −0.377371 −0.188686 0.982038i \(-0.560423\pi\)
−0.188686 + 0.982038i \(0.560423\pi\)
\(350\) 2.41772 0.129233
\(351\) 45.8896 2.44941
\(352\) −16.0333 −0.854577
\(353\) 8.60779 0.458146 0.229073 0.973409i \(-0.426431\pi\)
0.229073 + 0.973409i \(0.426431\pi\)
\(354\) −6.94527 −0.369137
\(355\) 3.89165 0.206547
\(356\) 19.2191 1.01861
\(357\) 0 0
\(358\) −15.7609 −0.832988
\(359\) 9.18100 0.484555 0.242277 0.970207i \(-0.422106\pi\)
0.242277 + 0.970207i \(0.422106\pi\)
\(360\) 16.6127 0.875565
\(361\) −17.3898 −0.915255
\(362\) −16.9472 −0.890723
\(363\) −10.8220 −0.568005
\(364\) −20.1104 −1.05407
\(365\) 6.47062 0.338688
\(366\) −28.1118 −1.46943
\(367\) 6.81607 0.355796 0.177898 0.984049i \(-0.443070\pi\)
0.177898 + 0.984049i \(0.443070\pi\)
\(368\) −0.471021 −0.0245537
\(369\) −14.0122 −0.729446
\(370\) −8.00263 −0.416037
\(371\) −5.87360 −0.304942
\(372\) −24.4904 −1.26977
\(373\) −10.4647 −0.541841 −0.270920 0.962602i \(-0.587328\pi\)
−0.270920 + 0.962602i \(0.587328\pi\)
\(374\) 0 0
\(375\) −3.07503 −0.158794
\(376\) 21.6053 1.11421
\(377\) 1.91889 0.0988281
\(378\) 25.6924 1.32148
\(379\) 25.3419 1.30173 0.650864 0.759195i \(-0.274407\pi\)
0.650864 + 0.759195i \(0.274407\pi\)
\(380\) 1.82803 0.0937761
\(381\) 16.8055 0.860972
\(382\) −2.61891 −0.133995
\(383\) 7.69048 0.392965 0.196483 0.980507i \(-0.437048\pi\)
0.196483 + 0.980507i \(0.437048\pi\)
\(384\) −30.3691 −1.54976
\(385\) 8.84149 0.450604
\(386\) −9.19504 −0.468015
\(387\) −13.9563 −0.709439
\(388\) −21.3320 −1.08297
\(389\) 15.8379 0.803013 0.401506 0.915856i \(-0.368487\pi\)
0.401506 + 0.915856i \(0.368487\pi\)
\(390\) −9.93155 −0.502903
\(391\) 0 0
\(392\) −8.87742 −0.448377
\(393\) −30.6873 −1.54797
\(394\) −12.6964 −0.639634
\(395\) −7.22150 −0.363353
\(396\) 25.4374 1.27828
\(397\) 29.1640 1.46370 0.731850 0.681466i \(-0.238657\pi\)
0.731850 + 0.681466i \(0.238657\pi\)
\(398\) −8.65927 −0.434050
\(399\) 12.6135 0.631467
\(400\) 0.956646 0.0478323
\(401\) 16.3859 0.818271 0.409136 0.912474i \(-0.365830\pi\)
0.409136 + 0.912474i \(0.365830\pi\)
\(402\) 9.69135 0.483360
\(403\) 23.8733 1.18921
\(404\) −0.409445 −0.0203706
\(405\) −13.3100 −0.661379
\(406\) 1.07434 0.0533186
\(407\) −29.2652 −1.45062
\(408\) 0 0
\(409\) 33.9971 1.68105 0.840525 0.541772i \(-0.182247\pi\)
0.840525 + 0.541772i \(0.182247\pi\)
\(410\) 1.62333 0.0801708
\(411\) −9.46408 −0.466829
\(412\) 20.2900 0.999616
\(413\) −9.76209 −0.480361
\(414\) −2.37734 −0.116840
\(415\) −0.227499 −0.0111675
\(416\) 25.3144 1.24114
\(417\) −20.6332 −1.01041
\(418\) −2.59571 −0.126960
\(419\) −0.892935 −0.0436227 −0.0218114 0.999762i \(-0.506943\pi\)
−0.0218114 + 0.999762i \(0.506943\pi\)
\(420\) 14.3204 0.698763
\(421\) 33.6725 1.64110 0.820550 0.571575i \(-0.193668\pi\)
0.820550 + 0.571575i \(0.193668\pi\)
\(422\) 4.98395 0.242615
\(423\) −54.2027 −2.63543
\(424\) 4.67562 0.227068
\(425\) 0 0
\(426\) −8.95025 −0.433641
\(427\) −39.5131 −1.91218
\(428\) −26.9539 −1.30286
\(429\) −36.3192 −1.75351
\(430\) 1.61686 0.0779718
\(431\) −16.2970 −0.784997 −0.392498 0.919753i \(-0.628389\pi\)
−0.392498 + 0.919753i \(0.628389\pi\)
\(432\) 10.1660 0.489112
\(433\) −34.9947 −1.68174 −0.840869 0.541239i \(-0.817956\pi\)
−0.840869 + 0.541239i \(0.817956\pi\)
\(434\) 13.3660 0.641591
\(435\) −1.36642 −0.0655149
\(436\) 5.08653 0.243600
\(437\) −0.624773 −0.0298869
\(438\) −14.8815 −0.711066
\(439\) −22.2777 −1.06326 −0.531628 0.846978i \(-0.678420\pi\)
−0.531628 + 0.846978i \(0.678420\pi\)
\(440\) −7.03818 −0.335532
\(441\) 22.2714 1.06054
\(442\) 0 0
\(443\) −8.79907 −0.418056 −0.209028 0.977910i \(-0.567030\pi\)
−0.209028 + 0.977910i \(0.567030\pi\)
\(444\) −47.4003 −2.24952
\(445\) 13.3408 0.632417
\(446\) −9.41830 −0.445970
\(447\) −70.6992 −3.34396
\(448\) 7.98792 0.377394
\(449\) −8.86683 −0.418452 −0.209226 0.977867i \(-0.567094\pi\)
−0.209226 + 0.977867i \(0.567094\pi\)
\(450\) 4.82839 0.227612
\(451\) 5.93646 0.279537
\(452\) 4.09360 0.192547
\(453\) 0.601916 0.0282805
\(454\) 6.01521 0.282308
\(455\) −13.9595 −0.654432
\(456\) −10.0409 −0.470207
\(457\) −18.4756 −0.864254 −0.432127 0.901813i \(-0.642237\pi\)
−0.432127 + 0.901813i \(0.642237\pi\)
\(458\) −16.1770 −0.755902
\(459\) 0 0
\(460\) −0.709315 −0.0330720
\(461\) −24.5700 −1.14434 −0.572169 0.820136i \(-0.693898\pi\)
−0.572169 + 0.820136i \(0.693898\pi\)
\(462\) −20.3342 −0.946032
\(463\) −9.90931 −0.460525 −0.230262 0.973129i \(-0.573958\pi\)
−0.230262 + 0.973129i \(0.573958\pi\)
\(464\) 0.425096 0.0197346
\(465\) −16.9999 −0.788351
\(466\) 16.4171 0.760509
\(467\) −29.4041 −1.36066 −0.680329 0.732907i \(-0.738163\pi\)
−0.680329 + 0.732907i \(0.738163\pi\)
\(468\) −40.1621 −1.85650
\(469\) 13.6219 0.629001
\(470\) 6.27946 0.289650
\(471\) 36.4645 1.68019
\(472\) 7.77100 0.357689
\(473\) 5.91277 0.271870
\(474\) 16.6084 0.762850
\(475\) 1.26892 0.0582219
\(476\) 0 0
\(477\) −11.7301 −0.537083
\(478\) 4.41369 0.201877
\(479\) −28.6003 −1.30678 −0.653391 0.757021i \(-0.726654\pi\)
−0.653391 + 0.757021i \(0.726654\pi\)
\(480\) −18.0260 −0.822773
\(481\) 46.2058 2.10680
\(482\) 9.95583 0.453476
\(483\) −4.89432 −0.222699
\(484\) 5.06999 0.230454
\(485\) −14.8075 −0.672372
\(486\) 6.76754 0.306982
\(487\) 0.617883 0.0279990 0.0139995 0.999902i \(-0.495544\pi\)
0.0139995 + 0.999902i \(0.495544\pi\)
\(488\) 31.4540 1.42386
\(489\) 16.4352 0.743224
\(490\) −2.58018 −0.116561
\(491\) 25.4667 1.14930 0.574648 0.818401i \(-0.305139\pi\)
0.574648 + 0.818401i \(0.305139\pi\)
\(492\) 9.61515 0.433485
\(493\) 0 0
\(494\) 4.09827 0.184390
\(495\) 17.6572 0.793631
\(496\) 5.28869 0.237469
\(497\) −12.5802 −0.564301
\(498\) 0.523216 0.0234459
\(499\) 36.4603 1.63219 0.816093 0.577921i \(-0.196136\pi\)
0.816093 + 0.577921i \(0.196136\pi\)
\(500\) 1.44062 0.0644267
\(501\) 35.6395 1.59226
\(502\) 2.68776 0.119961
\(503\) −30.1881 −1.34602 −0.673011 0.739632i \(-0.734999\pi\)
−0.673011 + 0.739632i \(0.734999\pi\)
\(504\) −53.7025 −2.39210
\(505\) −0.284213 −0.0126473
\(506\) 1.00719 0.0447751
\(507\) 17.3677 0.771326
\(508\) −7.87323 −0.349318
\(509\) 40.1857 1.78120 0.890600 0.454787i \(-0.150285\pi\)
0.890600 + 0.454787i \(0.150285\pi\)
\(510\) 0 0
\(511\) −20.9171 −0.925316
\(512\) 10.5314 0.465426
\(513\) 13.4844 0.595351
\(514\) 18.3606 0.809852
\(515\) 14.0842 0.620623
\(516\) 9.57679 0.421595
\(517\) 22.9637 1.00994
\(518\) 25.8695 1.13664
\(519\) 33.9086 1.48842
\(520\) 11.1123 0.487308
\(521\) 35.3560 1.54897 0.774487 0.632590i \(-0.218008\pi\)
0.774487 + 0.632590i \(0.218008\pi\)
\(522\) 2.14554 0.0939079
\(523\) 24.5035 1.07146 0.535732 0.844388i \(-0.320036\pi\)
0.535732 + 0.844388i \(0.320036\pi\)
\(524\) 14.3767 0.628050
\(525\) 9.94040 0.433835
\(526\) 10.9496 0.477424
\(527\) 0 0
\(528\) −8.04585 −0.350150
\(529\) −22.7576 −0.989460
\(530\) 1.35894 0.0590288
\(531\) −19.4957 −0.846041
\(532\) −5.90934 −0.256202
\(533\) −9.37286 −0.405984
\(534\) −30.6821 −1.32774
\(535\) −18.7099 −0.808898
\(536\) −10.8436 −0.468371
\(537\) −64.8004 −2.79634
\(538\) 14.0307 0.604905
\(539\) −9.43558 −0.406419
\(540\) 15.3091 0.658798
\(541\) −25.5508 −1.09851 −0.549257 0.835653i \(-0.685089\pi\)
−0.549257 + 0.835653i \(0.685089\pi\)
\(542\) −4.31089 −0.185169
\(543\) −69.6778 −2.99016
\(544\) 0 0
\(545\) 3.53078 0.151242
\(546\) 32.1049 1.37396
\(547\) −11.7618 −0.502896 −0.251448 0.967871i \(-0.580907\pi\)
−0.251448 + 0.967871i \(0.580907\pi\)
\(548\) 4.43384 0.189404
\(549\) −78.9110 −3.36784
\(550\) −2.04561 −0.0872251
\(551\) 0.563857 0.0240211
\(552\) 3.89607 0.165828
\(553\) 23.3444 0.992703
\(554\) 0.0921816 0.00391642
\(555\) −32.9026 −1.39664
\(556\) 9.66646 0.409949
\(557\) −35.6812 −1.51186 −0.755931 0.654651i \(-0.772816\pi\)
−0.755931 + 0.654651i \(0.772816\pi\)
\(558\) 26.6931 1.13001
\(559\) −9.33546 −0.394848
\(560\) −3.09247 −0.130681
\(561\) 0 0
\(562\) 1.36392 0.0575335
\(563\) 30.1232 1.26954 0.634771 0.772700i \(-0.281094\pi\)
0.634771 + 0.772700i \(0.281094\pi\)
\(564\) 37.1938 1.56614
\(565\) 2.84155 0.119545
\(566\) −21.4111 −0.899976
\(567\) 43.0262 1.80693
\(568\) 10.0144 0.420193
\(569\) −24.3985 −1.02284 −0.511420 0.859331i \(-0.670880\pi\)
−0.511420 + 0.859331i \(0.670880\pi\)
\(570\) −2.91833 −0.122235
\(571\) 33.2818 1.39280 0.696399 0.717654i \(-0.254784\pi\)
0.696399 + 0.717654i \(0.254784\pi\)
\(572\) 17.0152 0.711442
\(573\) −10.7676 −0.449822
\(574\) −5.24762 −0.219032
\(575\) −0.492367 −0.0205331
\(576\) 15.9525 0.664689
\(577\) 18.0611 0.751895 0.375947 0.926641i \(-0.377317\pi\)
0.375947 + 0.926641i \(0.377317\pi\)
\(578\) 0 0
\(579\) −37.8051 −1.57113
\(580\) 0.640156 0.0265810
\(581\) 0.735418 0.0305103
\(582\) 34.0550 1.41163
\(583\) 4.96959 0.205820
\(584\) 16.6508 0.689015
\(585\) −27.8783 −1.15263
\(586\) −1.05910 −0.0437510
\(587\) 41.8303 1.72652 0.863261 0.504758i \(-0.168418\pi\)
0.863261 + 0.504758i \(0.168418\pi\)
\(588\) −15.2826 −0.630244
\(589\) 7.01504 0.289050
\(590\) 2.25860 0.0929852
\(591\) −52.2008 −2.14725
\(592\) 10.2360 0.420699
\(593\) 20.6659 0.848648 0.424324 0.905510i \(-0.360512\pi\)
0.424324 + 0.905510i \(0.360512\pi\)
\(594\) −21.7381 −0.891925
\(595\) 0 0
\(596\) 33.1219 1.35673
\(597\) −35.6023 −1.45711
\(598\) −1.59022 −0.0650288
\(599\) 9.21817 0.376644 0.188322 0.982107i \(-0.439695\pi\)
0.188322 + 0.982107i \(0.439695\pi\)
\(600\) −7.91295 −0.323045
\(601\) −1.62070 −0.0661098 −0.0330549 0.999454i \(-0.510524\pi\)
−0.0330549 + 0.999454i \(0.510524\pi\)
\(602\) −5.22669 −0.213024
\(603\) 27.2040 1.10783
\(604\) −0.281993 −0.0114741
\(605\) 3.51930 0.143080
\(606\) 0.653651 0.0265527
\(607\) −25.0157 −1.01536 −0.507679 0.861547i \(-0.669496\pi\)
−0.507679 + 0.861547i \(0.669496\pi\)
\(608\) 7.43849 0.301671
\(609\) 4.41712 0.178991
\(610\) 9.14195 0.370147
\(611\) −36.2566 −1.46678
\(612\) 0 0
\(613\) 4.83538 0.195299 0.0976495 0.995221i \(-0.468868\pi\)
0.0976495 + 0.995221i \(0.468868\pi\)
\(614\) −16.2570 −0.656078
\(615\) 6.67430 0.269134
\(616\) 22.7517 0.916694
\(617\) 16.8134 0.676883 0.338441 0.940987i \(-0.390100\pi\)
0.338441 + 0.940987i \(0.390100\pi\)
\(618\) −32.3916 −1.30298
\(619\) 12.7224 0.511356 0.255678 0.966762i \(-0.417701\pi\)
0.255678 + 0.966762i \(0.417701\pi\)
\(620\) 7.96429 0.319854
\(621\) −5.23223 −0.209962
\(622\) 6.47022 0.259432
\(623\) −43.1259 −1.72780
\(624\) 12.7033 0.508539
\(625\) 1.00000 0.0400000
\(626\) 7.69008 0.307357
\(627\) −10.6722 −0.426206
\(628\) −17.0833 −0.681697
\(629\) 0 0
\(630\) −15.6083 −0.621851
\(631\) 4.23998 0.168791 0.0843955 0.996432i \(-0.473104\pi\)
0.0843955 + 0.996432i \(0.473104\pi\)
\(632\) −18.5830 −0.739193
\(633\) 20.4914 0.814459
\(634\) 0.843396 0.0334955
\(635\) −5.46515 −0.216878
\(636\) 8.04915 0.319169
\(637\) 14.8975 0.590261
\(638\) −0.908988 −0.0359872
\(639\) −25.1238 −0.993880
\(640\) 9.87602 0.390384
\(641\) −21.2203 −0.838151 −0.419075 0.907951i \(-0.637646\pi\)
−0.419075 + 0.907951i \(0.637646\pi\)
\(642\) 43.0300 1.69826
\(643\) 8.16667 0.322062 0.161031 0.986949i \(-0.448518\pi\)
0.161031 + 0.986949i \(0.448518\pi\)
\(644\) 2.29295 0.0903548
\(645\) 6.64767 0.261752
\(646\) 0 0
\(647\) 23.4331 0.921249 0.460624 0.887595i \(-0.347626\pi\)
0.460624 + 0.887595i \(0.347626\pi\)
\(648\) −34.2505 −1.34549
\(649\) 8.25960 0.324218
\(650\) 3.22974 0.126681
\(651\) 54.9541 2.15382
\(652\) −7.69973 −0.301545
\(653\) 16.8073 0.657721 0.328860 0.944379i \(-0.393335\pi\)
0.328860 + 0.944379i \(0.393335\pi\)
\(654\) −8.12029 −0.317529
\(655\) 9.97951 0.389932
\(656\) −2.07638 −0.0810692
\(657\) −41.7731 −1.62972
\(658\) −20.2991 −0.791342
\(659\) 14.0972 0.549150 0.274575 0.961566i \(-0.411463\pi\)
0.274575 + 0.961566i \(0.411463\pi\)
\(660\) −12.1163 −0.471627
\(661\) −10.3907 −0.404152 −0.202076 0.979370i \(-0.564769\pi\)
−0.202076 + 0.979370i \(0.564769\pi\)
\(662\) −25.6235 −0.995886
\(663\) 0 0
\(664\) −0.585422 −0.0227188
\(665\) −4.10193 −0.159066
\(666\) 51.6634 2.00192
\(667\) −0.218788 −0.00847151
\(668\) −16.6968 −0.646018
\(669\) −38.7231 −1.49712
\(670\) −3.15163 −0.121758
\(671\) 33.4317 1.29062
\(672\) 58.2714 2.24787
\(673\) 19.8244 0.764174 0.382087 0.924126i \(-0.375205\pi\)
0.382087 + 0.924126i \(0.375205\pi\)
\(674\) 10.2810 0.396010
\(675\) 10.6267 0.409022
\(676\) −8.13660 −0.312946
\(677\) −3.34594 −0.128595 −0.0642974 0.997931i \(-0.520481\pi\)
−0.0642974 + 0.997931i \(0.520481\pi\)
\(678\) −6.53516 −0.250981
\(679\) 47.8669 1.83696
\(680\) 0 0
\(681\) 24.7314 0.947709
\(682\) −11.3089 −0.433039
\(683\) 50.2828 1.92402 0.962009 0.273017i \(-0.0880215\pi\)
0.962009 + 0.273017i \(0.0880215\pi\)
\(684\) −11.8014 −0.451239
\(685\) 3.07772 0.117594
\(686\) −8.58333 −0.327713
\(687\) −66.5113 −2.53756
\(688\) −2.06810 −0.0788456
\(689\) −7.84631 −0.298921
\(690\) 1.13237 0.0431087
\(691\) 38.9162 1.48044 0.740221 0.672364i \(-0.234721\pi\)
0.740221 + 0.672364i \(0.234721\pi\)
\(692\) −15.8859 −0.603890
\(693\) −57.0790 −2.16825
\(694\) 14.1196 0.535972
\(695\) 6.70991 0.254521
\(696\) −3.51620 −0.133281
\(697\) 0 0
\(698\) −5.27270 −0.199575
\(699\) 67.4986 2.55303
\(700\) −4.65699 −0.176018
\(701\) −37.5419 −1.41794 −0.708969 0.705239i \(-0.750840\pi\)
−0.708969 + 0.705239i \(0.750840\pi\)
\(702\) 34.3215 1.29538
\(703\) 13.5773 0.512079
\(704\) −6.75850 −0.254721
\(705\) 25.8178 0.972356
\(706\) 6.43789 0.242293
\(707\) 0.918754 0.0345533
\(708\) 13.3779 0.502772
\(709\) −13.7546 −0.516566 −0.258283 0.966069i \(-0.583157\pi\)
−0.258283 + 0.966069i \(0.583157\pi\)
\(710\) 2.91062 0.109234
\(711\) 46.6206 1.74841
\(712\) 34.3299 1.28657
\(713\) −2.72198 −0.101939
\(714\) 0 0
\(715\) 11.8110 0.441707
\(716\) 30.3584 1.13455
\(717\) 18.1467 0.677703
\(718\) 6.86660 0.256259
\(719\) −0.528983 −0.0197278 −0.00986388 0.999951i \(-0.503140\pi\)
−0.00986388 + 0.999951i \(0.503140\pi\)
\(720\) −6.17592 −0.230163
\(721\) −45.5288 −1.69558
\(722\) −13.0061 −0.484038
\(723\) 40.9331 1.52232
\(724\) 32.6434 1.21318
\(725\) 0.444360 0.0165031
\(726\) −8.09390 −0.300393
\(727\) 26.7632 0.992591 0.496296 0.868154i \(-0.334693\pi\)
0.496296 + 0.868154i \(0.334693\pi\)
\(728\) −35.9219 −1.33135
\(729\) −12.1055 −0.448351
\(730\) 4.83947 0.179117
\(731\) 0 0
\(732\) 54.1486 2.00139
\(733\) 17.3486 0.640787 0.320393 0.947285i \(-0.396185\pi\)
0.320393 + 0.947285i \(0.396185\pi\)
\(734\) 5.09783 0.188164
\(735\) −10.6083 −0.391294
\(736\) −2.88629 −0.106390
\(737\) −11.5253 −0.424542
\(738\) −10.4799 −0.385772
\(739\) 30.2467 1.11264 0.556321 0.830967i \(-0.312212\pi\)
0.556321 + 0.830967i \(0.312212\pi\)
\(740\) 15.4146 0.566651
\(741\) 16.8499 0.618998
\(742\) −4.39295 −0.161270
\(743\) −7.18076 −0.263437 −0.131718 0.991287i \(-0.542049\pi\)
−0.131718 + 0.991287i \(0.542049\pi\)
\(744\) −43.7457 −1.60379
\(745\) 22.9914 0.842339
\(746\) −7.82669 −0.286555
\(747\) 1.46869 0.0537366
\(748\) 0 0
\(749\) 60.4819 2.20996
\(750\) −2.29986 −0.0839790
\(751\) 31.2967 1.14203 0.571016 0.820939i \(-0.306549\pi\)
0.571016 + 0.820939i \(0.306549\pi\)
\(752\) −8.03197 −0.292896
\(753\) 11.0506 0.402708
\(754\) 1.43517 0.0522658
\(755\) −0.195743 −0.00712383
\(756\) −49.4884 −1.79988
\(757\) 10.7757 0.391649 0.195824 0.980639i \(-0.437262\pi\)
0.195824 + 0.980639i \(0.437262\pi\)
\(758\) 18.9536 0.688425
\(759\) 4.14104 0.150310
\(760\) 3.26530 0.118445
\(761\) 33.1409 1.20136 0.600678 0.799491i \(-0.294898\pi\)
0.600678 + 0.799491i \(0.294898\pi\)
\(762\) 12.5691 0.455329
\(763\) −11.4137 −0.413203
\(764\) 5.04452 0.182504
\(765\) 0 0
\(766\) 5.75182 0.207822
\(767\) −13.0408 −0.470876
\(768\) −37.9105 −1.36798
\(769\) −11.4864 −0.414210 −0.207105 0.978319i \(-0.566404\pi\)
−0.207105 + 0.978319i \(0.566404\pi\)
\(770\) 6.61268 0.238304
\(771\) 75.4892 2.71868
\(772\) 17.7114 0.637446
\(773\) −3.20903 −0.115421 −0.0577104 0.998333i \(-0.518380\pi\)
−0.0577104 + 0.998333i \(0.518380\pi\)
\(774\) −10.4381 −0.375191
\(775\) 5.52836 0.198585
\(776\) −38.1039 −1.36785
\(777\) 106.362 3.81570
\(778\) 11.8454 0.424678
\(779\) −2.75416 −0.0986781
\(780\) 19.1300 0.684965
\(781\) 10.6440 0.380873
\(782\) 0 0
\(783\) 4.72208 0.168754
\(784\) 3.30027 0.117867
\(785\) −11.8582 −0.423239
\(786\) −22.9515 −0.818651
\(787\) 3.37029 0.120138 0.0600690 0.998194i \(-0.480868\pi\)
0.0600690 + 0.998194i \(0.480868\pi\)
\(788\) 24.4556 0.871195
\(789\) 45.0188 1.60271
\(790\) −5.40106 −0.192161
\(791\) −9.18564 −0.326604
\(792\) 45.4371 1.61454
\(793\) −52.7841 −1.87442
\(794\) 21.8122 0.774085
\(795\) 5.58726 0.198160
\(796\) 16.6794 0.591185
\(797\) −21.3498 −0.756247 −0.378124 0.925755i \(-0.623431\pi\)
−0.378124 + 0.925755i \(0.623431\pi\)
\(798\) 9.43385 0.333955
\(799\) 0 0
\(800\) 5.86207 0.207256
\(801\) −86.1259 −3.04311
\(802\) 12.2552 0.432747
\(803\) 17.6977 0.624538
\(804\) −18.6674 −0.658347
\(805\) 1.59163 0.0560977
\(806\) 17.8552 0.628922
\(807\) 57.6867 2.03067
\(808\) −0.731364 −0.0257293
\(809\) 2.72968 0.0959705 0.0479852 0.998848i \(-0.484720\pi\)
0.0479852 + 0.998848i \(0.484720\pi\)
\(810\) −9.95474 −0.349774
\(811\) 37.3353 1.31102 0.655510 0.755187i \(-0.272454\pi\)
0.655510 + 0.755187i \(0.272454\pi\)
\(812\) −2.06938 −0.0726211
\(813\) −17.7241 −0.621611
\(814\) −21.8879 −0.767170
\(815\) −5.34472 −0.187217
\(816\) 0 0
\(817\) −2.74317 −0.0959715
\(818\) 25.4269 0.889032
\(819\) 90.1199 3.14905
\(820\) −3.12685 −0.109194
\(821\) −42.2293 −1.47381 −0.736906 0.675995i \(-0.763714\pi\)
−0.736906 + 0.675995i \(0.763714\pi\)
\(822\) −7.07832 −0.246885
\(823\) 20.7606 0.723668 0.361834 0.932243i \(-0.382151\pi\)
0.361834 + 0.932243i \(0.382151\pi\)
\(824\) 36.2427 1.26257
\(825\) −8.41047 −0.292815
\(826\) −7.30120 −0.254041
\(827\) 11.5073 0.400149 0.200075 0.979781i \(-0.435881\pi\)
0.200075 + 0.979781i \(0.435881\pi\)
\(828\) 4.57920 0.159138
\(829\) −11.7508 −0.408121 −0.204060 0.978958i \(-0.565414\pi\)
−0.204060 + 0.978958i \(0.565414\pi\)
\(830\) −0.170150 −0.00590599
\(831\) 0.379002 0.0131474
\(832\) 10.6708 0.369942
\(833\) 0 0
\(834\) −15.4318 −0.534361
\(835\) −11.5900 −0.401087
\(836\) 4.99983 0.172923
\(837\) 58.7483 2.03064
\(838\) −0.667839 −0.0230701
\(839\) −36.5993 −1.26355 −0.631775 0.775152i \(-0.717673\pi\)
−0.631775 + 0.775152i \(0.717673\pi\)
\(840\) 25.5796 0.882578
\(841\) −28.8025 −0.993191
\(842\) 25.1842 0.867904
\(843\) 5.60772 0.193140
\(844\) −9.60003 −0.330447
\(845\) −5.64797 −0.194296
\(846\) −40.5390 −1.39376
\(847\) −11.3766 −0.390903
\(848\) −1.73821 −0.0596902
\(849\) −88.0312 −3.02122
\(850\) 0 0
\(851\) −5.26829 −0.180595
\(852\) 17.2399 0.590628
\(853\) 38.0771 1.30374 0.651868 0.758332i \(-0.273986\pi\)
0.651868 + 0.758332i \(0.273986\pi\)
\(854\) −29.5524 −1.01126
\(855\) −8.19188 −0.280157
\(856\) −48.1459 −1.64559
\(857\) −20.2277 −0.690965 −0.345482 0.938425i \(-0.612285\pi\)
−0.345482 + 0.938425i \(0.612285\pi\)
\(858\) −27.1636 −0.927351
\(859\) −2.60725 −0.0889581 −0.0444790 0.999010i \(-0.514163\pi\)
−0.0444790 + 0.999010i \(0.514163\pi\)
\(860\) −3.11437 −0.106199
\(861\) −21.5755 −0.735290
\(862\) −12.1887 −0.415150
\(863\) 11.2563 0.383169 0.191584 0.981476i \(-0.438637\pi\)
0.191584 + 0.981476i \(0.438637\pi\)
\(864\) 62.2945 2.11930
\(865\) −11.0271 −0.374932
\(866\) −26.1730 −0.889396
\(867\) 0 0
\(868\) −25.7455 −0.873860
\(869\) −19.7514 −0.670021
\(870\) −1.02197 −0.0346479
\(871\) 18.1970 0.616580
\(872\) 9.08573 0.307682
\(873\) 95.5940 3.23537
\(874\) −0.467276 −0.0158059
\(875\) −3.23262 −0.109282
\(876\) 28.6646 0.968487
\(877\) 6.00107 0.202642 0.101321 0.994854i \(-0.467693\pi\)
0.101321 + 0.994854i \(0.467693\pi\)
\(878\) −16.6618 −0.562309
\(879\) −4.35446 −0.146872
\(880\) 2.61651 0.0882025
\(881\) −34.3314 −1.15665 −0.578327 0.815805i \(-0.696294\pi\)
−0.578327 + 0.815805i \(0.696294\pi\)
\(882\) 16.6571 0.560874
\(883\) 11.8244 0.397921 0.198961 0.980007i \(-0.436243\pi\)
0.198961 + 0.980007i \(0.436243\pi\)
\(884\) 0 0
\(885\) 9.28618 0.312152
\(886\) −6.58095 −0.221091
\(887\) −24.2352 −0.813738 −0.406869 0.913487i \(-0.633379\pi\)
−0.406869 + 0.913487i \(0.633379\pi\)
\(888\) −84.6680 −2.84127
\(889\) 17.6668 0.592524
\(890\) 9.97781 0.334457
\(891\) −36.4040 −1.21958
\(892\) 18.1414 0.607420
\(893\) −10.6538 −0.356515
\(894\) −52.8769 −1.76847
\(895\) 21.0731 0.704396
\(896\) −31.9254 −1.06655
\(897\) −6.53813 −0.218302
\(898\) −6.63163 −0.221300
\(899\) 2.45659 0.0819317
\(900\) −9.30039 −0.310013
\(901\) 0 0
\(902\) 4.43996 0.147835
\(903\) −21.4894 −0.715122
\(904\) 7.31213 0.243198
\(905\) 22.6592 0.753218
\(906\) 0.450182 0.0149563
\(907\) −44.7796 −1.48688 −0.743441 0.668802i \(-0.766808\pi\)
−0.743441 + 0.668802i \(0.766808\pi\)
\(908\) −11.5864 −0.384509
\(909\) 1.83483 0.0608574
\(910\) −10.4405 −0.346100
\(911\) −9.94858 −0.329611 −0.164806 0.986326i \(-0.552700\pi\)
−0.164806 + 0.986326i \(0.552700\pi\)
\(912\) 3.73279 0.123605
\(913\) −0.622230 −0.0205928
\(914\) −13.8182 −0.457066
\(915\) 37.5869 1.24258
\(916\) 31.1600 1.02955
\(917\) −32.2600 −1.06532
\(918\) 0 0
\(919\) −33.3601 −1.10045 −0.550224 0.835017i \(-0.685458\pi\)
−0.550224 + 0.835017i \(0.685458\pi\)
\(920\) −1.26700 −0.0417719
\(921\) −66.8401 −2.20246
\(922\) −18.3762 −0.605189
\(923\) −16.8054 −0.553158
\(924\) 39.1675 1.28852
\(925\) 10.6999 0.351812
\(926\) −7.41132 −0.243551
\(927\) −90.9247 −2.98636
\(928\) 2.60487 0.0855091
\(929\) 24.8961 0.816813 0.408407 0.912800i \(-0.366085\pi\)
0.408407 + 0.912800i \(0.366085\pi\)
\(930\) −12.7145 −0.416923
\(931\) 4.37755 0.143468
\(932\) −31.6225 −1.03583
\(933\) 26.6021 0.870915
\(934\) −21.9917 −0.719592
\(935\) 0 0
\(936\) −71.7390 −2.34486
\(937\) 31.2460 1.02076 0.510381 0.859948i \(-0.329504\pi\)
0.510381 + 0.859948i \(0.329504\pi\)
\(938\) 10.1880 0.332650
\(939\) 31.6176 1.03180
\(940\) −12.0954 −0.394510
\(941\) −1.73372 −0.0565177 −0.0282589 0.999601i \(-0.508996\pi\)
−0.0282589 + 0.999601i \(0.508996\pi\)
\(942\) 27.2723 0.888579
\(943\) 1.06867 0.0348008
\(944\) −2.88895 −0.0940272
\(945\) −34.3521 −1.11747
\(946\) 4.42225 0.143780
\(947\) −10.8513 −0.352619 −0.176309 0.984335i \(-0.556416\pi\)
−0.176309 + 0.984335i \(0.556416\pi\)
\(948\) −31.9910 −1.03902
\(949\) −27.9423 −0.907044
\(950\) 0.949042 0.0307910
\(951\) 3.46760 0.112445
\(952\) 0 0
\(953\) −16.9007 −0.547466 −0.273733 0.961806i \(-0.588258\pi\)
−0.273733 + 0.961806i \(0.588258\pi\)
\(954\) −8.77308 −0.284039
\(955\) 3.50162 0.113310
\(956\) −8.50159 −0.274961
\(957\) −3.73728 −0.120809
\(958\) −21.3906 −0.691098
\(959\) −9.94910 −0.321273
\(960\) −7.59851 −0.245241
\(961\) −0.437196 −0.0141031
\(962\) 34.5580 1.11419
\(963\) 120.787 3.89231
\(964\) −19.1768 −0.617643
\(965\) 12.2942 0.395765
\(966\) −3.66053 −0.117776
\(967\) 31.2356 1.00447 0.502234 0.864732i \(-0.332511\pi\)
0.502234 + 0.864732i \(0.332511\pi\)
\(968\) 9.05619 0.291077
\(969\) 0 0
\(970\) −11.0747 −0.355587
\(971\) 17.3888 0.558033 0.279016 0.960286i \(-0.409992\pi\)
0.279016 + 0.960286i \(0.409992\pi\)
\(972\) −13.0356 −0.418116
\(973\) −21.6906 −0.695368
\(974\) 0.462124 0.0148074
\(975\) 13.2790 0.425268
\(976\) −11.6933 −0.374294
\(977\) −9.17338 −0.293482 −0.146741 0.989175i \(-0.546878\pi\)
−0.146741 + 0.989175i \(0.546878\pi\)
\(978\) 12.2921 0.393058
\(979\) 36.4884 1.16617
\(980\) 4.96991 0.158758
\(981\) −22.7940 −0.727757
\(982\) 19.0469 0.607811
\(983\) −37.2969 −1.18959 −0.594793 0.803879i \(-0.702766\pi\)
−0.594793 + 0.803879i \(0.702766\pi\)
\(984\) 17.1749 0.547516
\(985\) 16.9757 0.540891
\(986\) 0 0
\(987\) −83.4593 −2.65654
\(988\) −7.89405 −0.251143
\(989\) 1.06441 0.0338463
\(990\) 13.2061 0.419716
\(991\) −35.0682 −1.11398 −0.556990 0.830519i \(-0.688044\pi\)
−0.556990 + 0.830519i \(0.688044\pi\)
\(992\) 32.4077 1.02894
\(993\) −105.350 −3.34319
\(994\) −9.40894 −0.298433
\(995\) 11.5779 0.367044
\(996\) −1.00781 −0.0319338
\(997\) −37.3576 −1.18313 −0.591563 0.806259i \(-0.701489\pi\)
−0.591563 + 0.806259i \(0.701489\pi\)
\(998\) 27.2692 0.863190
\(999\) 113.705 3.59747
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.q.1.9 12
5.4 even 2 7225.2.a.bq.1.4 12
17.4 even 4 1445.2.d.j.866.8 24
17.10 odd 16 85.2.l.a.66.2 24
17.12 odd 16 85.2.l.a.76.2 yes 24
17.13 even 4 1445.2.d.j.866.7 24
17.16 even 2 1445.2.a.p.1.9 12
51.29 even 16 765.2.be.b.586.5 24
51.44 even 16 765.2.be.b.406.5 24
85.12 even 16 425.2.n.f.399.2 24
85.27 even 16 425.2.n.c.49.5 24
85.29 odd 16 425.2.m.b.76.5 24
85.44 odd 16 425.2.m.b.151.5 24
85.63 even 16 425.2.n.c.399.5 24
85.78 even 16 425.2.n.f.49.2 24
85.84 even 2 7225.2.a.bs.1.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.2 24 17.10 odd 16
85.2.l.a.76.2 yes 24 17.12 odd 16
425.2.m.b.76.5 24 85.29 odd 16
425.2.m.b.151.5 24 85.44 odd 16
425.2.n.c.49.5 24 85.27 even 16
425.2.n.c.399.5 24 85.63 even 16
425.2.n.f.49.2 24 85.78 even 16
425.2.n.f.399.2 24 85.12 even 16
765.2.be.b.406.5 24 51.44 even 16
765.2.be.b.586.5 24 51.29 even 16
1445.2.a.p.1.9 12 17.16 even 2
1445.2.a.q.1.9 12 1.1 even 1 trivial
1445.2.d.j.866.7 24 17.13 even 4
1445.2.d.j.866.8 24 17.4 even 4
7225.2.a.bq.1.4 12 5.4 even 2
7225.2.a.bs.1.4 12 85.84 even 2