Properties

Label 1445.2.a.q.1.7
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(1,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-4,8,12,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.301687\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.301687 q^{2} -1.06101 q^{3} -1.90899 q^{4} -1.00000 q^{5} -0.320094 q^{6} -2.50984 q^{7} -1.17929 q^{8} -1.87425 q^{9} -0.301687 q^{10} +2.44557 q^{11} +2.02546 q^{12} -5.61335 q^{13} -0.757185 q^{14} +1.06101 q^{15} +3.46219 q^{16} -0.565436 q^{18} -7.13107 q^{19} +1.90899 q^{20} +2.66297 q^{21} +0.737797 q^{22} -0.860805 q^{23} +1.25124 q^{24} +1.00000 q^{25} -1.69348 q^{26} +5.17165 q^{27} +4.79124 q^{28} +3.75143 q^{29} +0.320094 q^{30} -2.24733 q^{31} +3.40308 q^{32} -2.59479 q^{33} +2.50984 q^{35} +3.57791 q^{36} -5.10557 q^{37} -2.15135 q^{38} +5.95585 q^{39} +1.17929 q^{40} +12.3496 q^{41} +0.803384 q^{42} -2.62014 q^{43} -4.66856 q^{44} +1.87425 q^{45} -0.259694 q^{46} -2.30114 q^{47} -3.67344 q^{48} -0.700712 q^{49} +0.301687 q^{50} +10.7158 q^{52} +2.77475 q^{53} +1.56022 q^{54} -2.44557 q^{55} +2.95983 q^{56} +7.56616 q^{57} +1.13176 q^{58} +7.44167 q^{59} -2.02546 q^{60} +0.906291 q^{61} -0.677989 q^{62} +4.70406 q^{63} -5.89773 q^{64} +5.61335 q^{65} -0.782813 q^{66} +6.69889 q^{67} +0.913326 q^{69} +0.757185 q^{70} -0.240766 q^{71} +2.21028 q^{72} -6.45746 q^{73} -1.54028 q^{74} -1.06101 q^{75} +13.6131 q^{76} -6.13799 q^{77} +1.79680 q^{78} +14.7096 q^{79} -3.46219 q^{80} +0.135560 q^{81} +3.72571 q^{82} +13.8984 q^{83} -5.08358 q^{84} -0.790460 q^{86} -3.98032 q^{87} -2.88404 q^{88} -0.395163 q^{89} +0.565436 q^{90} +14.0886 q^{91} +1.64326 q^{92} +2.38445 q^{93} -0.694222 q^{94} +7.13107 q^{95} -3.61071 q^{96} -8.95923 q^{97} -0.211396 q^{98} -4.58361 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 8 q^{3} + 12 q^{4} - 12 q^{5} + 8 q^{6} + 16 q^{7} - 12 q^{8} + 12 q^{9} + 4 q^{10} + 16 q^{11} + 16 q^{12} - 8 q^{13} - 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} - 12 q^{20} + 16 q^{21}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.301687 0.213325 0.106662 0.994295i \(-0.465984\pi\)
0.106662 + 0.994295i \(0.465984\pi\)
\(3\) −1.06101 −0.612577 −0.306288 0.951939i \(-0.599087\pi\)
−0.306288 + 0.951939i \(0.599087\pi\)
\(4\) −1.90899 −0.954493
\(5\) −1.00000 −0.447214
\(6\) −0.320094 −0.130678
\(7\) −2.50984 −0.948630 −0.474315 0.880355i \(-0.657304\pi\)
−0.474315 + 0.880355i \(0.657304\pi\)
\(8\) −1.17929 −0.416942
\(9\) −1.87425 −0.624750
\(10\) −0.301687 −0.0954017
\(11\) 2.44557 0.737368 0.368684 0.929555i \(-0.379808\pi\)
0.368684 + 0.929555i \(0.379808\pi\)
\(12\) 2.02546 0.584700
\(13\) −5.61335 −1.55686 −0.778432 0.627729i \(-0.783985\pi\)
−0.778432 + 0.627729i \(0.783985\pi\)
\(14\) −0.757185 −0.202366
\(15\) 1.06101 0.273953
\(16\) 3.46219 0.865549
\(17\) 0 0
\(18\) −0.565436 −0.133275
\(19\) −7.13107 −1.63598 −0.817990 0.575233i \(-0.804911\pi\)
−0.817990 + 0.575233i \(0.804911\pi\)
\(20\) 1.90899 0.426862
\(21\) 2.66297 0.581108
\(22\) 0.737797 0.157299
\(23\) −0.860805 −0.179490 −0.0897451 0.995965i \(-0.528605\pi\)
−0.0897451 + 0.995965i \(0.528605\pi\)
\(24\) 1.25124 0.255409
\(25\) 1.00000 0.200000
\(26\) −1.69348 −0.332118
\(27\) 5.17165 0.995284
\(28\) 4.79124 0.905460
\(29\) 3.75143 0.696624 0.348312 0.937379i \(-0.386755\pi\)
0.348312 + 0.937379i \(0.386755\pi\)
\(30\) 0.320094 0.0584409
\(31\) −2.24733 −0.403632 −0.201816 0.979423i \(-0.564684\pi\)
−0.201816 + 0.979423i \(0.564684\pi\)
\(32\) 3.40308 0.601585
\(33\) −2.59479 −0.451694
\(34\) 0 0
\(35\) 2.50984 0.424240
\(36\) 3.57791 0.596319
\(37\) −5.10557 −0.839351 −0.419675 0.907674i \(-0.637856\pi\)
−0.419675 + 0.907674i \(0.637856\pi\)
\(38\) −2.15135 −0.348995
\(39\) 5.95585 0.953699
\(40\) 1.17929 0.186462
\(41\) 12.3496 1.92868 0.964340 0.264666i \(-0.0852617\pi\)
0.964340 + 0.264666i \(0.0852617\pi\)
\(42\) 0.803384 0.123965
\(43\) −2.62014 −0.399567 −0.199783 0.979840i \(-0.564024\pi\)
−0.199783 + 0.979840i \(0.564024\pi\)
\(44\) −4.66856 −0.703812
\(45\) 1.87425 0.279397
\(46\) −0.259694 −0.0382897
\(47\) −2.30114 −0.335655 −0.167828 0.985816i \(-0.553675\pi\)
−0.167828 + 0.985816i \(0.553675\pi\)
\(48\) −3.67344 −0.530215
\(49\) −0.700712 −0.100102
\(50\) 0.301687 0.0426650
\(51\) 0 0
\(52\) 10.7158 1.48602
\(53\) 2.77475 0.381141 0.190571 0.981674i \(-0.438966\pi\)
0.190571 + 0.981674i \(0.438966\pi\)
\(54\) 1.56022 0.212319
\(55\) −2.44557 −0.329761
\(56\) 2.95983 0.395523
\(57\) 7.56616 1.00216
\(58\) 1.13176 0.148607
\(59\) 7.44167 0.968823 0.484412 0.874840i \(-0.339034\pi\)
0.484412 + 0.874840i \(0.339034\pi\)
\(60\) −2.02546 −0.261486
\(61\) 0.906291 0.116039 0.0580193 0.998315i \(-0.481522\pi\)
0.0580193 + 0.998315i \(0.481522\pi\)
\(62\) −0.677989 −0.0861047
\(63\) 4.70406 0.592656
\(64\) −5.89773 −0.737216
\(65\) 5.61335 0.696251
\(66\) −0.782813 −0.0963576
\(67\) 6.69889 0.818399 0.409200 0.912445i \(-0.365808\pi\)
0.409200 + 0.912445i \(0.365808\pi\)
\(68\) 0 0
\(69\) 0.913326 0.109952
\(70\) 0.757185 0.0905009
\(71\) −0.240766 −0.0285737 −0.0142868 0.999898i \(-0.504548\pi\)
−0.0142868 + 0.999898i \(0.504548\pi\)
\(72\) 2.21028 0.260484
\(73\) −6.45746 −0.755788 −0.377894 0.925849i \(-0.623352\pi\)
−0.377894 + 0.925849i \(0.623352\pi\)
\(74\) −1.54028 −0.179054
\(75\) −1.06101 −0.122515
\(76\) 13.6131 1.56153
\(77\) −6.13799 −0.699489
\(78\) 1.79680 0.203448
\(79\) 14.7096 1.65496 0.827479 0.561497i \(-0.189774\pi\)
0.827479 + 0.561497i \(0.189774\pi\)
\(80\) −3.46219 −0.387085
\(81\) 0.135560 0.0150623
\(82\) 3.72571 0.411435
\(83\) 13.8984 1.52555 0.762775 0.646664i \(-0.223836\pi\)
0.762775 + 0.646664i \(0.223836\pi\)
\(84\) −5.08358 −0.554664
\(85\) 0 0
\(86\) −0.790460 −0.0852375
\(87\) −3.98032 −0.426736
\(88\) −2.88404 −0.307439
\(89\) −0.395163 −0.0418872 −0.0209436 0.999781i \(-0.506667\pi\)
−0.0209436 + 0.999781i \(0.506667\pi\)
\(90\) 0.565436 0.0596022
\(91\) 14.0886 1.47689
\(92\) 1.64326 0.171322
\(93\) 2.38445 0.247255
\(94\) −0.694222 −0.0716036
\(95\) 7.13107 0.731632
\(96\) −3.61071 −0.368517
\(97\) −8.95923 −0.909672 −0.454836 0.890575i \(-0.650302\pi\)
−0.454836 + 0.890575i \(0.650302\pi\)
\(98\) −0.211396 −0.0213542
\(99\) −4.58361 −0.460671
\(100\) −1.90899 −0.190899
\(101\) −15.2882 −1.52124 −0.760619 0.649199i \(-0.775104\pi\)
−0.760619 + 0.649199i \(0.775104\pi\)
\(102\) 0 0
\(103\) −14.7746 −1.45579 −0.727894 0.685690i \(-0.759501\pi\)
−0.727894 + 0.685690i \(0.759501\pi\)
\(104\) 6.61977 0.649122
\(105\) −2.66297 −0.259880
\(106\) 0.837105 0.0813068
\(107\) 1.47078 0.142185 0.0710926 0.997470i \(-0.477351\pi\)
0.0710926 + 0.997470i \(0.477351\pi\)
\(108\) −9.87260 −0.949991
\(109\) 9.43771 0.903969 0.451984 0.892026i \(-0.350716\pi\)
0.451984 + 0.892026i \(0.350716\pi\)
\(110\) −0.737797 −0.0703462
\(111\) 5.41708 0.514167
\(112\) −8.68955 −0.821085
\(113\) 14.9610 1.40742 0.703708 0.710489i \(-0.251526\pi\)
0.703708 + 0.710489i \(0.251526\pi\)
\(114\) 2.28261 0.213786
\(115\) 0.860805 0.0802705
\(116\) −7.16143 −0.664922
\(117\) 10.5208 0.972651
\(118\) 2.24505 0.206674
\(119\) 0 0
\(120\) −1.25124 −0.114222
\(121\) −5.01917 −0.456288
\(122\) 0.273416 0.0247539
\(123\) −13.1031 −1.18146
\(124\) 4.29011 0.385264
\(125\) −1.00000 −0.0894427
\(126\) 1.41915 0.126428
\(127\) −5.95484 −0.528406 −0.264203 0.964467i \(-0.585109\pi\)
−0.264203 + 0.964467i \(0.585109\pi\)
\(128\) −8.58542 −0.758851
\(129\) 2.78000 0.244765
\(130\) 1.69348 0.148528
\(131\) 4.18730 0.365846 0.182923 0.983127i \(-0.441444\pi\)
0.182923 + 0.983127i \(0.441444\pi\)
\(132\) 4.95341 0.431139
\(133\) 17.8978 1.55194
\(134\) 2.02097 0.174585
\(135\) −5.17165 −0.445104
\(136\) 0 0
\(137\) 7.25998 0.620262 0.310131 0.950694i \(-0.399627\pi\)
0.310131 + 0.950694i \(0.399627\pi\)
\(138\) 0.275538 0.0234554
\(139\) −10.3932 −0.881540 −0.440770 0.897620i \(-0.645295\pi\)
−0.440770 + 0.897620i \(0.645295\pi\)
\(140\) −4.79124 −0.404934
\(141\) 2.44154 0.205615
\(142\) −0.0726360 −0.00609548
\(143\) −13.7279 −1.14798
\(144\) −6.48902 −0.540751
\(145\) −3.75143 −0.311540
\(146\) −1.94813 −0.161228
\(147\) 0.743466 0.0613200
\(148\) 9.74646 0.801154
\(149\) −6.01765 −0.492985 −0.246492 0.969145i \(-0.579278\pi\)
−0.246492 + 0.969145i \(0.579278\pi\)
\(150\) −0.320094 −0.0261356
\(151\) −10.4183 −0.847828 −0.423914 0.905702i \(-0.639344\pi\)
−0.423914 + 0.905702i \(0.639344\pi\)
\(152\) 8.40959 0.682108
\(153\) 0 0
\(154\) −1.85175 −0.149218
\(155\) 2.24733 0.180510
\(156\) −11.3696 −0.910298
\(157\) 13.4073 1.07002 0.535008 0.844847i \(-0.320309\pi\)
0.535008 + 0.844847i \(0.320309\pi\)
\(158\) 4.43769 0.353044
\(159\) −2.94405 −0.233478
\(160\) −3.40308 −0.269037
\(161\) 2.16048 0.170270
\(162\) 0.0408968 0.00321315
\(163\) −1.57513 −0.123374 −0.0616870 0.998096i \(-0.519648\pi\)
−0.0616870 + 0.998096i \(0.519648\pi\)
\(164\) −23.5752 −1.84091
\(165\) 2.59479 0.202004
\(166\) 4.19297 0.325438
\(167\) −17.6049 −1.36231 −0.681154 0.732140i \(-0.738522\pi\)
−0.681154 + 0.732140i \(0.738522\pi\)
\(168\) −3.14042 −0.242288
\(169\) 18.5098 1.42383
\(170\) 0 0
\(171\) 13.3654 1.02208
\(172\) 5.00180 0.381384
\(173\) 18.8429 1.43260 0.716300 0.697793i \(-0.245834\pi\)
0.716300 + 0.697793i \(0.245834\pi\)
\(174\) −1.20081 −0.0910333
\(175\) −2.50984 −0.189726
\(176\) 8.46705 0.638228
\(177\) −7.89572 −0.593479
\(178\) −0.119215 −0.00893557
\(179\) 3.31384 0.247688 0.123844 0.992302i \(-0.460478\pi\)
0.123844 + 0.992302i \(0.460478\pi\)
\(180\) −3.57791 −0.266682
\(181\) −15.8652 −1.17925 −0.589624 0.807678i \(-0.700724\pi\)
−0.589624 + 0.807678i \(0.700724\pi\)
\(182\) 4.25035 0.315057
\(183\) −0.961587 −0.0710826
\(184\) 1.01514 0.0748370
\(185\) 5.10557 0.375369
\(186\) 0.719356 0.0527457
\(187\) 0 0
\(188\) 4.39284 0.320380
\(189\) −12.9800 −0.944156
\(190\) 2.15135 0.156075
\(191\) 27.4943 1.98941 0.994707 0.102748i \(-0.0327636\pi\)
0.994707 + 0.102748i \(0.0327636\pi\)
\(192\) 6.25757 0.451601
\(193\) −14.7613 −1.06254 −0.531270 0.847203i \(-0.678285\pi\)
−0.531270 + 0.847203i \(0.678285\pi\)
\(194\) −2.70288 −0.194056
\(195\) −5.95585 −0.426507
\(196\) 1.33765 0.0955464
\(197\) 0.376406 0.0268178 0.0134089 0.999910i \(-0.495732\pi\)
0.0134089 + 0.999910i \(0.495732\pi\)
\(198\) −1.38282 −0.0982724
\(199\) −7.53004 −0.533791 −0.266895 0.963726i \(-0.585998\pi\)
−0.266895 + 0.963726i \(0.585998\pi\)
\(200\) −1.17929 −0.0833883
\(201\) −7.10761 −0.501332
\(202\) −4.61226 −0.324518
\(203\) −9.41549 −0.660838
\(204\) 0 0
\(205\) −12.3496 −0.862532
\(206\) −4.45731 −0.310556
\(207\) 1.61336 0.112137
\(208\) −19.4345 −1.34754
\(209\) −17.4395 −1.20632
\(210\) −0.803384 −0.0554388
\(211\) 8.69248 0.598415 0.299207 0.954188i \(-0.403278\pi\)
0.299207 + 0.954188i \(0.403278\pi\)
\(212\) −5.29695 −0.363796
\(213\) 0.255456 0.0175036
\(214\) 0.443714 0.0303316
\(215\) 2.62014 0.178692
\(216\) −6.09887 −0.414975
\(217\) 5.64043 0.382897
\(218\) 2.84723 0.192839
\(219\) 6.85145 0.462978
\(220\) 4.66856 0.314754
\(221\) 0 0
\(222\) 1.63426 0.109684
\(223\) 6.46310 0.432801 0.216401 0.976305i \(-0.430568\pi\)
0.216401 + 0.976305i \(0.430568\pi\)
\(224\) −8.54117 −0.570681
\(225\) −1.87425 −0.124950
\(226\) 4.51355 0.300237
\(227\) −3.06060 −0.203139 −0.101570 0.994828i \(-0.532386\pi\)
−0.101570 + 0.994828i \(0.532386\pi\)
\(228\) −14.4437 −0.956557
\(229\) −7.55923 −0.499528 −0.249764 0.968307i \(-0.580353\pi\)
−0.249764 + 0.968307i \(0.580353\pi\)
\(230\) 0.259694 0.0171237
\(231\) 6.51250 0.428491
\(232\) −4.42403 −0.290452
\(233\) −22.3478 −1.46406 −0.732028 0.681275i \(-0.761426\pi\)
−0.732028 + 0.681275i \(0.761426\pi\)
\(234\) 3.17400 0.207491
\(235\) 2.30114 0.150110
\(236\) −14.2060 −0.924735
\(237\) −15.6071 −1.01379
\(238\) 0 0
\(239\) −3.45981 −0.223797 −0.111898 0.993720i \(-0.535693\pi\)
−0.111898 + 0.993720i \(0.535693\pi\)
\(240\) 3.67344 0.237119
\(241\) 18.0262 1.16117 0.580585 0.814199i \(-0.302824\pi\)
0.580585 + 0.814199i \(0.302824\pi\)
\(242\) −1.51422 −0.0973376
\(243\) −15.6588 −1.00451
\(244\) −1.73010 −0.110758
\(245\) 0.700712 0.0447669
\(246\) −3.95302 −0.252036
\(247\) 40.0292 2.54700
\(248\) 2.65025 0.168291
\(249\) −14.7464 −0.934516
\(250\) −0.301687 −0.0190803
\(251\) 24.0478 1.51788 0.758941 0.651159i \(-0.225717\pi\)
0.758941 + 0.651159i \(0.225717\pi\)
\(252\) −8.97999 −0.565686
\(253\) −2.10516 −0.132350
\(254\) −1.79650 −0.112722
\(255\) 0 0
\(256\) 9.20534 0.575334
\(257\) −14.8017 −0.923302 −0.461651 0.887062i \(-0.652743\pi\)
−0.461651 + 0.887062i \(0.652743\pi\)
\(258\) 0.838689 0.0522145
\(259\) 12.8142 0.796233
\(260\) −10.7158 −0.664566
\(261\) −7.03113 −0.435216
\(262\) 1.26325 0.0780440
\(263\) −24.5163 −1.51174 −0.755871 0.654720i \(-0.772786\pi\)
−0.755871 + 0.654720i \(0.772786\pi\)
\(264\) 3.06000 0.188330
\(265\) −2.77475 −0.170451
\(266\) 5.39954 0.331067
\(267\) 0.419273 0.0256591
\(268\) −12.7881 −0.781156
\(269\) 6.59468 0.402085 0.201042 0.979583i \(-0.435567\pi\)
0.201042 + 0.979583i \(0.435567\pi\)
\(270\) −1.56022 −0.0949518
\(271\) 26.1956 1.59127 0.795634 0.605778i \(-0.207138\pi\)
0.795634 + 0.605778i \(0.207138\pi\)
\(272\) 0 0
\(273\) −14.9482 −0.904707
\(274\) 2.19024 0.132317
\(275\) 2.44557 0.147474
\(276\) −1.74353 −0.104948
\(277\) 9.56504 0.574708 0.287354 0.957825i \(-0.407224\pi\)
0.287354 + 0.957825i \(0.407224\pi\)
\(278\) −3.13549 −0.188054
\(279\) 4.21205 0.252169
\(280\) −2.95983 −0.176883
\(281\) 12.4173 0.740755 0.370377 0.928881i \(-0.379228\pi\)
0.370377 + 0.928881i \(0.379228\pi\)
\(282\) 0.736580 0.0438627
\(283\) 16.8433 1.00123 0.500616 0.865670i \(-0.333107\pi\)
0.500616 + 0.865670i \(0.333107\pi\)
\(284\) 0.459619 0.0272734
\(285\) −7.56616 −0.448181
\(286\) −4.14152 −0.244893
\(287\) −30.9954 −1.82960
\(288\) −6.37822 −0.375840
\(289\) 0 0
\(290\) −1.13176 −0.0664591
\(291\) 9.50586 0.557244
\(292\) 12.3272 0.721394
\(293\) −20.8806 −1.21986 −0.609930 0.792456i \(-0.708802\pi\)
−0.609930 + 0.792456i \(0.708802\pi\)
\(294\) 0.224294 0.0130811
\(295\) −7.44167 −0.433271
\(296\) 6.02095 0.349960
\(297\) 12.6476 0.733890
\(298\) −1.81544 −0.105166
\(299\) 4.83200 0.279442
\(300\) 2.02546 0.116940
\(301\) 6.57612 0.379041
\(302\) −3.14306 −0.180863
\(303\) 16.2210 0.931875
\(304\) −24.6891 −1.41602
\(305\) −0.906291 −0.0518941
\(306\) 0 0
\(307\) −29.9529 −1.70950 −0.854751 0.519038i \(-0.826290\pi\)
−0.854751 + 0.519038i \(0.826290\pi\)
\(308\) 11.7173 0.667657
\(309\) 15.6761 0.891782
\(310\) 0.677989 0.0385072
\(311\) 0.210323 0.0119264 0.00596318 0.999982i \(-0.498102\pi\)
0.00596318 + 0.999982i \(0.498102\pi\)
\(312\) −7.02367 −0.397637
\(313\) −32.4242 −1.83273 −0.916363 0.400349i \(-0.868889\pi\)
−0.916363 + 0.400349i \(0.868889\pi\)
\(314\) 4.04479 0.228261
\(315\) −4.70406 −0.265044
\(316\) −28.0804 −1.57965
\(317\) −33.4391 −1.87813 −0.939063 0.343746i \(-0.888304\pi\)
−0.939063 + 0.343746i \(0.888304\pi\)
\(318\) −0.888180 −0.0498067
\(319\) 9.17441 0.513668
\(320\) 5.89773 0.329693
\(321\) −1.56051 −0.0870994
\(322\) 0.651789 0.0363228
\(323\) 0 0
\(324\) −0.258783 −0.0143768
\(325\) −5.61335 −0.311373
\(326\) −0.475197 −0.0263187
\(327\) −10.0135 −0.553750
\(328\) −14.5637 −0.804147
\(329\) 5.77548 0.318413
\(330\) 0.782813 0.0430924
\(331\) −0.885340 −0.0486627 −0.0243313 0.999704i \(-0.507746\pi\)
−0.0243313 + 0.999704i \(0.507746\pi\)
\(332\) −26.5319 −1.45613
\(333\) 9.56912 0.524384
\(334\) −5.31117 −0.290614
\(335\) −6.69889 −0.365999
\(336\) 9.21973 0.502977
\(337\) 17.1565 0.934575 0.467287 0.884105i \(-0.345231\pi\)
0.467287 + 0.884105i \(0.345231\pi\)
\(338\) 5.58415 0.303738
\(339\) −15.8739 −0.862150
\(340\) 0 0
\(341\) −5.49600 −0.297625
\(342\) 4.03216 0.218034
\(343\) 19.3275 1.04359
\(344\) 3.08990 0.166596
\(345\) −0.913326 −0.0491718
\(346\) 5.68466 0.305609
\(347\) 30.9101 1.65934 0.829671 0.558253i \(-0.188528\pi\)
0.829671 + 0.558253i \(0.188528\pi\)
\(348\) 7.59838 0.407316
\(349\) 3.37170 0.180483 0.0902414 0.995920i \(-0.471236\pi\)
0.0902414 + 0.995920i \(0.471236\pi\)
\(350\) −0.757185 −0.0404732
\(351\) −29.0303 −1.54952
\(352\) 8.32247 0.443589
\(353\) 23.7918 1.26631 0.633155 0.774025i \(-0.281760\pi\)
0.633155 + 0.774025i \(0.281760\pi\)
\(354\) −2.38203 −0.126604
\(355\) 0.240766 0.0127785
\(356\) 0.754360 0.0399810
\(357\) 0 0
\(358\) 0.999743 0.0528381
\(359\) 31.7129 1.67374 0.836871 0.547399i \(-0.184382\pi\)
0.836871 + 0.547399i \(0.184382\pi\)
\(360\) −2.21028 −0.116492
\(361\) 31.8521 1.67643
\(362\) −4.78631 −0.251563
\(363\) 5.32541 0.279512
\(364\) −26.8950 −1.40968
\(365\) 6.45746 0.337999
\(366\) −0.290098 −0.0151637
\(367\) 4.51687 0.235779 0.117889 0.993027i \(-0.462387\pi\)
0.117889 + 0.993027i \(0.462387\pi\)
\(368\) −2.98027 −0.155358
\(369\) −23.1462 −1.20494
\(370\) 1.54028 0.0800755
\(371\) −6.96417 −0.361562
\(372\) −4.55187 −0.236003
\(373\) 5.12748 0.265491 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(374\) 0 0
\(375\) 1.06101 0.0547905
\(376\) 2.71371 0.139949
\(377\) −21.0581 −1.08455
\(378\) −3.91589 −0.201412
\(379\) 5.53013 0.284064 0.142032 0.989862i \(-0.454636\pi\)
0.142032 + 0.989862i \(0.454636\pi\)
\(380\) −13.6131 −0.698337
\(381\) 6.31816 0.323689
\(382\) 8.29466 0.424391
\(383\) 20.4344 1.04415 0.522075 0.852899i \(-0.325158\pi\)
0.522075 + 0.852899i \(0.325158\pi\)
\(384\) 9.10925 0.464854
\(385\) 6.13799 0.312821
\(386\) −4.45328 −0.226666
\(387\) 4.91079 0.249629
\(388\) 17.1030 0.868275
\(389\) 5.18629 0.262955 0.131478 0.991319i \(-0.458028\pi\)
0.131478 + 0.991319i \(0.458028\pi\)
\(390\) −1.79680 −0.0909845
\(391\) 0 0
\(392\) 0.826343 0.0417366
\(393\) −4.44278 −0.224109
\(394\) 0.113557 0.00572091
\(395\) −14.7096 −0.740120
\(396\) 8.75005 0.439707
\(397\) 6.17353 0.309841 0.154920 0.987927i \(-0.450488\pi\)
0.154920 + 0.987927i \(0.450488\pi\)
\(398\) −2.27171 −0.113871
\(399\) −18.9898 −0.950681
\(400\) 3.46219 0.173110
\(401\) 9.49644 0.474229 0.237115 0.971482i \(-0.423798\pi\)
0.237115 + 0.971482i \(0.423798\pi\)
\(402\) −2.14427 −0.106947
\(403\) 12.6150 0.628400
\(404\) 29.1850 1.45201
\(405\) −0.135560 −0.00673605
\(406\) −2.84053 −0.140973
\(407\) −12.4860 −0.618910
\(408\) 0 0
\(409\) 14.3886 0.711469 0.355734 0.934587i \(-0.384231\pi\)
0.355734 + 0.934587i \(0.384231\pi\)
\(410\) −3.72571 −0.183999
\(411\) −7.70294 −0.379958
\(412\) 28.2046 1.38954
\(413\) −18.6774 −0.919055
\(414\) 0.486730 0.0239215
\(415\) −13.8984 −0.682247
\(416\) −19.1027 −0.936586
\(417\) 11.0273 0.540011
\(418\) −5.26128 −0.257338
\(419\) 21.2233 1.03683 0.518413 0.855130i \(-0.326523\pi\)
0.518413 + 0.855130i \(0.326523\pi\)
\(420\) 5.08358 0.248053
\(421\) −20.1672 −0.982887 −0.491444 0.870909i \(-0.663531\pi\)
−0.491444 + 0.870909i \(0.663531\pi\)
\(422\) 2.62241 0.127657
\(423\) 4.31290 0.209701
\(424\) −3.27223 −0.158914
\(425\) 0 0
\(426\) 0.0770678 0.00373395
\(427\) −2.27464 −0.110078
\(428\) −2.80769 −0.135715
\(429\) 14.5655 0.703227
\(430\) 0.790460 0.0381194
\(431\) 19.9686 0.961851 0.480926 0.876761i \(-0.340301\pi\)
0.480926 + 0.876761i \(0.340301\pi\)
\(432\) 17.9052 0.861466
\(433\) −18.2236 −0.875770 −0.437885 0.899031i \(-0.644272\pi\)
−0.437885 + 0.899031i \(0.644272\pi\)
\(434\) 1.70164 0.0816815
\(435\) 3.98032 0.190842
\(436\) −18.0165 −0.862832
\(437\) 6.13846 0.293642
\(438\) 2.06699 0.0987648
\(439\) 14.7332 0.703178 0.351589 0.936155i \(-0.385642\pi\)
0.351589 + 0.936155i \(0.385642\pi\)
\(440\) 2.88404 0.137491
\(441\) 1.31331 0.0625386
\(442\) 0 0
\(443\) −23.3335 −1.10861 −0.554305 0.832314i \(-0.687016\pi\)
−0.554305 + 0.832314i \(0.687016\pi\)
\(444\) −10.3411 −0.490768
\(445\) 0.395163 0.0187325
\(446\) 1.94983 0.0923272
\(447\) 6.38481 0.301991
\(448\) 14.8023 0.699345
\(449\) −1.71162 −0.0807764 −0.0403882 0.999184i \(-0.512859\pi\)
−0.0403882 + 0.999184i \(0.512859\pi\)
\(450\) −0.565436 −0.0266549
\(451\) 30.2018 1.42215
\(452\) −28.5604 −1.34337
\(453\) 11.0539 0.519359
\(454\) −0.923344 −0.0433347
\(455\) −14.0886 −0.660484
\(456\) −8.92269 −0.417843
\(457\) −13.2168 −0.618258 −0.309129 0.951020i \(-0.600037\pi\)
−0.309129 + 0.951020i \(0.600037\pi\)
\(458\) −2.28052 −0.106562
\(459\) 0 0
\(460\) −1.64326 −0.0766176
\(461\) −29.2906 −1.36420 −0.682099 0.731260i \(-0.738933\pi\)
−0.682099 + 0.731260i \(0.738933\pi\)
\(462\) 1.96473 0.0914077
\(463\) 9.80371 0.455617 0.227808 0.973706i \(-0.426844\pi\)
0.227808 + 0.973706i \(0.426844\pi\)
\(464\) 12.9882 0.602962
\(465\) −2.38445 −0.110576
\(466\) −6.74205 −0.312319
\(467\) 13.6819 0.633125 0.316562 0.948572i \(-0.397471\pi\)
0.316562 + 0.948572i \(0.397471\pi\)
\(468\) −20.0841 −0.928388
\(469\) −16.8131 −0.776358
\(470\) 0.694222 0.0320221
\(471\) −14.2253 −0.655466
\(472\) −8.77589 −0.403943
\(473\) −6.40773 −0.294628
\(474\) −4.70845 −0.216266
\(475\) −7.13107 −0.327196
\(476\) 0 0
\(477\) −5.20057 −0.238118
\(478\) −1.04378 −0.0477414
\(479\) 11.0100 0.503060 0.251530 0.967850i \(-0.419066\pi\)
0.251530 + 0.967850i \(0.419066\pi\)
\(480\) 3.61071 0.164806
\(481\) 28.6594 1.30676
\(482\) 5.43827 0.247707
\(483\) −2.29230 −0.104303
\(484\) 9.58153 0.435524
\(485\) 8.95923 0.406818
\(486\) −4.72404 −0.214287
\(487\) 10.0942 0.457413 0.228707 0.973495i \(-0.426550\pi\)
0.228707 + 0.973495i \(0.426550\pi\)
\(488\) −1.06878 −0.0483813
\(489\) 1.67124 0.0755760
\(490\) 0.211396 0.00954988
\(491\) 17.0827 0.770933 0.385466 0.922722i \(-0.374041\pi\)
0.385466 + 0.922722i \(0.374041\pi\)
\(492\) 25.0136 1.12770
\(493\) 0 0
\(494\) 12.0763 0.543338
\(495\) 4.58361 0.206018
\(496\) −7.78068 −0.349363
\(497\) 0.604284 0.0271059
\(498\) −4.44880 −0.199356
\(499\) 31.3595 1.40384 0.701921 0.712254i \(-0.252326\pi\)
0.701921 + 0.712254i \(0.252326\pi\)
\(500\) 1.90899 0.0853724
\(501\) 18.6791 0.834519
\(502\) 7.25490 0.323802
\(503\) 8.67535 0.386815 0.193407 0.981119i \(-0.438046\pi\)
0.193407 + 0.981119i \(0.438046\pi\)
\(504\) −5.54745 −0.247103
\(505\) 15.2882 0.680318
\(506\) −0.635099 −0.0282336
\(507\) −19.6391 −0.872203
\(508\) 11.3677 0.504360
\(509\) 14.1196 0.625840 0.312920 0.949780i \(-0.398693\pi\)
0.312920 + 0.949780i \(0.398693\pi\)
\(510\) 0 0
\(511\) 16.2072 0.716963
\(512\) 19.9480 0.881584
\(513\) −36.8794 −1.62826
\(514\) −4.46546 −0.196963
\(515\) 14.7746 0.651048
\(516\) −5.30698 −0.233627
\(517\) −5.62760 −0.247501
\(518\) 3.86586 0.169856
\(519\) −19.9926 −0.877577
\(520\) −6.61977 −0.290296
\(521\) −17.6222 −0.772044 −0.386022 0.922490i \(-0.626151\pi\)
−0.386022 + 0.922490i \(0.626151\pi\)
\(522\) −2.12120 −0.0928423
\(523\) −26.3853 −1.15375 −0.576875 0.816833i \(-0.695728\pi\)
−0.576875 + 0.816833i \(0.695728\pi\)
\(524\) −7.99349 −0.349197
\(525\) 2.66297 0.116222
\(526\) −7.39626 −0.322492
\(527\) 0 0
\(528\) −8.98366 −0.390963
\(529\) −22.2590 −0.967783
\(530\) −0.837105 −0.0363615
\(531\) −13.9476 −0.605272
\(532\) −34.1667 −1.48131
\(533\) −69.3226 −3.00269
\(534\) 0.126489 0.00547372
\(535\) −1.47078 −0.0635872
\(536\) −7.89992 −0.341225
\(537\) −3.51603 −0.151728
\(538\) 1.98953 0.0857746
\(539\) −1.71364 −0.0738118
\(540\) 9.87260 0.424849
\(541\) −4.40821 −0.189524 −0.0947620 0.995500i \(-0.530209\pi\)
−0.0947620 + 0.995500i \(0.530209\pi\)
\(542\) 7.90286 0.339457
\(543\) 16.8331 0.722379
\(544\) 0 0
\(545\) −9.43771 −0.404267
\(546\) −4.50968 −0.192996
\(547\) 22.6638 0.969034 0.484517 0.874782i \(-0.338995\pi\)
0.484517 + 0.874782i \(0.338995\pi\)
\(548\) −13.8592 −0.592035
\(549\) −1.69861 −0.0724951
\(550\) 0.737797 0.0314598
\(551\) −26.7517 −1.13966
\(552\) −1.07708 −0.0458434
\(553\) −36.9187 −1.56994
\(554\) 2.88565 0.122599
\(555\) −5.41708 −0.229942
\(556\) 19.8405 0.841423
\(557\) 11.4954 0.487076 0.243538 0.969891i \(-0.421692\pi\)
0.243538 + 0.969891i \(0.421692\pi\)
\(558\) 1.27072 0.0537939
\(559\) 14.7078 0.622072
\(560\) 8.68955 0.367200
\(561\) 0 0
\(562\) 3.74614 0.158021
\(563\) 13.5441 0.570817 0.285409 0.958406i \(-0.407871\pi\)
0.285409 + 0.958406i \(0.407871\pi\)
\(564\) −4.66086 −0.196258
\(565\) −14.9610 −0.629415
\(566\) 5.08141 0.213587
\(567\) −0.340234 −0.0142885
\(568\) 0.283933 0.0119136
\(569\) 15.8764 0.665574 0.332787 0.943002i \(-0.392011\pi\)
0.332787 + 0.943002i \(0.392011\pi\)
\(570\) −2.28261 −0.0956081
\(571\) −3.54043 −0.148162 −0.0740812 0.997252i \(-0.523602\pi\)
−0.0740812 + 0.997252i \(0.523602\pi\)
\(572\) 26.2063 1.09574
\(573\) −29.1718 −1.21867
\(574\) −9.35092 −0.390300
\(575\) −0.860805 −0.0358981
\(576\) 11.0538 0.460575
\(577\) −18.5078 −0.770492 −0.385246 0.922814i \(-0.625883\pi\)
−0.385246 + 0.922814i \(0.625883\pi\)
\(578\) 0 0
\(579\) 15.6619 0.650887
\(580\) 7.16143 0.297362
\(581\) −34.8828 −1.44718
\(582\) 2.86779 0.118874
\(583\) 6.78585 0.281041
\(584\) 7.61521 0.315120
\(585\) −10.5208 −0.434983
\(586\) −6.29941 −0.260226
\(587\) −13.7261 −0.566535 −0.283268 0.959041i \(-0.591418\pi\)
−0.283268 + 0.959041i \(0.591418\pi\)
\(588\) −1.41926 −0.0585295
\(589\) 16.0258 0.660333
\(590\) −2.24505 −0.0924274
\(591\) −0.399372 −0.0164280
\(592\) −17.6765 −0.726499
\(593\) 20.3238 0.834598 0.417299 0.908769i \(-0.362977\pi\)
0.417299 + 0.908769i \(0.362977\pi\)
\(594\) 3.81563 0.156557
\(595\) 0 0
\(596\) 11.4876 0.470550
\(597\) 7.98948 0.326988
\(598\) 1.45775 0.0596119
\(599\) −26.7277 −1.09206 −0.546032 0.837764i \(-0.683862\pi\)
−0.546032 + 0.837764i \(0.683862\pi\)
\(600\) 1.25124 0.0510817
\(601\) −27.6591 −1.12824 −0.564119 0.825693i \(-0.690784\pi\)
−0.564119 + 0.825693i \(0.690784\pi\)
\(602\) 1.98393 0.0808588
\(603\) −12.5554 −0.511295
\(604\) 19.8883 0.809245
\(605\) 5.01917 0.204058
\(606\) 4.89367 0.198792
\(607\) 23.6186 0.958649 0.479325 0.877638i \(-0.340882\pi\)
0.479325 + 0.877638i \(0.340882\pi\)
\(608\) −24.2676 −0.984180
\(609\) 9.98997 0.404814
\(610\) −0.273416 −0.0110703
\(611\) 12.9171 0.522570
\(612\) 0 0
\(613\) 12.0396 0.486275 0.243137 0.969992i \(-0.421823\pi\)
0.243137 + 0.969992i \(0.421823\pi\)
\(614\) −9.03639 −0.364679
\(615\) 13.1031 0.528367
\(616\) 7.23847 0.291646
\(617\) 15.5478 0.625931 0.312966 0.949764i \(-0.398678\pi\)
0.312966 + 0.949764i \(0.398678\pi\)
\(618\) 4.72927 0.190239
\(619\) 33.4929 1.34619 0.673097 0.739554i \(-0.264964\pi\)
0.673097 + 0.739554i \(0.264964\pi\)
\(620\) −4.29011 −0.172295
\(621\) −4.45178 −0.178644
\(622\) 0.0634518 0.00254419
\(623\) 0.991795 0.0397354
\(624\) 20.6203 0.825473
\(625\) 1.00000 0.0400000
\(626\) −9.78196 −0.390966
\(627\) 18.5036 0.738963
\(628\) −25.5942 −1.02132
\(629\) 0 0
\(630\) −1.41915 −0.0565404
\(631\) −0.544614 −0.0216807 −0.0108404 0.999941i \(-0.503451\pi\)
−0.0108404 + 0.999941i \(0.503451\pi\)
\(632\) −17.3469 −0.690021
\(633\) −9.22284 −0.366575
\(634\) −10.0881 −0.400651
\(635\) 5.95484 0.236310
\(636\) 5.62014 0.222853
\(637\) 3.93335 0.155845
\(638\) 2.76780 0.109578
\(639\) 0.451256 0.0178514
\(640\) 8.58542 0.339368
\(641\) −12.4241 −0.490723 −0.245361 0.969432i \(-0.578907\pi\)
−0.245361 + 0.969432i \(0.578907\pi\)
\(642\) −0.470786 −0.0185805
\(643\) 38.3641 1.51293 0.756467 0.654032i \(-0.226924\pi\)
0.756467 + 0.654032i \(0.226924\pi\)
\(644\) −4.12433 −0.162521
\(645\) −2.78000 −0.109462
\(646\) 0 0
\(647\) 19.6602 0.772923 0.386462 0.922305i \(-0.373697\pi\)
0.386462 + 0.922305i \(0.373697\pi\)
\(648\) −0.159865 −0.00628008
\(649\) 18.1992 0.714379
\(650\) −1.69348 −0.0664236
\(651\) −5.98457 −0.234554
\(652\) 3.00691 0.117760
\(653\) 31.1272 1.21810 0.609051 0.793131i \(-0.291551\pi\)
0.609051 + 0.793131i \(0.291551\pi\)
\(654\) −3.02095 −0.118129
\(655\) −4.18730 −0.163611
\(656\) 42.7566 1.66937
\(657\) 12.1029 0.472179
\(658\) 1.74239 0.0679253
\(659\) −4.15956 −0.162033 −0.0810167 0.996713i \(-0.525817\pi\)
−0.0810167 + 0.996713i \(0.525817\pi\)
\(660\) −4.95341 −0.192811
\(661\) −6.86044 −0.266840 −0.133420 0.991060i \(-0.542596\pi\)
−0.133420 + 0.991060i \(0.542596\pi\)
\(662\) −0.267095 −0.0103810
\(663\) 0 0
\(664\) −16.3903 −0.636066
\(665\) −17.8978 −0.694048
\(666\) 2.88688 0.111864
\(667\) −3.22925 −0.125037
\(668\) 33.6075 1.30031
\(669\) −6.85744 −0.265124
\(670\) −2.02097 −0.0780767
\(671\) 2.21640 0.0855632
\(672\) 9.06230 0.349586
\(673\) 17.2806 0.666116 0.333058 0.942906i \(-0.391919\pi\)
0.333058 + 0.942906i \(0.391919\pi\)
\(674\) 5.17589 0.199368
\(675\) 5.17165 0.199057
\(676\) −35.3348 −1.35903
\(677\) 8.13384 0.312609 0.156304 0.987709i \(-0.450042\pi\)
0.156304 + 0.987709i \(0.450042\pi\)
\(678\) −4.78894 −0.183918
\(679\) 22.4862 0.862942
\(680\) 0 0
\(681\) 3.24734 0.124438
\(682\) −1.65807 −0.0634908
\(683\) 29.1370 1.11489 0.557447 0.830212i \(-0.311781\pi\)
0.557447 + 0.830212i \(0.311781\pi\)
\(684\) −25.5143 −0.975566
\(685\) −7.25998 −0.277390
\(686\) 5.83086 0.222623
\(687\) 8.02044 0.305999
\(688\) −9.07142 −0.345845
\(689\) −15.5756 −0.593385
\(690\) −0.275538 −0.0104896
\(691\) 37.3851 1.42219 0.711097 0.703093i \(-0.248198\pi\)
0.711097 + 0.703093i \(0.248198\pi\)
\(692\) −35.9708 −1.36741
\(693\) 11.5041 0.437006
\(694\) 9.32517 0.353979
\(695\) 10.3932 0.394237
\(696\) 4.69395 0.177924
\(697\) 0 0
\(698\) 1.01720 0.0385015
\(699\) 23.7114 0.896846
\(700\) 4.79124 0.181092
\(701\) 14.6423 0.553031 0.276515 0.961009i \(-0.410820\pi\)
0.276515 + 0.961009i \(0.410820\pi\)
\(702\) −8.75805 −0.330551
\(703\) 36.4082 1.37316
\(704\) −14.4233 −0.543599
\(705\) −2.44154 −0.0919536
\(706\) 7.17767 0.270135
\(707\) 38.3710 1.44309
\(708\) 15.0728 0.566471
\(709\) 28.3593 1.06506 0.532528 0.846413i \(-0.321242\pi\)
0.532528 + 0.846413i \(0.321242\pi\)
\(710\) 0.0726360 0.00272598
\(711\) −27.5694 −1.03393
\(712\) 0.466011 0.0174645
\(713\) 1.93451 0.0724480
\(714\) 0 0
\(715\) 13.7279 0.513393
\(716\) −6.32608 −0.236417
\(717\) 3.67091 0.137093
\(718\) 9.56736 0.357051
\(719\) −12.6354 −0.471222 −0.235611 0.971848i \(-0.575709\pi\)
−0.235611 + 0.971848i \(0.575709\pi\)
\(720\) 6.48902 0.241831
\(721\) 37.0819 1.38100
\(722\) 9.60936 0.357624
\(723\) −19.1261 −0.711306
\(724\) 30.2863 1.12558
\(725\) 3.75143 0.139325
\(726\) 1.60661 0.0596268
\(727\) −15.0242 −0.557218 −0.278609 0.960405i \(-0.589873\pi\)
−0.278609 + 0.960405i \(0.589873\pi\)
\(728\) −16.6145 −0.615776
\(729\) 16.2075 0.600277
\(730\) 1.94813 0.0721035
\(731\) 0 0
\(732\) 1.83566 0.0678478
\(733\) −1.76679 −0.0652578 −0.0326289 0.999468i \(-0.510388\pi\)
−0.0326289 + 0.999468i \(0.510388\pi\)
\(734\) 1.36268 0.0502974
\(735\) −0.743466 −0.0274231
\(736\) −2.92939 −0.107979
\(737\) 16.3826 0.603461
\(738\) −6.98290 −0.257044
\(739\) 19.7149 0.725225 0.362613 0.931940i \(-0.381885\pi\)
0.362613 + 0.931940i \(0.381885\pi\)
\(740\) −9.74646 −0.358287
\(741\) −42.4715 −1.56023
\(742\) −2.10100 −0.0771301
\(743\) 28.3615 1.04048 0.520242 0.854019i \(-0.325842\pi\)
0.520242 + 0.854019i \(0.325842\pi\)
\(744\) −2.81195 −0.103091
\(745\) 6.01765 0.220470
\(746\) 1.54689 0.0566357
\(747\) −26.0491 −0.953087
\(748\) 0 0
\(749\) −3.69141 −0.134881
\(750\) 0.320094 0.0116882
\(751\) −17.9518 −0.655072 −0.327536 0.944839i \(-0.606218\pi\)
−0.327536 + 0.944839i \(0.606218\pi\)
\(752\) −7.96698 −0.290526
\(753\) −25.5150 −0.929819
\(754\) −6.35296 −0.231361
\(755\) 10.4183 0.379160
\(756\) 24.7786 0.901190
\(757\) −43.9323 −1.59675 −0.798374 0.602162i \(-0.794306\pi\)
−0.798374 + 0.602162i \(0.794306\pi\)
\(758\) 1.66837 0.0605978
\(759\) 2.23361 0.0810748
\(760\) −8.40959 −0.305048
\(761\) 13.2781 0.481331 0.240666 0.970608i \(-0.422634\pi\)
0.240666 + 0.970608i \(0.422634\pi\)
\(762\) 1.90611 0.0690510
\(763\) −23.6871 −0.857532
\(764\) −52.4861 −1.89888
\(765\) 0 0
\(766\) 6.16480 0.222743
\(767\) −41.7728 −1.50833
\(768\) −9.76700 −0.352436
\(769\) 24.8906 0.897578 0.448789 0.893638i \(-0.351856\pi\)
0.448789 + 0.893638i \(0.351856\pi\)
\(770\) 1.85175 0.0667325
\(771\) 15.7048 0.565593
\(772\) 28.1790 1.01419
\(773\) 53.7048 1.93163 0.965813 0.259238i \(-0.0834715\pi\)
0.965813 + 0.259238i \(0.0834715\pi\)
\(774\) 1.48152 0.0532521
\(775\) −2.24733 −0.0807264
\(776\) 10.5655 0.379280
\(777\) −13.5960 −0.487754
\(778\) 1.56463 0.0560949
\(779\) −88.0657 −3.15528
\(780\) 11.3696 0.407098
\(781\) −0.588811 −0.0210693
\(782\) 0 0
\(783\) 19.4011 0.693339
\(784\) −2.42600 −0.0866429
\(785\) −13.4073 −0.478525
\(786\) −1.34033 −0.0478079
\(787\) 51.4777 1.83498 0.917491 0.397757i \(-0.130211\pi\)
0.917491 + 0.397757i \(0.130211\pi\)
\(788\) −0.718554 −0.0255974
\(789\) 26.0122 0.926058
\(790\) −4.43769 −0.157886
\(791\) −37.5498 −1.33512
\(792\) 5.40541 0.192073
\(793\) −5.08733 −0.180656
\(794\) 1.86247 0.0660967
\(795\) 2.94405 0.104415
\(796\) 14.3747 0.509499
\(797\) −18.9183 −0.670119 −0.335059 0.942197i \(-0.608756\pi\)
−0.335059 + 0.942197i \(0.608756\pi\)
\(798\) −5.72898 −0.202804
\(799\) 0 0
\(800\) 3.40308 0.120317
\(801\) 0.740634 0.0261690
\(802\) 2.86495 0.101165
\(803\) −15.7922 −0.557294
\(804\) 13.5683 0.478518
\(805\) −2.16048 −0.0761470
\(806\) 3.80579 0.134053
\(807\) −6.99705 −0.246308
\(808\) 18.0293 0.634267
\(809\) −30.2347 −1.06300 −0.531498 0.847059i \(-0.678371\pi\)
−0.531498 + 0.847059i \(0.678371\pi\)
\(810\) −0.0408968 −0.00143697
\(811\) 17.1714 0.602969 0.301484 0.953471i \(-0.402518\pi\)
0.301484 + 0.953471i \(0.402518\pi\)
\(812\) 17.9740 0.630765
\(813\) −27.7939 −0.974773
\(814\) −3.76688 −0.132029
\(815\) 1.57513 0.0551745
\(816\) 0 0
\(817\) 18.6844 0.653683
\(818\) 4.34084 0.151774
\(819\) −26.4056 −0.922686
\(820\) 23.5752 0.823280
\(821\) −43.7843 −1.52808 −0.764041 0.645168i \(-0.776787\pi\)
−0.764041 + 0.645168i \(0.776787\pi\)
\(822\) −2.32388 −0.0810545
\(823\) 25.2696 0.880842 0.440421 0.897791i \(-0.354829\pi\)
0.440421 + 0.897791i \(0.354829\pi\)
\(824\) 17.4236 0.606979
\(825\) −2.59479 −0.0903389
\(826\) −5.63472 −0.196057
\(827\) −22.0678 −0.767371 −0.383686 0.923464i \(-0.625345\pi\)
−0.383686 + 0.923464i \(0.625345\pi\)
\(828\) −3.07989 −0.107033
\(829\) −20.9555 −0.727816 −0.363908 0.931435i \(-0.618558\pi\)
−0.363908 + 0.931435i \(0.618558\pi\)
\(830\) −4.19297 −0.145540
\(831\) −10.1486 −0.352052
\(832\) 33.1060 1.14774
\(833\) 0 0
\(834\) 3.32680 0.115198
\(835\) 17.6049 0.609243
\(836\) 33.2918 1.15142
\(837\) −11.6224 −0.401728
\(838\) 6.40279 0.221181
\(839\) −20.2251 −0.698247 −0.349123 0.937077i \(-0.613521\pi\)
−0.349123 + 0.937077i \(0.613521\pi\)
\(840\) 3.14042 0.108355
\(841\) −14.9267 −0.514715
\(842\) −6.08417 −0.209674
\(843\) −13.1749 −0.453769
\(844\) −16.5938 −0.571182
\(845\) −18.5098 −0.636755
\(846\) 1.30115 0.0447343
\(847\) 12.5973 0.432849
\(848\) 9.60672 0.329896
\(849\) −17.8710 −0.613331
\(850\) 0 0
\(851\) 4.39490 0.150655
\(852\) −0.487662 −0.0167070
\(853\) −11.4942 −0.393553 −0.196776 0.980448i \(-0.563047\pi\)
−0.196776 + 0.980448i \(0.563047\pi\)
\(854\) −0.686230 −0.0234823
\(855\) −13.3654 −0.457087
\(856\) −1.73447 −0.0592830
\(857\) −28.0863 −0.959411 −0.479705 0.877430i \(-0.659256\pi\)
−0.479705 + 0.877430i \(0.659256\pi\)
\(858\) 4.39421 0.150016
\(859\) −3.15015 −0.107482 −0.0537409 0.998555i \(-0.517115\pi\)
−0.0537409 + 0.998555i \(0.517115\pi\)
\(860\) −5.00180 −0.170560
\(861\) 32.8866 1.12077
\(862\) 6.02425 0.205187
\(863\) −34.5368 −1.17565 −0.587823 0.808989i \(-0.700015\pi\)
−0.587823 + 0.808989i \(0.700015\pi\)
\(864\) 17.5995 0.598747
\(865\) −18.8429 −0.640678
\(866\) −5.49781 −0.186823
\(867\) 0 0
\(868\) −10.7675 −0.365473
\(869\) 35.9734 1.22031
\(870\) 1.20081 0.0407113
\(871\) −37.6032 −1.27414
\(872\) −11.1298 −0.376902
\(873\) 16.7918 0.568317
\(874\) 1.85189 0.0626412
\(875\) 2.50984 0.0848480
\(876\) −13.0793 −0.441909
\(877\) 15.8248 0.534367 0.267184 0.963646i \(-0.413907\pi\)
0.267184 + 0.963646i \(0.413907\pi\)
\(878\) 4.44481 0.150005
\(879\) 22.1546 0.747257
\(880\) −8.46705 −0.285424
\(881\) 31.5651 1.06346 0.531728 0.846915i \(-0.321543\pi\)
0.531728 + 0.846915i \(0.321543\pi\)
\(882\) 0.396208 0.0133410
\(883\) 20.2779 0.682406 0.341203 0.939990i \(-0.389166\pi\)
0.341203 + 0.939990i \(0.389166\pi\)
\(884\) 0 0
\(885\) 7.89572 0.265412
\(886\) −7.03942 −0.236494
\(887\) −48.8392 −1.63986 −0.819930 0.572465i \(-0.805987\pi\)
−0.819930 + 0.572465i \(0.805987\pi\)
\(888\) −6.38831 −0.214378
\(889\) 14.9457 0.501262
\(890\) 0.119215 0.00399611
\(891\) 0.331523 0.0111064
\(892\) −12.3380 −0.413106
\(893\) 16.4096 0.549125
\(894\) 1.92621 0.0644222
\(895\) −3.31384 −0.110770
\(896\) 21.5480 0.719869
\(897\) −5.12682 −0.171180
\(898\) −0.516374 −0.0172316
\(899\) −8.43070 −0.281180
\(900\) 3.57791 0.119264
\(901\) 0 0
\(902\) 9.11148 0.303379
\(903\) −6.97735 −0.232192
\(904\) −17.6434 −0.586810
\(905\) 15.8652 0.527375
\(906\) 3.33483 0.110792
\(907\) 41.7064 1.38484 0.692419 0.721495i \(-0.256545\pi\)
0.692419 + 0.721495i \(0.256545\pi\)
\(908\) 5.84265 0.193895
\(909\) 28.6540 0.950393
\(910\) −4.25035 −0.140898
\(911\) −6.40146 −0.212090 −0.106045 0.994361i \(-0.533819\pi\)
−0.106045 + 0.994361i \(0.533819\pi\)
\(912\) 26.1955 0.867420
\(913\) 33.9896 1.12489
\(914\) −3.98735 −0.131890
\(915\) 0.961587 0.0317891
\(916\) 14.4305 0.476796
\(917\) −10.5094 −0.347052
\(918\) 0 0
\(919\) −23.6812 −0.781170 −0.390585 0.920567i \(-0.627727\pi\)
−0.390585 + 0.920567i \(0.627727\pi\)
\(920\) −1.01514 −0.0334681
\(921\) 31.7804 1.04720
\(922\) −8.83658 −0.291017
\(923\) 1.35151 0.0444854
\(924\) −12.4323 −0.408991
\(925\) −5.10557 −0.167870
\(926\) 2.95765 0.0971944
\(927\) 27.6914 0.909503
\(928\) 12.7664 0.419078
\(929\) 54.8951 1.80105 0.900524 0.434805i \(-0.143183\pi\)
0.900524 + 0.434805i \(0.143183\pi\)
\(930\) −0.719356 −0.0235886
\(931\) 4.99683 0.163764
\(932\) 42.6617 1.39743
\(933\) −0.223156 −0.00730580
\(934\) 4.12766 0.135061
\(935\) 0 0
\(936\) −12.4071 −0.405539
\(937\) 6.77360 0.221284 0.110642 0.993860i \(-0.464709\pi\)
0.110642 + 0.993860i \(0.464709\pi\)
\(938\) −5.07230 −0.165616
\(939\) 34.4025 1.12268
\(940\) −4.39284 −0.143278
\(941\) 25.2189 0.822111 0.411056 0.911610i \(-0.365160\pi\)
0.411056 + 0.911610i \(0.365160\pi\)
\(942\) −4.29158 −0.139827
\(943\) −10.6306 −0.346179
\(944\) 25.7645 0.838564
\(945\) 12.9800 0.422239
\(946\) −1.93313 −0.0628514
\(947\) −24.5012 −0.796183 −0.398091 0.917346i \(-0.630327\pi\)
−0.398091 + 0.917346i \(0.630327\pi\)
\(948\) 29.7937 0.967654
\(949\) 36.2480 1.17666
\(950\) −2.15135 −0.0697990
\(951\) 35.4793 1.15050
\(952\) 0 0
\(953\) 30.3936 0.984545 0.492272 0.870441i \(-0.336166\pi\)
0.492272 + 0.870441i \(0.336166\pi\)
\(954\) −1.56894 −0.0507964
\(955\) −27.4943 −0.889693
\(956\) 6.60473 0.213612
\(957\) −9.73417 −0.314661
\(958\) 3.32157 0.107315
\(959\) −18.2214 −0.588399
\(960\) −6.25757 −0.201962
\(961\) −25.9495 −0.837081
\(962\) 8.64616 0.278763
\(963\) −2.75660 −0.0888302
\(964\) −34.4118 −1.10833
\(965\) 14.7613 0.475182
\(966\) −0.691557 −0.0222505
\(967\) 43.9516 1.41339 0.706694 0.707520i \(-0.250186\pi\)
0.706694 + 0.707520i \(0.250186\pi\)
\(968\) 5.91906 0.190246
\(969\) 0 0
\(970\) 2.70288 0.0867843
\(971\) 42.3938 1.36048 0.680241 0.732989i \(-0.261875\pi\)
0.680241 + 0.732989i \(0.261875\pi\)
\(972\) 29.8924 0.958798
\(973\) 26.0853 0.836255
\(974\) 3.04530 0.0975776
\(975\) 5.95585 0.190740
\(976\) 3.13775 0.100437
\(977\) −23.7293 −0.759168 −0.379584 0.925157i \(-0.623933\pi\)
−0.379584 + 0.925157i \(0.623933\pi\)
\(978\) 0.504191 0.0161222
\(979\) −0.966400 −0.0308863
\(980\) −1.33765 −0.0427296
\(981\) −17.6886 −0.564754
\(982\) 5.15363 0.164459
\(983\) −28.0626 −0.895057 −0.447529 0.894270i \(-0.647696\pi\)
−0.447529 + 0.894270i \(0.647696\pi\)
\(984\) 15.4523 0.492602
\(985\) −0.376406 −0.0119933
\(986\) 0 0
\(987\) −6.12786 −0.195052
\(988\) −76.4152 −2.43109
\(989\) 2.25543 0.0717184
\(990\) 1.38282 0.0439488
\(991\) 44.5466 1.41507 0.707535 0.706679i \(-0.249807\pi\)
0.707535 + 0.706679i \(0.249807\pi\)
\(992\) −7.64783 −0.242819
\(993\) 0.939358 0.0298096
\(994\) 0.182305 0.00578235
\(995\) 7.53004 0.238718
\(996\) 28.1507 0.891989
\(997\) −20.5479 −0.650757 −0.325379 0.945584i \(-0.605492\pi\)
−0.325379 + 0.945584i \(0.605492\pi\)
\(998\) 9.46074 0.299474
\(999\) −26.4042 −0.835392
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.q.1.7 12
5.4 even 2 7225.2.a.bq.1.6 12
17.4 even 4 1445.2.d.j.866.12 24
17.11 odd 16 85.2.l.a.36.4 yes 24
17.13 even 4 1445.2.d.j.866.11 24
17.14 odd 16 85.2.l.a.26.4 24
17.16 even 2 1445.2.a.p.1.7 12
51.11 even 16 765.2.be.b.631.3 24
51.14 even 16 765.2.be.b.451.3 24
85.14 odd 16 425.2.m.b.26.3 24
85.28 even 16 425.2.n.f.274.4 24
85.48 even 16 425.2.n.c.349.3 24
85.62 even 16 425.2.n.c.274.3 24
85.79 odd 16 425.2.m.b.376.3 24
85.82 even 16 425.2.n.f.349.4 24
85.84 even 2 7225.2.a.bs.1.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.4 24 17.14 odd 16
85.2.l.a.36.4 yes 24 17.11 odd 16
425.2.m.b.26.3 24 85.14 odd 16
425.2.m.b.376.3 24 85.79 odd 16
425.2.n.c.274.3 24 85.62 even 16
425.2.n.c.349.3 24 85.48 even 16
425.2.n.f.274.4 24 85.28 even 16
425.2.n.f.349.4 24 85.82 even 16
765.2.be.b.451.3 24 51.14 even 16
765.2.be.b.631.3 24 51.11 even 16
1445.2.a.p.1.7 12 17.16 even 2
1445.2.a.q.1.7 12 1.1 even 1 trivial
1445.2.d.j.866.11 24 17.13 even 4
1445.2.d.j.866.12 24 17.4 even 4
7225.2.a.bq.1.6 12 5.4 even 2
7225.2.a.bs.1.6 12 85.84 even 2