Properties

Label 1445.2.a.p.1.9
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(1,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-4,-8,12,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-0.747914\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.747914 q^{2} -3.07503 q^{3} -1.44062 q^{4} +1.00000 q^{5} -2.29986 q^{6} -3.23262 q^{7} -2.57329 q^{8} +6.45581 q^{9} +0.747914 q^{10} +2.73509 q^{11} +4.42996 q^{12} +4.31833 q^{13} -2.41772 q^{14} -3.07503 q^{15} +0.956646 q^{16} +4.82839 q^{18} +1.26892 q^{19} -1.44062 q^{20} +9.94040 q^{21} +2.04561 q^{22} +0.492367 q^{23} +7.91295 q^{24} +1.00000 q^{25} +3.22974 q^{26} -10.6267 q^{27} +4.65699 q^{28} -0.444360 q^{29} -2.29986 q^{30} -5.52836 q^{31} +5.86207 q^{32} -8.41047 q^{33} -3.23262 q^{35} -9.30039 q^{36} -10.6999 q^{37} +0.949042 q^{38} -13.2790 q^{39} -2.57329 q^{40} +2.17048 q^{41} +7.43457 q^{42} -2.16182 q^{43} -3.94023 q^{44} +6.45581 q^{45} +0.368248 q^{46} -8.39597 q^{47} -2.94172 q^{48} +3.44983 q^{49} +0.747914 q^{50} -6.22109 q^{52} -1.81698 q^{53} -7.94786 q^{54} +2.73509 q^{55} +8.31847 q^{56} -3.90196 q^{57} -0.332343 q^{58} -3.01987 q^{59} +4.42996 q^{60} +12.2233 q^{61} -4.13474 q^{62} -20.8692 q^{63} +2.47104 q^{64} +4.31833 q^{65} -6.29031 q^{66} +4.21389 q^{67} -1.51404 q^{69} -2.41772 q^{70} +3.89165 q^{71} -16.6127 q^{72} +6.47062 q^{73} -8.00263 q^{74} -3.07503 q^{75} -1.82803 q^{76} -8.84149 q^{77} -9.93155 q^{78} -7.22150 q^{79} +0.956646 q^{80} +13.3100 q^{81} +1.62333 q^{82} +0.227499 q^{83} -14.3204 q^{84} -1.61686 q^{86} +1.36642 q^{87} -7.03818 q^{88} -13.3408 q^{89} +4.82839 q^{90} -13.9595 q^{91} -0.709315 q^{92} +16.9999 q^{93} -6.27946 q^{94} +1.26892 q^{95} -18.0260 q^{96} -14.8075 q^{97} +2.58018 q^{98} +17.6572 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} - 8 q^{3} + 12 q^{4} + 12 q^{5} - 8 q^{6} - 16 q^{7} - 12 q^{8} + 12 q^{9} - 4 q^{10} - 16 q^{11} - 16 q^{12} - 8 q^{13} + 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} + 12 q^{20} + 16 q^{21}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.747914 0.528855 0.264428 0.964406i \(-0.414817\pi\)
0.264428 + 0.964406i \(0.414817\pi\)
\(3\) −3.07503 −1.77537 −0.887684 0.460452i \(-0.847687\pi\)
−0.887684 + 0.460452i \(0.847687\pi\)
\(4\) −1.44062 −0.720312
\(5\) 1.00000 0.447214
\(6\) −2.29986 −0.938913
\(7\) −3.23262 −1.22182 −0.610908 0.791702i \(-0.709195\pi\)
−0.610908 + 0.791702i \(0.709195\pi\)
\(8\) −2.57329 −0.909796
\(9\) 6.45581 2.15194
\(10\) 0.747914 0.236511
\(11\) 2.73509 0.824660 0.412330 0.911035i \(-0.364715\pi\)
0.412330 + 0.911035i \(0.364715\pi\)
\(12\) 4.42996 1.27882
\(13\) 4.31833 1.19769 0.598845 0.800865i \(-0.295627\pi\)
0.598845 + 0.800865i \(0.295627\pi\)
\(14\) −2.41772 −0.646164
\(15\) −3.07503 −0.793969
\(16\) 0.956646 0.239162
\(17\) 0 0
\(18\) 4.82839 1.13806
\(19\) 1.26892 0.291110 0.145555 0.989350i \(-0.453503\pi\)
0.145555 + 0.989350i \(0.453503\pi\)
\(20\) −1.44062 −0.322133
\(21\) 9.94040 2.16917
\(22\) 2.04561 0.436126
\(23\) 0.492367 0.102666 0.0513328 0.998682i \(-0.483653\pi\)
0.0513328 + 0.998682i \(0.483653\pi\)
\(24\) 7.91295 1.61522
\(25\) 1.00000 0.200000
\(26\) 3.22974 0.633404
\(27\) −10.6267 −2.04511
\(28\) 4.65699 0.880088
\(29\) −0.444360 −0.0825156 −0.0412578 0.999149i \(-0.513137\pi\)
−0.0412578 + 0.999149i \(0.513137\pi\)
\(30\) −2.29986 −0.419895
\(31\) −5.52836 −0.992923 −0.496462 0.868059i \(-0.665368\pi\)
−0.496462 + 0.868059i \(0.665368\pi\)
\(32\) 5.86207 1.03628
\(33\) −8.41047 −1.46408
\(34\) 0 0
\(35\) −3.23262 −0.546412
\(36\) −9.30039 −1.55006
\(37\) −10.6999 −1.75906 −0.879529 0.475845i \(-0.842142\pi\)
−0.879529 + 0.475845i \(0.842142\pi\)
\(38\) 0.949042 0.153955
\(39\) −13.2790 −2.12634
\(40\) −2.57329 −0.406873
\(41\) 2.17048 0.338972 0.169486 0.985533i \(-0.445789\pi\)
0.169486 + 0.985533i \(0.445789\pi\)
\(42\) 7.43457 1.14718
\(43\) −2.16182 −0.329675 −0.164837 0.986321i \(-0.552710\pi\)
−0.164837 + 0.986321i \(0.552710\pi\)
\(44\) −3.94023 −0.594012
\(45\) 6.45581 0.962375
\(46\) 0.368248 0.0542952
\(47\) −8.39597 −1.22468 −0.612339 0.790595i \(-0.709771\pi\)
−0.612339 + 0.790595i \(0.709771\pi\)
\(48\) −2.94172 −0.424600
\(49\) 3.44983 0.492833
\(50\) 0.747914 0.105771
\(51\) 0 0
\(52\) −6.22109 −0.862710
\(53\) −1.81698 −0.249581 −0.124791 0.992183i \(-0.539826\pi\)
−0.124791 + 0.992183i \(0.539826\pi\)
\(54\) −7.94786 −1.08157
\(55\) 2.73509 0.368799
\(56\) 8.31847 1.11160
\(57\) −3.90196 −0.516827
\(58\) −0.332343 −0.0436388
\(59\) −3.01987 −0.393153 −0.196577 0.980488i \(-0.562982\pi\)
−0.196577 + 0.980488i \(0.562982\pi\)
\(60\) 4.42996 0.571906
\(61\) 12.2233 1.56503 0.782514 0.622633i \(-0.213937\pi\)
0.782514 + 0.622633i \(0.213937\pi\)
\(62\) −4.13474 −0.525113
\(63\) −20.8692 −2.62927
\(64\) 2.47104 0.308880
\(65\) 4.31833 0.535623
\(66\) −6.29031 −0.774284
\(67\) 4.21389 0.514808 0.257404 0.966304i \(-0.417133\pi\)
0.257404 + 0.966304i \(0.417133\pi\)
\(68\) 0 0
\(69\) −1.51404 −0.182269
\(70\) −2.41772 −0.288973
\(71\) 3.89165 0.461854 0.230927 0.972971i \(-0.425824\pi\)
0.230927 + 0.972971i \(0.425824\pi\)
\(72\) −16.6127 −1.95782
\(73\) 6.47062 0.757329 0.378664 0.925534i \(-0.376383\pi\)
0.378664 + 0.925534i \(0.376383\pi\)
\(74\) −8.00263 −0.930287
\(75\) −3.07503 −0.355074
\(76\) −1.82803 −0.209690
\(77\) −8.84149 −1.00758
\(78\) −9.93155 −1.12453
\(79\) −7.22150 −0.812482 −0.406241 0.913766i \(-0.633161\pi\)
−0.406241 + 0.913766i \(0.633161\pi\)
\(80\) 0.956646 0.106956
\(81\) 13.3100 1.47889
\(82\) 1.62333 0.179267
\(83\) 0.227499 0.0249713 0.0124856 0.999922i \(-0.496026\pi\)
0.0124856 + 0.999922i \(0.496026\pi\)
\(84\) −14.3204 −1.56248
\(85\) 0 0
\(86\) −1.61686 −0.174350
\(87\) 1.36642 0.146496
\(88\) −7.03818 −0.750272
\(89\) −13.3408 −1.41413 −0.707064 0.707150i \(-0.749981\pi\)
−0.707064 + 0.707150i \(0.749981\pi\)
\(90\) 4.82839 0.508957
\(91\) −13.9595 −1.46336
\(92\) −0.709315 −0.0739512
\(93\) 16.9999 1.76281
\(94\) −6.27946 −0.647677
\(95\) 1.26892 0.130188
\(96\) −18.0260 −1.83978
\(97\) −14.8075 −1.50347 −0.751734 0.659466i \(-0.770782\pi\)
−0.751734 + 0.659466i \(0.770782\pi\)
\(98\) 2.58018 0.260637
\(99\) 17.6572 1.77461
\(100\) −1.44062 −0.144062
\(101\) 0.284213 0.0282803 0.0141401 0.999900i \(-0.495499\pi\)
0.0141401 + 0.999900i \(0.495499\pi\)
\(102\) 0 0
\(103\) −14.0842 −1.38775 −0.693877 0.720093i \(-0.744099\pi\)
−0.693877 + 0.720093i \(0.744099\pi\)
\(104\) −11.1123 −1.08965
\(105\) 9.94040 0.970084
\(106\) −1.35894 −0.131992
\(107\) −18.7099 −1.80875 −0.904375 0.426738i \(-0.859663\pi\)
−0.904375 + 0.426738i \(0.859663\pi\)
\(108\) 15.3091 1.47312
\(109\) 3.53078 0.338187 0.169094 0.985600i \(-0.445916\pi\)
0.169094 + 0.985600i \(0.445916\pi\)
\(110\) 2.04561 0.195041
\(111\) 32.9026 3.12298
\(112\) −3.09247 −0.292211
\(113\) 2.84155 0.267310 0.133655 0.991028i \(-0.457329\pi\)
0.133655 + 0.991028i \(0.457329\pi\)
\(114\) −2.91833 −0.273327
\(115\) 0.492367 0.0459134
\(116\) 0.640156 0.0594370
\(117\) 27.8783 2.57735
\(118\) −2.25860 −0.207921
\(119\) 0 0
\(120\) 7.91295 0.722350
\(121\) −3.51930 −0.319937
\(122\) 9.14195 0.827673
\(123\) −6.67430 −0.601801
\(124\) 7.96429 0.715215
\(125\) 1.00000 0.0894427
\(126\) −15.6083 −1.39050
\(127\) 5.46515 0.484954 0.242477 0.970157i \(-0.422040\pi\)
0.242477 + 0.970157i \(0.422040\pi\)
\(128\) −9.87602 −0.872925
\(129\) 6.64767 0.585295
\(130\) 3.22974 0.283267
\(131\) 9.97951 0.871914 0.435957 0.899968i \(-0.356410\pi\)
0.435957 + 0.899968i \(0.356410\pi\)
\(132\) 12.1163 1.05459
\(133\) −4.10193 −0.355682
\(134\) 3.15163 0.272259
\(135\) −10.6267 −0.914601
\(136\) 0 0
\(137\) −3.07772 −0.262947 −0.131474 0.991320i \(-0.541971\pi\)
−0.131474 + 0.991320i \(0.541971\pi\)
\(138\) −1.13237 −0.0963941
\(139\) 6.70991 0.569127 0.284564 0.958657i \(-0.408151\pi\)
0.284564 + 0.958657i \(0.408151\pi\)
\(140\) 4.65699 0.393587
\(141\) 25.8178 2.17425
\(142\) 2.91062 0.244254
\(143\) 11.8110 0.987686
\(144\) 6.17592 0.514660
\(145\) −0.444360 −0.0369021
\(146\) 4.83947 0.400517
\(147\) −10.6083 −0.874960
\(148\) 15.4146 1.26707
\(149\) −22.9914 −1.88353 −0.941764 0.336276i \(-0.890833\pi\)
−0.941764 + 0.336276i \(0.890833\pi\)
\(150\) −2.29986 −0.187783
\(151\) 0.195743 0.0159294 0.00796468 0.999968i \(-0.497465\pi\)
0.00796468 + 0.999968i \(0.497465\pi\)
\(152\) −3.26530 −0.264850
\(153\) 0 0
\(154\) −6.61268 −0.532865
\(155\) −5.52836 −0.444049
\(156\) 19.1300 1.53163
\(157\) 11.8582 0.946391 0.473196 0.880957i \(-0.343100\pi\)
0.473196 + 0.880957i \(0.343100\pi\)
\(158\) −5.40106 −0.429685
\(159\) 5.58726 0.443099
\(160\) 5.86207 0.463438
\(161\) −1.59163 −0.125438
\(162\) 9.95474 0.782118
\(163\) −5.34472 −0.418631 −0.209315 0.977848i \(-0.567123\pi\)
−0.209315 + 0.977848i \(0.567123\pi\)
\(164\) −3.12685 −0.244166
\(165\) −8.41047 −0.654754
\(166\) 0.170150 0.0132062
\(167\) −11.5900 −0.896859 −0.448429 0.893818i \(-0.648016\pi\)
−0.448429 + 0.893818i \(0.648016\pi\)
\(168\) −25.5796 −1.97351
\(169\) 5.64797 0.434459
\(170\) 0 0
\(171\) 8.19188 0.626449
\(172\) 3.11437 0.237469
\(173\) −11.0271 −0.838373 −0.419187 0.907900i \(-0.637685\pi\)
−0.419187 + 0.907900i \(0.637685\pi\)
\(174\) 1.02197 0.0774750
\(175\) −3.23262 −0.244363
\(176\) 2.61651 0.197227
\(177\) 9.28618 0.697992
\(178\) −9.97781 −0.747869
\(179\) −21.0731 −1.57508 −0.787539 0.616265i \(-0.788645\pi\)
−0.787539 + 0.616265i \(0.788645\pi\)
\(180\) −9.30039 −0.693210
\(181\) 22.6592 1.68425 0.842123 0.539285i \(-0.181305\pi\)
0.842123 + 0.539285i \(0.181305\pi\)
\(182\) −10.4405 −0.773903
\(183\) −37.5869 −2.77850
\(184\) −1.26700 −0.0934047
\(185\) −10.6999 −0.786675
\(186\) 12.7145 0.932269
\(187\) 0 0
\(188\) 12.0954 0.882150
\(189\) 34.3521 2.49875
\(190\) 0.949042 0.0688507
\(191\) −3.50162 −0.253368 −0.126684 0.991943i \(-0.540433\pi\)
−0.126684 + 0.991943i \(0.540433\pi\)
\(192\) −7.59851 −0.548375
\(193\) 12.2942 0.884959 0.442479 0.896779i \(-0.354099\pi\)
0.442479 + 0.896779i \(0.354099\pi\)
\(194\) −11.0747 −0.795117
\(195\) −13.2790 −0.950928
\(196\) −4.96991 −0.354993
\(197\) 16.9757 1.20947 0.604734 0.796427i \(-0.293279\pi\)
0.604734 + 0.796427i \(0.293279\pi\)
\(198\) 13.2061 0.938514
\(199\) 11.5779 0.820735 0.410367 0.911920i \(-0.365400\pi\)
0.410367 + 0.911920i \(0.365400\pi\)
\(200\) −2.57329 −0.181959
\(201\) −12.9578 −0.913975
\(202\) 0.212567 0.0149562
\(203\) 1.43645 0.100819
\(204\) 0 0
\(205\) 2.17048 0.151593
\(206\) −10.5338 −0.733921
\(207\) 3.17862 0.220930
\(208\) 4.13111 0.286441
\(209\) 3.47060 0.240066
\(210\) 7.43457 0.513034
\(211\) −6.66380 −0.458755 −0.229378 0.973338i \(-0.573669\pi\)
−0.229378 + 0.973338i \(0.573669\pi\)
\(212\) 2.61758 0.179776
\(213\) −11.9669 −0.819962
\(214\) −13.9934 −0.956567
\(215\) −2.16182 −0.147435
\(216\) 27.3456 1.86063
\(217\) 17.8711 1.21317
\(218\) 2.64072 0.178852
\(219\) −19.8973 −1.34454
\(220\) −3.94023 −0.265650
\(221\) 0 0
\(222\) 24.6083 1.65160
\(223\) −12.5928 −0.843273 −0.421637 0.906765i \(-0.638544\pi\)
−0.421637 + 0.906765i \(0.638544\pi\)
\(224\) −18.9499 −1.26614
\(225\) 6.45581 0.430387
\(226\) 2.12523 0.141368
\(227\) −8.04265 −0.533809 −0.266905 0.963723i \(-0.586001\pi\)
−0.266905 + 0.963723i \(0.586001\pi\)
\(228\) 5.62126 0.372277
\(229\) −21.6295 −1.42932 −0.714658 0.699474i \(-0.753418\pi\)
−0.714658 + 0.699474i \(0.753418\pi\)
\(230\) 0.368248 0.0242816
\(231\) 27.1879 1.78883
\(232\) 1.14347 0.0750724
\(233\) −21.9506 −1.43803 −0.719014 0.694995i \(-0.755406\pi\)
−0.719014 + 0.694995i \(0.755406\pi\)
\(234\) 20.8506 1.36304
\(235\) −8.39597 −0.547692
\(236\) 4.35050 0.283193
\(237\) 22.2063 1.44246
\(238\) 0 0
\(239\) 5.90132 0.381725 0.190862 0.981617i \(-0.438872\pi\)
0.190862 + 0.981617i \(0.438872\pi\)
\(240\) −2.94172 −0.189887
\(241\) −13.3115 −0.857466 −0.428733 0.903431i \(-0.641040\pi\)
−0.428733 + 0.903431i \(0.641040\pi\)
\(242\) −2.63214 −0.169200
\(243\) −9.04855 −0.580464
\(244\) −17.6091 −1.12731
\(245\) 3.44983 0.220402
\(246\) −4.99180 −0.318266
\(247\) 5.47960 0.348659
\(248\) 14.2261 0.903358
\(249\) −0.699566 −0.0443332
\(250\) 0.747914 0.0473023
\(251\) 3.59367 0.226831 0.113415 0.993548i \(-0.463821\pi\)
0.113415 + 0.993548i \(0.463821\pi\)
\(252\) 30.0646 1.89389
\(253\) 1.34667 0.0846641
\(254\) 4.08746 0.256470
\(255\) 0 0
\(256\) −12.3285 −0.770531
\(257\) 24.5491 1.53133 0.765665 0.643239i \(-0.222410\pi\)
0.765665 + 0.643239i \(0.222410\pi\)
\(258\) 4.97189 0.309536
\(259\) 34.5888 2.14924
\(260\) −6.22109 −0.385816
\(261\) −2.86870 −0.177568
\(262\) 7.46382 0.461116
\(263\) 14.6401 0.902749 0.451375 0.892335i \(-0.350934\pi\)
0.451375 + 0.892335i \(0.350934\pi\)
\(264\) 21.6426 1.33201
\(265\) −1.81698 −0.111616
\(266\) −3.06789 −0.188104
\(267\) 41.0235 2.51060
\(268\) −6.07063 −0.370823
\(269\) −18.7597 −1.14380 −0.571900 0.820323i \(-0.693794\pi\)
−0.571900 + 0.820323i \(0.693794\pi\)
\(270\) −7.94786 −0.483692
\(271\) −5.76388 −0.350131 −0.175065 0.984557i \(-0.556014\pi\)
−0.175065 + 0.984557i \(0.556014\pi\)
\(272\) 0 0
\(273\) 42.9259 2.59800
\(274\) −2.30187 −0.139061
\(275\) 2.73509 0.164932
\(276\) 2.18117 0.131291
\(277\) −0.123252 −0.00740547 −0.00370273 0.999993i \(-0.501179\pi\)
−0.00370273 + 0.999993i \(0.501179\pi\)
\(278\) 5.01844 0.300986
\(279\) −35.6900 −2.13671
\(280\) 8.31847 0.497124
\(281\) 1.82363 0.108789 0.0543944 0.998520i \(-0.482677\pi\)
0.0543944 + 0.998520i \(0.482677\pi\)
\(282\) 19.3095 1.14987
\(283\) 28.6278 1.70174 0.850872 0.525373i \(-0.176074\pi\)
0.850872 + 0.525373i \(0.176074\pi\)
\(284\) −5.60641 −0.332679
\(285\) −3.90196 −0.231132
\(286\) 8.83362 0.522343
\(287\) −7.01634 −0.414162
\(288\) 37.8444 2.23000
\(289\) 0 0
\(290\) −0.332343 −0.0195159
\(291\) 45.5333 2.66921
\(292\) −9.32173 −0.545513
\(293\) −1.41607 −0.0827278 −0.0413639 0.999144i \(-0.513170\pi\)
−0.0413639 + 0.999144i \(0.513170\pi\)
\(294\) −7.93412 −0.462727
\(295\) −3.01987 −0.175824
\(296\) 27.5340 1.60038
\(297\) −29.0649 −1.68652
\(298\) −17.1956 −0.996113
\(299\) 2.12620 0.122961
\(300\) 4.42996 0.255764
\(301\) 6.98835 0.402802
\(302\) 0.146399 0.00842433
\(303\) −0.873965 −0.0502080
\(304\) 1.21391 0.0696222
\(305\) 12.2233 0.699902
\(306\) 0 0
\(307\) −21.7364 −1.24056 −0.620281 0.784379i \(-0.712982\pi\)
−0.620281 + 0.784379i \(0.712982\pi\)
\(308\) 12.7373 0.725773
\(309\) 43.3092 2.46378
\(310\) −4.13474 −0.234838
\(311\) −8.65102 −0.490554 −0.245277 0.969453i \(-0.578879\pi\)
−0.245277 + 0.969453i \(0.578879\pi\)
\(312\) 34.1707 1.93454
\(313\) −10.2820 −0.581175 −0.290587 0.956848i \(-0.593851\pi\)
−0.290587 + 0.956848i \(0.593851\pi\)
\(314\) 8.86896 0.500504
\(315\) −20.8692 −1.17584
\(316\) 10.4035 0.585241
\(317\) −1.12766 −0.0633359 −0.0316680 0.999498i \(-0.510082\pi\)
−0.0316680 + 0.999498i \(0.510082\pi\)
\(318\) 4.17879 0.234335
\(319\) −1.21536 −0.0680473
\(320\) 2.47104 0.138135
\(321\) 57.5334 3.21120
\(322\) −1.19041 −0.0663387
\(323\) 0 0
\(324\) −19.1747 −1.06526
\(325\) 4.31833 0.239538
\(326\) −3.99739 −0.221395
\(327\) −10.8573 −0.600407
\(328\) −5.58528 −0.308396
\(329\) 27.1410 1.49633
\(330\) −6.29031 −0.346270
\(331\) −34.2599 −1.88310 −0.941548 0.336878i \(-0.890629\pi\)
−0.941548 + 0.336878i \(0.890629\pi\)
\(332\) −0.327741 −0.0179871
\(333\) −69.0767 −3.78538
\(334\) −8.66830 −0.474309
\(335\) 4.21389 0.230229
\(336\) 9.50945 0.518783
\(337\) −13.7463 −0.748806 −0.374403 0.927266i \(-0.622152\pi\)
−0.374403 + 0.927266i \(0.622152\pi\)
\(338\) 4.22420 0.229766
\(339\) −8.73784 −0.474574
\(340\) 0 0
\(341\) −15.1206 −0.818824
\(342\) 6.12683 0.331301
\(343\) 11.4763 0.619665
\(344\) 5.56300 0.299937
\(345\) −1.51404 −0.0815133
\(346\) −8.24731 −0.443378
\(347\) −18.8786 −1.01346 −0.506728 0.862106i \(-0.669145\pi\)
−0.506728 + 0.862106i \(0.669145\pi\)
\(348\) −1.96850 −0.105523
\(349\) −7.04988 −0.377371 −0.188686 0.982038i \(-0.560423\pi\)
−0.188686 + 0.982038i \(0.560423\pi\)
\(350\) −2.41772 −0.129233
\(351\) −45.8896 −2.44941
\(352\) 16.0333 0.854577
\(353\) 8.60779 0.458146 0.229073 0.973409i \(-0.426431\pi\)
0.229073 + 0.973409i \(0.426431\pi\)
\(354\) 6.94527 0.369137
\(355\) 3.89165 0.206547
\(356\) 19.2191 1.01861
\(357\) 0 0
\(358\) −15.7609 −0.832988
\(359\) 9.18100 0.484555 0.242277 0.970207i \(-0.422106\pi\)
0.242277 + 0.970207i \(0.422106\pi\)
\(360\) −16.6127 −0.875565
\(361\) −17.3898 −0.915255
\(362\) 16.9472 0.890723
\(363\) 10.8220 0.568005
\(364\) 20.1104 1.05407
\(365\) 6.47062 0.338688
\(366\) −28.1118 −1.46943
\(367\) −6.81607 −0.355796 −0.177898 0.984049i \(-0.556930\pi\)
−0.177898 + 0.984049i \(0.556930\pi\)
\(368\) 0.471021 0.0245537
\(369\) 14.0122 0.729446
\(370\) −8.00263 −0.416037
\(371\) 5.87360 0.304942
\(372\) −24.4904 −1.26977
\(373\) −10.4647 −0.541841 −0.270920 0.962602i \(-0.587328\pi\)
−0.270920 + 0.962602i \(0.587328\pi\)
\(374\) 0 0
\(375\) −3.07503 −0.158794
\(376\) 21.6053 1.11421
\(377\) −1.91889 −0.0988281
\(378\) 25.6924 1.32148
\(379\) −25.3419 −1.30173 −0.650864 0.759195i \(-0.725593\pi\)
−0.650864 + 0.759195i \(0.725593\pi\)
\(380\) −1.82803 −0.0937761
\(381\) −16.8055 −0.860972
\(382\) −2.61891 −0.133995
\(383\) 7.69048 0.392965 0.196483 0.980507i \(-0.437048\pi\)
0.196483 + 0.980507i \(0.437048\pi\)
\(384\) 30.3691 1.54976
\(385\) −8.84149 −0.450604
\(386\) 9.19504 0.468015
\(387\) −13.9563 −0.709439
\(388\) 21.3320 1.08297
\(389\) 15.8379 0.803013 0.401506 0.915856i \(-0.368487\pi\)
0.401506 + 0.915856i \(0.368487\pi\)
\(390\) −9.93155 −0.502903
\(391\) 0 0
\(392\) −8.87742 −0.448377
\(393\) −30.6873 −1.54797
\(394\) 12.6964 0.639634
\(395\) −7.22150 −0.363353
\(396\) −25.4374 −1.27828
\(397\) −29.1640 −1.46370 −0.731850 0.681466i \(-0.761343\pi\)
−0.731850 + 0.681466i \(0.761343\pi\)
\(398\) 8.65927 0.434050
\(399\) 12.6135 0.631467
\(400\) 0.956646 0.0478323
\(401\) −16.3859 −0.818271 −0.409136 0.912474i \(-0.634170\pi\)
−0.409136 + 0.912474i \(0.634170\pi\)
\(402\) −9.69135 −0.483360
\(403\) −23.8733 −1.18921
\(404\) −0.409445 −0.0203706
\(405\) 13.3100 0.661379
\(406\) 1.07434 0.0533186
\(407\) −29.2652 −1.45062
\(408\) 0 0
\(409\) 33.9971 1.68105 0.840525 0.541772i \(-0.182247\pi\)
0.840525 + 0.541772i \(0.182247\pi\)
\(410\) 1.62333 0.0801708
\(411\) 9.46408 0.466829
\(412\) 20.2900 0.999616
\(413\) 9.76209 0.480361
\(414\) 2.37734 0.116840
\(415\) 0.227499 0.0111675
\(416\) 25.3144 1.24114
\(417\) −20.6332 −1.01041
\(418\) 2.59571 0.126960
\(419\) 0.892935 0.0436227 0.0218114 0.999762i \(-0.493057\pi\)
0.0218114 + 0.999762i \(0.493057\pi\)
\(420\) −14.3204 −0.698763
\(421\) 33.6725 1.64110 0.820550 0.571575i \(-0.193668\pi\)
0.820550 + 0.571575i \(0.193668\pi\)
\(422\) −4.98395 −0.242615
\(423\) −54.2027 −2.63543
\(424\) 4.67562 0.227068
\(425\) 0 0
\(426\) −8.95025 −0.433641
\(427\) −39.5131 −1.91218
\(428\) 26.9539 1.30286
\(429\) −36.3192 −1.75351
\(430\) −1.61686 −0.0779718
\(431\) 16.2970 0.784997 0.392498 0.919753i \(-0.371611\pi\)
0.392498 + 0.919753i \(0.371611\pi\)
\(432\) −10.1660 −0.489112
\(433\) −34.9947 −1.68174 −0.840869 0.541239i \(-0.817956\pi\)
−0.840869 + 0.541239i \(0.817956\pi\)
\(434\) 13.3660 0.641591
\(435\) 1.36642 0.0655149
\(436\) −5.08653 −0.243600
\(437\) 0.624773 0.0298869
\(438\) −14.8815 −0.711066
\(439\) 22.2777 1.06326 0.531628 0.846978i \(-0.321580\pi\)
0.531628 + 0.846978i \(0.321580\pi\)
\(440\) −7.03818 −0.335532
\(441\) 22.2714 1.06054
\(442\) 0 0
\(443\) −8.79907 −0.418056 −0.209028 0.977910i \(-0.567030\pi\)
−0.209028 + 0.977910i \(0.567030\pi\)
\(444\) −47.4003 −2.24952
\(445\) −13.3408 −0.632417
\(446\) −9.41830 −0.445970
\(447\) 70.6992 3.34396
\(448\) −7.98792 −0.377394
\(449\) 8.86683 0.418452 0.209226 0.977867i \(-0.432906\pi\)
0.209226 + 0.977867i \(0.432906\pi\)
\(450\) 4.82839 0.227612
\(451\) 5.93646 0.279537
\(452\) −4.09360 −0.192547
\(453\) −0.601916 −0.0282805
\(454\) −6.01521 −0.282308
\(455\) −13.9595 −0.654432
\(456\) 10.0409 0.470207
\(457\) −18.4756 −0.864254 −0.432127 0.901813i \(-0.642237\pi\)
−0.432127 + 0.901813i \(0.642237\pi\)
\(458\) −16.1770 −0.755902
\(459\) 0 0
\(460\) −0.709315 −0.0330720
\(461\) −24.5700 −1.14434 −0.572169 0.820136i \(-0.693898\pi\)
−0.572169 + 0.820136i \(0.693898\pi\)
\(462\) 20.3342 0.946032
\(463\) −9.90931 −0.460525 −0.230262 0.973129i \(-0.573958\pi\)
−0.230262 + 0.973129i \(0.573958\pi\)
\(464\) −0.425096 −0.0197346
\(465\) 16.9999 0.788351
\(466\) −16.4171 −0.760509
\(467\) −29.4041 −1.36066 −0.680329 0.732907i \(-0.738163\pi\)
−0.680329 + 0.732907i \(0.738163\pi\)
\(468\) −40.1621 −1.85650
\(469\) −13.6219 −0.629001
\(470\) −6.27946 −0.289650
\(471\) −36.4645 −1.68019
\(472\) 7.77100 0.357689
\(473\) −5.91277 −0.271870
\(474\) 16.6084 0.762850
\(475\) 1.26892 0.0582219
\(476\) 0 0
\(477\) −11.7301 −0.537083
\(478\) 4.41369 0.201877
\(479\) 28.6003 1.30678 0.653391 0.757021i \(-0.273346\pi\)
0.653391 + 0.757021i \(0.273346\pi\)
\(480\) −18.0260 −0.822773
\(481\) −46.2058 −2.10680
\(482\) −9.95583 −0.453476
\(483\) 4.89432 0.222699
\(484\) 5.06999 0.230454
\(485\) −14.8075 −0.672372
\(486\) −6.76754 −0.306982
\(487\) −0.617883 −0.0279990 −0.0139995 0.999902i \(-0.504456\pi\)
−0.0139995 + 0.999902i \(0.504456\pi\)
\(488\) −31.4540 −1.42386
\(489\) 16.4352 0.743224
\(490\) 2.58018 0.116561
\(491\) 25.4667 1.14930 0.574648 0.818401i \(-0.305139\pi\)
0.574648 + 0.818401i \(0.305139\pi\)
\(492\) 9.61515 0.433485
\(493\) 0 0
\(494\) 4.09827 0.184390
\(495\) 17.6572 0.793631
\(496\) −5.28869 −0.237469
\(497\) −12.5802 −0.564301
\(498\) −0.523216 −0.0234459
\(499\) −36.4603 −1.63219 −0.816093 0.577921i \(-0.803864\pi\)
−0.816093 + 0.577921i \(0.803864\pi\)
\(500\) −1.44062 −0.0644267
\(501\) 35.6395 1.59226
\(502\) 2.68776 0.119961
\(503\) 30.1881 1.34602 0.673011 0.739632i \(-0.265001\pi\)
0.673011 + 0.739632i \(0.265001\pi\)
\(504\) 53.7025 2.39210
\(505\) 0.284213 0.0126473
\(506\) 1.00719 0.0447751
\(507\) −17.3677 −0.771326
\(508\) −7.87323 −0.349318
\(509\) 40.1857 1.78120 0.890600 0.454787i \(-0.150285\pi\)
0.890600 + 0.454787i \(0.150285\pi\)
\(510\) 0 0
\(511\) −20.9171 −0.925316
\(512\) 10.5314 0.465426
\(513\) −13.4844 −0.595351
\(514\) 18.3606 0.809852
\(515\) −14.0842 −0.620623
\(516\) −9.57679 −0.421595
\(517\) −22.9637 −1.00994
\(518\) 25.8695 1.13664
\(519\) 33.9086 1.48842
\(520\) −11.1123 −0.487308
\(521\) −35.3560 −1.54897 −0.774487 0.632590i \(-0.781992\pi\)
−0.774487 + 0.632590i \(0.781992\pi\)
\(522\) −2.14554 −0.0939079
\(523\) 24.5035 1.07146 0.535732 0.844388i \(-0.320036\pi\)
0.535732 + 0.844388i \(0.320036\pi\)
\(524\) −14.3767 −0.628050
\(525\) 9.94040 0.433835
\(526\) 10.9496 0.477424
\(527\) 0 0
\(528\) −8.04585 −0.350150
\(529\) −22.7576 −0.989460
\(530\) −1.35894 −0.0590288
\(531\) −19.4957 −0.846041
\(532\) 5.90934 0.256202
\(533\) 9.37286 0.405984
\(534\) 30.6821 1.32774
\(535\) −18.7099 −0.808898
\(536\) −10.8436 −0.468371
\(537\) 64.8004 2.79634
\(538\) −14.0307 −0.604905
\(539\) 9.43558 0.406419
\(540\) 15.3091 0.658798
\(541\) 25.5508 1.09851 0.549257 0.835653i \(-0.314911\pi\)
0.549257 + 0.835653i \(0.314911\pi\)
\(542\) −4.31089 −0.185169
\(543\) −69.6778 −2.99016
\(544\) 0 0
\(545\) 3.53078 0.151242
\(546\) 32.1049 1.37396
\(547\) 11.7618 0.502896 0.251448 0.967871i \(-0.419093\pi\)
0.251448 + 0.967871i \(0.419093\pi\)
\(548\) 4.43384 0.189404
\(549\) 78.9110 3.36784
\(550\) 2.04561 0.0872251
\(551\) −0.563857 −0.0240211
\(552\) 3.89607 0.165828
\(553\) 23.3444 0.992703
\(554\) −0.0921816 −0.00391642
\(555\) 32.9026 1.39664
\(556\) −9.66646 −0.409949
\(557\) −35.6812 −1.51186 −0.755931 0.654651i \(-0.772816\pi\)
−0.755931 + 0.654651i \(0.772816\pi\)
\(558\) −26.6931 −1.13001
\(559\) −9.33546 −0.394848
\(560\) −3.09247 −0.130681
\(561\) 0 0
\(562\) 1.36392 0.0575335
\(563\) 30.1232 1.26954 0.634771 0.772700i \(-0.281094\pi\)
0.634771 + 0.772700i \(0.281094\pi\)
\(564\) −37.1938 −1.56614
\(565\) 2.84155 0.119545
\(566\) 21.4111 0.899976
\(567\) −43.0262 −1.80693
\(568\) −10.0144 −0.420193
\(569\) −24.3985 −1.02284 −0.511420 0.859331i \(-0.670880\pi\)
−0.511420 + 0.859331i \(0.670880\pi\)
\(570\) −2.91833 −0.122235
\(571\) −33.2818 −1.39280 −0.696399 0.717654i \(-0.745216\pi\)
−0.696399 + 0.717654i \(0.745216\pi\)
\(572\) −17.0152 −0.711442
\(573\) 10.7676 0.449822
\(574\) −5.24762 −0.219032
\(575\) 0.492367 0.0205331
\(576\) 15.9525 0.664689
\(577\) 18.0611 0.751895 0.375947 0.926641i \(-0.377317\pi\)
0.375947 + 0.926641i \(0.377317\pi\)
\(578\) 0 0
\(579\) −37.8051 −1.57113
\(580\) 0.640156 0.0265810
\(581\) −0.735418 −0.0305103
\(582\) 34.0550 1.41163
\(583\) −4.96959 −0.205820
\(584\) −16.6508 −0.689015
\(585\) 27.8783 1.15263
\(586\) −1.05910 −0.0437510
\(587\) 41.8303 1.72652 0.863261 0.504758i \(-0.168418\pi\)
0.863261 + 0.504758i \(0.168418\pi\)
\(588\) 15.2826 0.630244
\(589\) −7.01504 −0.289050
\(590\) −2.25860 −0.0929852
\(591\) −52.2008 −2.14725
\(592\) −10.2360 −0.420699
\(593\) 20.6659 0.848648 0.424324 0.905510i \(-0.360512\pi\)
0.424324 + 0.905510i \(0.360512\pi\)
\(594\) −21.7381 −0.891925
\(595\) 0 0
\(596\) 33.1219 1.35673
\(597\) −35.6023 −1.45711
\(598\) 1.59022 0.0650288
\(599\) 9.21817 0.376644 0.188322 0.982107i \(-0.439695\pi\)
0.188322 + 0.982107i \(0.439695\pi\)
\(600\) 7.91295 0.323045
\(601\) 1.62070 0.0661098 0.0330549 0.999454i \(-0.489476\pi\)
0.0330549 + 0.999454i \(0.489476\pi\)
\(602\) 5.22669 0.213024
\(603\) 27.2040 1.10783
\(604\) −0.281993 −0.0114741
\(605\) −3.51930 −0.143080
\(606\) −0.653651 −0.0265527
\(607\) 25.0157 1.01536 0.507679 0.861547i \(-0.330504\pi\)
0.507679 + 0.861547i \(0.330504\pi\)
\(608\) 7.43849 0.301671
\(609\) −4.41712 −0.178991
\(610\) 9.14195 0.370147
\(611\) −36.2566 −1.46678
\(612\) 0 0
\(613\) 4.83538 0.195299 0.0976495 0.995221i \(-0.468868\pi\)
0.0976495 + 0.995221i \(0.468868\pi\)
\(614\) −16.2570 −0.656078
\(615\) −6.67430 −0.269134
\(616\) 22.7517 0.916694
\(617\) −16.8134 −0.676883 −0.338441 0.940987i \(-0.609900\pi\)
−0.338441 + 0.940987i \(0.609900\pi\)
\(618\) 32.3916 1.30298
\(619\) −12.7224 −0.511356 −0.255678 0.966762i \(-0.582299\pi\)
−0.255678 + 0.966762i \(0.582299\pi\)
\(620\) 7.96429 0.319854
\(621\) −5.23223 −0.209962
\(622\) −6.47022 −0.259432
\(623\) 43.1259 1.72780
\(624\) −12.7033 −0.508539
\(625\) 1.00000 0.0400000
\(626\) −7.69008 −0.307357
\(627\) −10.6722 −0.426206
\(628\) −17.0833 −0.681697
\(629\) 0 0
\(630\) −15.6083 −0.621851
\(631\) 4.23998 0.168791 0.0843955 0.996432i \(-0.473104\pi\)
0.0843955 + 0.996432i \(0.473104\pi\)
\(632\) 18.5830 0.739193
\(633\) 20.4914 0.814459
\(634\) −0.843396 −0.0334955
\(635\) 5.46515 0.216878
\(636\) −8.04915 −0.319169
\(637\) 14.8975 0.590261
\(638\) −0.908988 −0.0359872
\(639\) 25.1238 0.993880
\(640\) −9.87602 −0.390384
\(641\) 21.2203 0.838151 0.419075 0.907951i \(-0.362354\pi\)
0.419075 + 0.907951i \(0.362354\pi\)
\(642\) 43.0300 1.69826
\(643\) −8.16667 −0.322062 −0.161031 0.986949i \(-0.551482\pi\)
−0.161031 + 0.986949i \(0.551482\pi\)
\(644\) 2.29295 0.0903548
\(645\) 6.64767 0.261752
\(646\) 0 0
\(647\) 23.4331 0.921249 0.460624 0.887595i \(-0.347626\pi\)
0.460624 + 0.887595i \(0.347626\pi\)
\(648\) −34.2505 −1.34549
\(649\) −8.25960 −0.324218
\(650\) 3.22974 0.126681
\(651\) −54.9541 −2.15382
\(652\) 7.69973 0.301545
\(653\) −16.8073 −0.657721 −0.328860 0.944379i \(-0.606665\pi\)
−0.328860 + 0.944379i \(0.606665\pi\)
\(654\) −8.12029 −0.317529
\(655\) 9.97951 0.389932
\(656\) 2.07638 0.0810692
\(657\) 41.7731 1.62972
\(658\) 20.2991 0.791342
\(659\) 14.0972 0.549150 0.274575 0.961566i \(-0.411463\pi\)
0.274575 + 0.961566i \(0.411463\pi\)
\(660\) 12.1163 0.471627
\(661\) −10.3907 −0.404152 −0.202076 0.979370i \(-0.564769\pi\)
−0.202076 + 0.979370i \(0.564769\pi\)
\(662\) −25.6235 −0.995886
\(663\) 0 0
\(664\) −0.585422 −0.0227188
\(665\) −4.10193 −0.159066
\(666\) −51.6634 −2.00192
\(667\) −0.218788 −0.00847151
\(668\) 16.6968 0.646018
\(669\) 38.7231 1.49712
\(670\) 3.15163 0.121758
\(671\) 33.4317 1.29062
\(672\) 58.2714 2.24787
\(673\) −19.8244 −0.764174 −0.382087 0.924126i \(-0.624795\pi\)
−0.382087 + 0.924126i \(0.624795\pi\)
\(674\) −10.2810 −0.396010
\(675\) −10.6267 −0.409022
\(676\) −8.13660 −0.312946
\(677\) 3.34594 0.128595 0.0642974 0.997931i \(-0.479519\pi\)
0.0642974 + 0.997931i \(0.479519\pi\)
\(678\) −6.53516 −0.250981
\(679\) 47.8669 1.83696
\(680\) 0 0
\(681\) 24.7314 0.947709
\(682\) −11.3089 −0.433039
\(683\) −50.2828 −1.92402 −0.962009 0.273017i \(-0.911978\pi\)
−0.962009 + 0.273017i \(0.911978\pi\)
\(684\) −11.8014 −0.451239
\(685\) −3.07772 −0.117594
\(686\) 8.58333 0.327713
\(687\) 66.5113 2.53756
\(688\) −2.06810 −0.0788456
\(689\) −7.84631 −0.298921
\(690\) −1.13237 −0.0431087
\(691\) −38.9162 −1.48044 −0.740221 0.672364i \(-0.765279\pi\)
−0.740221 + 0.672364i \(0.765279\pi\)
\(692\) 15.8859 0.603890
\(693\) −57.0790 −2.16825
\(694\) −14.1196 −0.535972
\(695\) 6.70991 0.254521
\(696\) −3.51620 −0.133281
\(697\) 0 0
\(698\) −5.27270 −0.199575
\(699\) 67.4986 2.55303
\(700\) 4.65699 0.176018
\(701\) −37.5419 −1.41794 −0.708969 0.705239i \(-0.750840\pi\)
−0.708969 + 0.705239i \(0.750840\pi\)
\(702\) −34.3215 −1.29538
\(703\) −13.5773 −0.512079
\(704\) 6.75850 0.254721
\(705\) 25.8178 0.972356
\(706\) 6.43789 0.242293
\(707\) −0.918754 −0.0345533
\(708\) −13.3779 −0.502772
\(709\) 13.7546 0.516566 0.258283 0.966069i \(-0.416843\pi\)
0.258283 + 0.966069i \(0.416843\pi\)
\(710\) 2.91062 0.109234
\(711\) −46.6206 −1.74841
\(712\) 34.3299 1.28657
\(713\) −2.72198 −0.101939
\(714\) 0 0
\(715\) 11.8110 0.441707
\(716\) 30.3584 1.13455
\(717\) −18.1467 −0.677703
\(718\) 6.86660 0.256259
\(719\) 0.528983 0.0197278 0.00986388 0.999951i \(-0.496860\pi\)
0.00986388 + 0.999951i \(0.496860\pi\)
\(720\) 6.17592 0.230163
\(721\) 45.5288 1.69558
\(722\) −13.0061 −0.484038
\(723\) 40.9331 1.52232
\(724\) −32.6434 −1.21318
\(725\) −0.444360 −0.0165031
\(726\) 8.09390 0.300393
\(727\) 26.7632 0.992591 0.496296 0.868154i \(-0.334693\pi\)
0.496296 + 0.868154i \(0.334693\pi\)
\(728\) 35.9219 1.33135
\(729\) −12.1055 −0.448351
\(730\) 4.83947 0.179117
\(731\) 0 0
\(732\) 54.1486 2.00139
\(733\) 17.3486 0.640787 0.320393 0.947285i \(-0.396185\pi\)
0.320393 + 0.947285i \(0.396185\pi\)
\(734\) −5.09783 −0.188164
\(735\) −10.6083 −0.391294
\(736\) 2.88629 0.106390
\(737\) 11.5253 0.424542
\(738\) 10.4799 0.385772
\(739\) 30.2467 1.11264 0.556321 0.830967i \(-0.312212\pi\)
0.556321 + 0.830967i \(0.312212\pi\)
\(740\) 15.4146 0.566651
\(741\) −16.8499 −0.618998
\(742\) 4.39295 0.161270
\(743\) 7.18076 0.263437 0.131718 0.991287i \(-0.457951\pi\)
0.131718 + 0.991287i \(0.457951\pi\)
\(744\) −43.7457 −1.60379
\(745\) −22.9914 −0.842339
\(746\) −7.82669 −0.286555
\(747\) 1.46869 0.0537366
\(748\) 0 0
\(749\) 60.4819 2.20996
\(750\) −2.29986 −0.0839790
\(751\) −31.2967 −1.14203 −0.571016 0.820939i \(-0.693451\pi\)
−0.571016 + 0.820939i \(0.693451\pi\)
\(752\) −8.03197 −0.292896
\(753\) −11.0506 −0.402708
\(754\) −1.43517 −0.0522658
\(755\) 0.195743 0.00712383
\(756\) −49.4884 −1.79988
\(757\) 10.7757 0.391649 0.195824 0.980639i \(-0.437262\pi\)
0.195824 + 0.980639i \(0.437262\pi\)
\(758\) −18.9536 −0.688425
\(759\) −4.14104 −0.150310
\(760\) −3.26530 −0.118445
\(761\) 33.1409 1.20136 0.600678 0.799491i \(-0.294898\pi\)
0.600678 + 0.799491i \(0.294898\pi\)
\(762\) −12.5691 −0.455329
\(763\) −11.4137 −0.413203
\(764\) 5.04452 0.182504
\(765\) 0 0
\(766\) 5.75182 0.207822
\(767\) −13.0408 −0.470876
\(768\) 37.9105 1.36798
\(769\) −11.4864 −0.414210 −0.207105 0.978319i \(-0.566404\pi\)
−0.207105 + 0.978319i \(0.566404\pi\)
\(770\) −6.61268 −0.238304
\(771\) −75.4892 −2.71868
\(772\) −17.7114 −0.637446
\(773\) −3.20903 −0.115421 −0.0577104 0.998333i \(-0.518380\pi\)
−0.0577104 + 0.998333i \(0.518380\pi\)
\(774\) −10.4381 −0.375191
\(775\) −5.52836 −0.198585
\(776\) 38.1039 1.36785
\(777\) −106.362 −3.81570
\(778\) 11.8454 0.424678
\(779\) 2.75416 0.0986781
\(780\) 19.1300 0.684965
\(781\) 10.6440 0.380873
\(782\) 0 0
\(783\) 4.72208 0.168754
\(784\) 3.30027 0.117867
\(785\) 11.8582 0.423239
\(786\) −22.9515 −0.818651
\(787\) −3.37029 −0.120138 −0.0600690 0.998194i \(-0.519132\pi\)
−0.0600690 + 0.998194i \(0.519132\pi\)
\(788\) −24.4556 −0.871195
\(789\) −45.0188 −1.60271
\(790\) −5.40106 −0.192161
\(791\) −9.18564 −0.326604
\(792\) −45.4371 −1.61454
\(793\) 52.7841 1.87442
\(794\) −21.8122 −0.774085
\(795\) 5.58726 0.198160
\(796\) −16.6794 −0.591185
\(797\) −21.3498 −0.756247 −0.378124 0.925755i \(-0.623431\pi\)
−0.378124 + 0.925755i \(0.623431\pi\)
\(798\) 9.43385 0.333955
\(799\) 0 0
\(800\) 5.86207 0.207256
\(801\) −86.1259 −3.04311
\(802\) −12.2552 −0.432747
\(803\) 17.6977 0.624538
\(804\) 18.6674 0.658347
\(805\) −1.59163 −0.0560977
\(806\) −17.8552 −0.628922
\(807\) 57.6867 2.03067
\(808\) −0.731364 −0.0257293
\(809\) −2.72968 −0.0959705 −0.0479852 0.998848i \(-0.515280\pi\)
−0.0479852 + 0.998848i \(0.515280\pi\)
\(810\) 9.95474 0.349774
\(811\) −37.3353 −1.31102 −0.655510 0.755187i \(-0.727546\pi\)
−0.655510 + 0.755187i \(0.727546\pi\)
\(812\) −2.06938 −0.0726211
\(813\) 17.7241 0.621611
\(814\) −21.8879 −0.767170
\(815\) −5.34472 −0.187217
\(816\) 0 0
\(817\) −2.74317 −0.0959715
\(818\) 25.4269 0.889032
\(819\) −90.1199 −3.14905
\(820\) −3.12685 −0.109194
\(821\) 42.2293 1.47381 0.736906 0.675995i \(-0.236286\pi\)
0.736906 + 0.675995i \(0.236286\pi\)
\(822\) 7.07832 0.246885
\(823\) −20.7606 −0.723668 −0.361834 0.932243i \(-0.617849\pi\)
−0.361834 + 0.932243i \(0.617849\pi\)
\(824\) 36.2427 1.26257
\(825\) −8.41047 −0.292815
\(826\) 7.30120 0.254041
\(827\) −11.5073 −0.400149 −0.200075 0.979781i \(-0.564119\pi\)
−0.200075 + 0.979781i \(0.564119\pi\)
\(828\) −4.57920 −0.159138
\(829\) −11.7508 −0.408121 −0.204060 0.978958i \(-0.565414\pi\)
−0.204060 + 0.978958i \(0.565414\pi\)
\(830\) 0.170150 0.00590599
\(831\) 0.379002 0.0131474
\(832\) 10.6708 0.369942
\(833\) 0 0
\(834\) −15.4318 −0.534361
\(835\) −11.5900 −0.401087
\(836\) −4.99983 −0.172923
\(837\) 58.7483 2.03064
\(838\) 0.667839 0.0230701
\(839\) 36.5993 1.26355 0.631775 0.775152i \(-0.282327\pi\)
0.631775 + 0.775152i \(0.282327\pi\)
\(840\) −25.5796 −0.882578
\(841\) −28.8025 −0.993191
\(842\) 25.1842 0.867904
\(843\) −5.60772 −0.193140
\(844\) 9.60003 0.330447
\(845\) 5.64797 0.194296
\(846\) −40.5390 −1.39376
\(847\) 11.3766 0.390903
\(848\) −1.73821 −0.0596902
\(849\) −88.0312 −3.02122
\(850\) 0 0
\(851\) −5.26829 −0.180595
\(852\) 17.2399 0.590628
\(853\) −38.0771 −1.30374 −0.651868 0.758332i \(-0.726014\pi\)
−0.651868 + 0.758332i \(0.726014\pi\)
\(854\) −29.5524 −1.01126
\(855\) 8.19188 0.280157
\(856\) 48.1459 1.64559
\(857\) 20.2277 0.690965 0.345482 0.938425i \(-0.387715\pi\)
0.345482 + 0.938425i \(0.387715\pi\)
\(858\) −27.1636 −0.927351
\(859\) −2.60725 −0.0889581 −0.0444790 0.999010i \(-0.514163\pi\)
−0.0444790 + 0.999010i \(0.514163\pi\)
\(860\) 3.11437 0.106199
\(861\) 21.5755 0.735290
\(862\) 12.1887 0.415150
\(863\) 11.2563 0.383169 0.191584 0.981476i \(-0.438637\pi\)
0.191584 + 0.981476i \(0.438637\pi\)
\(864\) −62.2945 −2.11930
\(865\) −11.0271 −0.374932
\(866\) −26.1730 −0.889396
\(867\) 0 0
\(868\) −25.7455 −0.873860
\(869\) −19.7514 −0.670021
\(870\) 1.02197 0.0346479
\(871\) 18.1970 0.616580
\(872\) −9.08573 −0.307682
\(873\) −95.5940 −3.23537
\(874\) 0.467276 0.0158059
\(875\) −3.23262 −0.109282
\(876\) 28.6646 0.968487
\(877\) −6.00107 −0.202642 −0.101321 0.994854i \(-0.532307\pi\)
−0.101321 + 0.994854i \(0.532307\pi\)
\(878\) 16.6618 0.562309
\(879\) 4.35446 0.146872
\(880\) 2.61651 0.0882025
\(881\) 34.3314 1.15665 0.578327 0.815805i \(-0.303706\pi\)
0.578327 + 0.815805i \(0.303706\pi\)
\(882\) 16.6571 0.560874
\(883\) 11.8244 0.397921 0.198961 0.980007i \(-0.436243\pi\)
0.198961 + 0.980007i \(0.436243\pi\)
\(884\) 0 0
\(885\) 9.28618 0.312152
\(886\) −6.58095 −0.221091
\(887\) 24.2352 0.813738 0.406869 0.913487i \(-0.366621\pi\)
0.406869 + 0.913487i \(0.366621\pi\)
\(888\) −84.6680 −2.84127
\(889\) −17.6668 −0.592524
\(890\) −9.97781 −0.334457
\(891\) 36.4040 1.21958
\(892\) 18.1414 0.607420
\(893\) −10.6538 −0.356515
\(894\) 52.8769 1.76847
\(895\) −21.0731 −0.704396
\(896\) 31.9254 1.06655
\(897\) −6.53813 −0.218302
\(898\) 6.63163 0.221300
\(899\) 2.45659 0.0819317
\(900\) −9.30039 −0.310013
\(901\) 0 0
\(902\) 4.43996 0.147835
\(903\) −21.4894 −0.715122
\(904\) −7.31213 −0.243198
\(905\) 22.6592 0.753218
\(906\) −0.450182 −0.0149563
\(907\) 44.7796 1.48688 0.743441 0.668802i \(-0.233192\pi\)
0.743441 + 0.668802i \(0.233192\pi\)
\(908\) 11.5864 0.384509
\(909\) 1.83483 0.0608574
\(910\) −10.4405 −0.346100
\(911\) 9.94858 0.329611 0.164806 0.986326i \(-0.447300\pi\)
0.164806 + 0.986326i \(0.447300\pi\)
\(912\) −3.73279 −0.123605
\(913\) 0.622230 0.0205928
\(914\) −13.8182 −0.457066
\(915\) −37.5869 −1.24258
\(916\) 31.1600 1.02955
\(917\) −32.2600 −1.06532
\(918\) 0 0
\(919\) −33.3601 −1.10045 −0.550224 0.835017i \(-0.685458\pi\)
−0.550224 + 0.835017i \(0.685458\pi\)
\(920\) −1.26700 −0.0417719
\(921\) 66.8401 2.20246
\(922\) −18.3762 −0.605189
\(923\) 16.8054 0.553158
\(924\) −39.1675 −1.28852
\(925\) −10.6999 −0.351812
\(926\) −7.41132 −0.243551
\(927\) −90.9247 −2.98636
\(928\) −2.60487 −0.0855091
\(929\) −24.8961 −0.816813 −0.408407 0.912800i \(-0.633915\pi\)
−0.408407 + 0.912800i \(0.633915\pi\)
\(930\) 12.7145 0.416923
\(931\) 4.37755 0.143468
\(932\) 31.6225 1.03583
\(933\) 26.6021 0.870915
\(934\) −21.9917 −0.719592
\(935\) 0 0
\(936\) −71.7390 −2.34486
\(937\) 31.2460 1.02076 0.510381 0.859948i \(-0.329504\pi\)
0.510381 + 0.859948i \(0.329504\pi\)
\(938\) −10.1880 −0.332650
\(939\) 31.6176 1.03180
\(940\) 12.0954 0.394510
\(941\) 1.73372 0.0565177 0.0282589 0.999601i \(-0.491004\pi\)
0.0282589 + 0.999601i \(0.491004\pi\)
\(942\) −27.2723 −0.888579
\(943\) 1.06867 0.0348008
\(944\) −2.88895 −0.0940272
\(945\) 34.3521 1.11747
\(946\) −4.42225 −0.143780
\(947\) 10.8513 0.352619 0.176309 0.984335i \(-0.443584\pi\)
0.176309 + 0.984335i \(0.443584\pi\)
\(948\) −31.9910 −1.03902
\(949\) 27.9423 0.907044
\(950\) 0.949042 0.0307910
\(951\) 3.46760 0.112445
\(952\) 0 0
\(953\) −16.9007 −0.547466 −0.273733 0.961806i \(-0.588258\pi\)
−0.273733 + 0.961806i \(0.588258\pi\)
\(954\) −8.77308 −0.284039
\(955\) −3.50162 −0.113310
\(956\) −8.50159 −0.274961
\(957\) 3.73728 0.120809
\(958\) 21.3906 0.691098
\(959\) 9.94910 0.321273
\(960\) −7.59851 −0.245241
\(961\) −0.437196 −0.0141031
\(962\) −34.5580 −1.11419
\(963\) −120.787 −3.89231
\(964\) 19.1768 0.617643
\(965\) 12.2942 0.395765
\(966\) 3.66053 0.117776
\(967\) 31.2356 1.00447 0.502234 0.864732i \(-0.332511\pi\)
0.502234 + 0.864732i \(0.332511\pi\)
\(968\) 9.05619 0.291077
\(969\) 0 0
\(970\) −11.0747 −0.355587
\(971\) 17.3888 0.558033 0.279016 0.960286i \(-0.409992\pi\)
0.279016 + 0.960286i \(0.409992\pi\)
\(972\) 13.0356 0.418116
\(973\) −21.6906 −0.695368
\(974\) −0.462124 −0.0148074
\(975\) −13.2790 −0.425268
\(976\) 11.6933 0.374294
\(977\) −9.17338 −0.293482 −0.146741 0.989175i \(-0.546878\pi\)
−0.146741 + 0.989175i \(0.546878\pi\)
\(978\) 12.2921 0.393058
\(979\) −36.4884 −1.16617
\(980\) −4.96991 −0.158758
\(981\) 22.7940 0.727757
\(982\) 19.0469 0.607811
\(983\) 37.2969 1.18959 0.594793 0.803879i \(-0.297234\pi\)
0.594793 + 0.803879i \(0.297234\pi\)
\(984\) 17.1749 0.547516
\(985\) 16.9757 0.540891
\(986\) 0 0
\(987\) −83.4593 −2.65654
\(988\) −7.89405 −0.251143
\(989\) −1.06441 −0.0338463
\(990\) 13.2061 0.419716
\(991\) 35.0682 1.11398 0.556990 0.830519i \(-0.311956\pi\)
0.556990 + 0.830519i \(0.311956\pi\)
\(992\) −32.4077 −1.02894
\(993\) 105.350 3.34319
\(994\) −9.40894 −0.298433
\(995\) 11.5779 0.367044
\(996\) 1.00781 0.0319338
\(997\) 37.3576 1.18313 0.591563 0.806259i \(-0.298511\pi\)
0.591563 + 0.806259i \(0.298511\pi\)
\(998\) −27.2692 −0.863190
\(999\) 113.705 3.59747
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.p.1.9 12
5.4 even 2 7225.2.a.bs.1.4 12
17.4 even 4 1445.2.d.j.866.7 24
17.5 odd 16 85.2.l.a.76.2 yes 24
17.7 odd 16 85.2.l.a.66.2 24
17.13 even 4 1445.2.d.j.866.8 24
17.16 even 2 1445.2.a.q.1.9 12
51.5 even 16 765.2.be.b.586.5 24
51.41 even 16 765.2.be.b.406.5 24
85.7 even 16 425.2.n.c.49.5 24
85.22 even 16 425.2.n.f.399.2 24
85.24 odd 16 425.2.m.b.151.5 24
85.39 odd 16 425.2.m.b.76.5 24
85.58 even 16 425.2.n.f.49.2 24
85.73 even 16 425.2.n.c.399.5 24
85.84 even 2 7225.2.a.bq.1.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.2 24 17.7 odd 16
85.2.l.a.76.2 yes 24 17.5 odd 16
425.2.m.b.76.5 24 85.39 odd 16
425.2.m.b.151.5 24 85.24 odd 16
425.2.n.c.49.5 24 85.7 even 16
425.2.n.c.399.5 24 85.73 even 16
425.2.n.f.49.2 24 85.58 even 16
425.2.n.f.399.2 24 85.22 even 16
765.2.be.b.406.5 24 51.41 even 16
765.2.be.b.586.5 24 51.5 even 16
1445.2.a.p.1.9 12 1.1 even 1 trivial
1445.2.a.q.1.9 12 17.16 even 2
1445.2.d.j.866.7 24 17.4 even 4
1445.2.d.j.866.8 24 17.13 even 4
7225.2.a.bq.1.4 12 85.84 even 2
7225.2.a.bs.1.4 12 5.4 even 2