Properties

Label 1445.2.a.p.1.3
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.80583\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.80583 q^{2} +0.687917 q^{3} +1.26102 q^{4} +1.00000 q^{5} -1.24226 q^{6} -4.34193 q^{7} +1.33447 q^{8} -2.52677 q^{9} -1.80583 q^{10} -0.0525004 q^{11} +0.867478 q^{12} +3.02508 q^{13} +7.84078 q^{14} +0.687917 q^{15} -4.93187 q^{16} +4.56292 q^{18} +7.82043 q^{19} +1.26102 q^{20} -2.98689 q^{21} +0.0948069 q^{22} +1.04197 q^{23} +0.918004 q^{24} +1.00000 q^{25} -5.46278 q^{26} -3.80196 q^{27} -5.47526 q^{28} -0.420754 q^{29} -1.24226 q^{30} +1.38429 q^{31} +6.23717 q^{32} -0.0361159 q^{33} -4.34193 q^{35} -3.18631 q^{36} +0.336949 q^{37} -14.1224 q^{38} +2.08100 q^{39} +1.33447 q^{40} -6.59268 q^{41} +5.39381 q^{42} -9.99466 q^{43} -0.0662042 q^{44} -2.52677 q^{45} -1.88162 q^{46} -6.13168 q^{47} -3.39272 q^{48} +11.8523 q^{49} -1.80583 q^{50} +3.81469 q^{52} -12.0629 q^{53} +6.86569 q^{54} -0.0525004 q^{55} -5.79417 q^{56} +5.37981 q^{57} +0.759811 q^{58} -5.09779 q^{59} +0.867478 q^{60} -5.97063 q^{61} -2.49979 q^{62} +10.9711 q^{63} -1.39954 q^{64} +3.02508 q^{65} +0.0652192 q^{66} -0.916040 q^{67} +0.716788 q^{69} +7.84078 q^{70} +4.17986 q^{71} -3.37190 q^{72} -5.39059 q^{73} -0.608473 q^{74} +0.687917 q^{75} +9.86173 q^{76} +0.227953 q^{77} -3.75794 q^{78} -9.98296 q^{79} -4.93187 q^{80} +4.96488 q^{81} +11.9053 q^{82} +6.53008 q^{83} -3.76653 q^{84} +18.0487 q^{86} -0.289444 q^{87} -0.0700602 q^{88} +10.2159 q^{89} +4.56292 q^{90} -13.1347 q^{91} +1.31395 q^{92} +0.952278 q^{93} +11.0728 q^{94} +7.82043 q^{95} +4.29066 q^{96} -19.2238 q^{97} -21.4033 q^{98} +0.132657 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} - 8 q^{3} + 12 q^{4} + 12 q^{5} - 8 q^{6} - 16 q^{7} - 12 q^{8} + 12 q^{9} - 4 q^{10} - 16 q^{11} - 16 q^{12} - 8 q^{13} + 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} + 12 q^{20} + 16 q^{21}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80583 −1.27691 −0.638457 0.769657i \(-0.720427\pi\)
−0.638457 + 0.769657i \(0.720427\pi\)
\(3\) 0.687917 0.397169 0.198585 0.980084i \(-0.436366\pi\)
0.198585 + 0.980084i \(0.436366\pi\)
\(4\) 1.26102 0.630511
\(5\) 1.00000 0.447214
\(6\) −1.24226 −0.507151
\(7\) −4.34193 −1.64109 −0.820547 0.571579i \(-0.806331\pi\)
−0.820547 + 0.571579i \(0.806331\pi\)
\(8\) 1.33447 0.471806
\(9\) −2.52677 −0.842257
\(10\) −1.80583 −0.571054
\(11\) −0.0525004 −0.0158295 −0.00791474 0.999969i \(-0.502519\pi\)
−0.00791474 + 0.999969i \(0.502519\pi\)
\(12\) 0.867478 0.250419
\(13\) 3.02508 0.839006 0.419503 0.907754i \(-0.362204\pi\)
0.419503 + 0.907754i \(0.362204\pi\)
\(14\) 7.84078 2.09554
\(15\) 0.687917 0.177619
\(16\) −4.93187 −1.23297
\(17\) 0 0
\(18\) 4.56292 1.07549
\(19\) 7.82043 1.79413 0.897065 0.441898i \(-0.145695\pi\)
0.897065 + 0.441898i \(0.145695\pi\)
\(20\) 1.26102 0.281973
\(21\) −2.98689 −0.651792
\(22\) 0.0948069 0.0202129
\(23\) 1.04197 0.217266 0.108633 0.994082i \(-0.465353\pi\)
0.108633 + 0.994082i \(0.465353\pi\)
\(24\) 0.918004 0.187387
\(25\) 1.00000 0.200000
\(26\) −5.46278 −1.07134
\(27\) −3.80196 −0.731687
\(28\) −5.47526 −1.03473
\(29\) −0.420754 −0.0781321 −0.0390661 0.999237i \(-0.512438\pi\)
−0.0390661 + 0.999237i \(0.512438\pi\)
\(30\) −1.24226 −0.226805
\(31\) 1.38429 0.248626 0.124313 0.992243i \(-0.460327\pi\)
0.124313 + 0.992243i \(0.460327\pi\)
\(32\) 6.23717 1.10259
\(33\) −0.0361159 −0.00628698
\(34\) 0 0
\(35\) −4.34193 −0.733920
\(36\) −3.18631 −0.531052
\(37\) 0.336949 0.0553941 0.0276971 0.999616i \(-0.491183\pi\)
0.0276971 + 0.999616i \(0.491183\pi\)
\(38\) −14.1224 −2.29095
\(39\) 2.08100 0.333227
\(40\) 1.33447 0.210998
\(41\) −6.59268 −1.02960 −0.514802 0.857309i \(-0.672135\pi\)
−0.514802 + 0.857309i \(0.672135\pi\)
\(42\) 5.39381 0.832283
\(43\) −9.99466 −1.52417 −0.762086 0.647476i \(-0.775825\pi\)
−0.762086 + 0.647476i \(0.775825\pi\)
\(44\) −0.0662042 −0.00998065
\(45\) −2.52677 −0.376669
\(46\) −1.88162 −0.277430
\(47\) −6.13168 −0.894398 −0.447199 0.894435i \(-0.647578\pi\)
−0.447199 + 0.894435i \(0.647578\pi\)
\(48\) −3.39272 −0.489696
\(49\) 11.8523 1.69319
\(50\) −1.80583 −0.255383
\(51\) 0 0
\(52\) 3.81469 0.529002
\(53\) −12.0629 −1.65696 −0.828482 0.560016i \(-0.810795\pi\)
−0.828482 + 0.560016i \(0.810795\pi\)
\(54\) 6.86569 0.934302
\(55\) −0.0525004 −0.00707916
\(56\) −5.79417 −0.774279
\(57\) 5.37981 0.712573
\(58\) 0.759811 0.0997681
\(59\) −5.09779 −0.663676 −0.331838 0.943336i \(-0.607669\pi\)
−0.331838 + 0.943336i \(0.607669\pi\)
\(60\) 0.867478 0.111991
\(61\) −5.97063 −0.764461 −0.382230 0.924067i \(-0.624844\pi\)
−0.382230 + 0.924067i \(0.624844\pi\)
\(62\) −2.49979 −0.317474
\(63\) 10.9711 1.38222
\(64\) −1.39954 −0.174943
\(65\) 3.02508 0.375215
\(66\) 0.0652192 0.00802793
\(67\) −0.916040 −0.111912 −0.0559561 0.998433i \(-0.517821\pi\)
−0.0559561 + 0.998433i \(0.517821\pi\)
\(68\) 0 0
\(69\) 0.716788 0.0862912
\(70\) 7.84078 0.937153
\(71\) 4.17986 0.496058 0.248029 0.968753i \(-0.420217\pi\)
0.248029 + 0.968753i \(0.420217\pi\)
\(72\) −3.37190 −0.397382
\(73\) −5.39059 −0.630920 −0.315460 0.948939i \(-0.602159\pi\)
−0.315460 + 0.948939i \(0.602159\pi\)
\(74\) −0.608473 −0.0707336
\(75\) 0.687917 0.0794338
\(76\) 9.86173 1.13122
\(77\) 0.227953 0.0259777
\(78\) −3.75794 −0.425503
\(79\) −9.98296 −1.12317 −0.561585 0.827419i \(-0.689808\pi\)
−0.561585 + 0.827419i \(0.689808\pi\)
\(80\) −4.93187 −0.551400
\(81\) 4.96488 0.551653
\(82\) 11.9053 1.31472
\(83\) 6.53008 0.716770 0.358385 0.933574i \(-0.383328\pi\)
0.358385 + 0.933574i \(0.383328\pi\)
\(84\) −3.76653 −0.410962
\(85\) 0 0
\(86\) 18.0487 1.94624
\(87\) −0.289444 −0.0310317
\(88\) −0.0700602 −0.00746845
\(89\) 10.2159 1.08289 0.541443 0.840738i \(-0.317878\pi\)
0.541443 + 0.840738i \(0.317878\pi\)
\(90\) 4.56292 0.480974
\(91\) −13.1347 −1.37689
\(92\) 1.31395 0.136988
\(93\) 0.952278 0.0987466
\(94\) 11.0728 1.14207
\(95\) 7.82043 0.802359
\(96\) 4.29066 0.437914
\(97\) −19.2238 −1.95188 −0.975940 0.218037i \(-0.930035\pi\)
−0.975940 + 0.218037i \(0.930035\pi\)
\(98\) −21.4033 −2.16206
\(99\) 0.132657 0.0133325
\(100\) 1.26102 0.126102
\(101\) 13.2926 1.32266 0.661331 0.750094i \(-0.269992\pi\)
0.661331 + 0.750094i \(0.269992\pi\)
\(102\) 0 0
\(103\) −6.91299 −0.681157 −0.340579 0.940216i \(-0.610623\pi\)
−0.340579 + 0.940216i \(0.610623\pi\)
\(104\) 4.03687 0.395848
\(105\) −2.98689 −0.291490
\(106\) 21.7835 2.11580
\(107\) −14.7407 −1.42504 −0.712520 0.701651i \(-0.752446\pi\)
−0.712520 + 0.701651i \(0.752446\pi\)
\(108\) −4.79435 −0.461337
\(109\) 4.74828 0.454803 0.227402 0.973801i \(-0.426977\pi\)
0.227402 + 0.973801i \(0.426977\pi\)
\(110\) 0.0948069 0.00903948
\(111\) 0.231793 0.0220008
\(112\) 21.4138 2.02342
\(113\) −3.01331 −0.283468 −0.141734 0.989905i \(-0.545268\pi\)
−0.141734 + 0.989905i \(0.545268\pi\)
\(114\) −9.71502 −0.909895
\(115\) 1.04197 0.0971641
\(116\) −0.530580 −0.0492631
\(117\) −7.64368 −0.706658
\(118\) 9.20574 0.847457
\(119\) 0 0
\(120\) 0.918004 0.0838020
\(121\) −10.9972 −0.999749
\(122\) 10.7819 0.976151
\(123\) −4.53522 −0.408927
\(124\) 1.74562 0.156761
\(125\) 1.00000 0.0894427
\(126\) −19.8119 −1.76498
\(127\) −0.00828706 −0.000735358 0 −0.000367679 1.00000i \(-0.500117\pi\)
−0.000367679 1.00000i \(0.500117\pi\)
\(128\) −9.94702 −0.879200
\(129\) −6.87550 −0.605354
\(130\) −5.46278 −0.479117
\(131\) 8.18458 0.715090 0.357545 0.933896i \(-0.383614\pi\)
0.357545 + 0.933896i \(0.383614\pi\)
\(132\) −0.0455430 −0.00396401
\(133\) −33.9558 −2.94434
\(134\) 1.65421 0.142902
\(135\) −3.80196 −0.327221
\(136\) 0 0
\(137\) −2.23387 −0.190852 −0.0954260 0.995437i \(-0.530421\pi\)
−0.0954260 + 0.995437i \(0.530421\pi\)
\(138\) −1.29440 −0.110186
\(139\) −19.7358 −1.67397 −0.836985 0.547225i \(-0.815684\pi\)
−0.836985 + 0.547225i \(0.815684\pi\)
\(140\) −5.47526 −0.462744
\(141\) −4.21809 −0.355227
\(142\) −7.54812 −0.633424
\(143\) −0.158818 −0.0132810
\(144\) 12.4617 1.03847
\(145\) −0.420754 −0.0349418
\(146\) 9.73448 0.805632
\(147\) 8.15343 0.672483
\(148\) 0.424900 0.0349266
\(149\) 10.1835 0.834263 0.417132 0.908846i \(-0.363035\pi\)
0.417132 + 0.908846i \(0.363035\pi\)
\(150\) −1.24226 −0.101430
\(151\) −15.3484 −1.24903 −0.624516 0.781012i \(-0.714704\pi\)
−0.624516 + 0.781012i \(0.714704\pi\)
\(152\) 10.4361 0.846482
\(153\) 0 0
\(154\) −0.411645 −0.0331713
\(155\) 1.38429 0.111189
\(156\) 2.62419 0.210103
\(157\) 9.41222 0.751177 0.375588 0.926787i \(-0.377441\pi\)
0.375588 + 0.926787i \(0.377441\pi\)
\(158\) 18.0275 1.43419
\(159\) −8.29826 −0.658095
\(160\) 6.23717 0.493092
\(161\) −4.52415 −0.356553
\(162\) −8.96572 −0.704414
\(163\) −12.4453 −0.974793 −0.487397 0.873181i \(-0.662053\pi\)
−0.487397 + 0.873181i \(0.662053\pi\)
\(164\) −8.31351 −0.649176
\(165\) −0.0361159 −0.00281162
\(166\) −11.7922 −0.915253
\(167\) −12.6025 −0.975211 −0.487605 0.873064i \(-0.662130\pi\)
−0.487605 + 0.873064i \(0.662130\pi\)
\(168\) −3.98591 −0.307520
\(169\) −3.84890 −0.296069
\(170\) 0 0
\(171\) −19.7604 −1.51112
\(172\) −12.6035 −0.961007
\(173\) 12.1965 0.927284 0.463642 0.886023i \(-0.346542\pi\)
0.463642 + 0.886023i \(0.346542\pi\)
\(174\) 0.522687 0.0396248
\(175\) −4.34193 −0.328219
\(176\) 0.258925 0.0195172
\(177\) −3.50686 −0.263592
\(178\) −18.4482 −1.38275
\(179\) 13.8608 1.03600 0.518002 0.855379i \(-0.326676\pi\)
0.518002 + 0.855379i \(0.326676\pi\)
\(180\) −3.18631 −0.237494
\(181\) −2.04424 −0.151947 −0.0759736 0.997110i \(-0.524206\pi\)
−0.0759736 + 0.997110i \(0.524206\pi\)
\(182\) 23.7190 1.75817
\(183\) −4.10730 −0.303620
\(184\) 1.39048 0.102507
\(185\) 0.336949 0.0247730
\(186\) −1.71965 −0.126091
\(187\) 0 0
\(188\) −7.73218 −0.563927
\(189\) 16.5078 1.20077
\(190\) −14.1224 −1.02454
\(191\) −3.08056 −0.222902 −0.111451 0.993770i \(-0.535550\pi\)
−0.111451 + 0.993770i \(0.535550\pi\)
\(192\) −0.962768 −0.0694818
\(193\) 20.6419 1.48584 0.742918 0.669382i \(-0.233441\pi\)
0.742918 + 0.669382i \(0.233441\pi\)
\(194\) 34.7149 2.49239
\(195\) 2.08100 0.149024
\(196\) 14.9461 1.06758
\(197\) −18.2365 −1.29930 −0.649649 0.760235i \(-0.725084\pi\)
−0.649649 + 0.760235i \(0.725084\pi\)
\(198\) −0.239555 −0.0170244
\(199\) −26.6677 −1.89042 −0.945210 0.326463i \(-0.894143\pi\)
−0.945210 + 0.326463i \(0.894143\pi\)
\(200\) 1.33447 0.0943613
\(201\) −0.630160 −0.0444480
\(202\) −24.0041 −1.68893
\(203\) 1.82689 0.128222
\(204\) 0 0
\(205\) −6.59268 −0.460453
\(206\) 12.4837 0.869779
\(207\) −2.63282 −0.182993
\(208\) −14.9193 −1.03447
\(209\) −0.410576 −0.0284001
\(210\) 5.39381 0.372208
\(211\) −7.80566 −0.537364 −0.268682 0.963229i \(-0.586588\pi\)
−0.268682 + 0.963229i \(0.586588\pi\)
\(212\) −15.2115 −1.04473
\(213\) 2.87540 0.197019
\(214\) 26.6193 1.81966
\(215\) −9.99466 −0.681630
\(216\) −5.07360 −0.345215
\(217\) −6.01049 −0.408019
\(218\) −8.57459 −0.580745
\(219\) −3.70828 −0.250582
\(220\) −0.0662042 −0.00446348
\(221\) 0 0
\(222\) −0.418579 −0.0280932
\(223\) 4.76891 0.319350 0.159675 0.987170i \(-0.448955\pi\)
0.159675 + 0.987170i \(0.448955\pi\)
\(224\) −27.0814 −1.80945
\(225\) −2.52677 −0.168451
\(226\) 5.44152 0.361964
\(227\) −11.2111 −0.744105 −0.372053 0.928212i \(-0.621346\pi\)
−0.372053 + 0.928212i \(0.621346\pi\)
\(228\) 6.78405 0.449285
\(229\) 20.6484 1.36449 0.682244 0.731125i \(-0.261004\pi\)
0.682244 + 0.731125i \(0.261004\pi\)
\(230\) −1.88162 −0.124070
\(231\) 0.156813 0.0103175
\(232\) −0.561484 −0.0368632
\(233\) −3.05851 −0.200370 −0.100185 0.994969i \(-0.531943\pi\)
−0.100185 + 0.994969i \(0.531943\pi\)
\(234\) 13.8032 0.902342
\(235\) −6.13168 −0.399987
\(236\) −6.42842 −0.418455
\(237\) −6.86745 −0.446089
\(238\) 0 0
\(239\) 4.94072 0.319588 0.159794 0.987150i \(-0.448917\pi\)
0.159794 + 0.987150i \(0.448917\pi\)
\(240\) −3.39272 −0.218999
\(241\) 1.66176 0.107043 0.0535217 0.998567i \(-0.482955\pi\)
0.0535217 + 0.998567i \(0.482955\pi\)
\(242\) 19.8592 1.27659
\(243\) 14.8213 0.950787
\(244\) −7.52909 −0.482001
\(245\) 11.8523 0.757218
\(246\) 8.18983 0.522165
\(247\) 23.6574 1.50529
\(248\) 1.84729 0.117303
\(249\) 4.49215 0.284679
\(250\) −1.80583 −0.114211
\(251\) 9.14240 0.577063 0.288531 0.957470i \(-0.406833\pi\)
0.288531 + 0.957470i \(0.406833\pi\)
\(252\) 13.8347 0.871506
\(253\) −0.0547038 −0.00343920
\(254\) 0.0149650 0.000938989 0
\(255\) 0 0
\(256\) 20.7617 1.29761
\(257\) −16.6522 −1.03874 −0.519369 0.854550i \(-0.673833\pi\)
−0.519369 + 0.854550i \(0.673833\pi\)
\(258\) 12.4160 0.772985
\(259\) −1.46301 −0.0909070
\(260\) 3.81469 0.236577
\(261\) 1.06315 0.0658073
\(262\) −14.7800 −0.913109
\(263\) −21.7280 −1.33981 −0.669903 0.742448i \(-0.733665\pi\)
−0.669903 + 0.742448i \(0.733665\pi\)
\(264\) −0.0481956 −0.00296624
\(265\) −12.0629 −0.741017
\(266\) 61.3183 3.75967
\(267\) 7.02771 0.430089
\(268\) −1.15515 −0.0705618
\(269\) 23.1721 1.41283 0.706414 0.707799i \(-0.250312\pi\)
0.706414 + 0.707799i \(0.250312\pi\)
\(270\) 6.86569 0.417833
\(271\) 3.95595 0.240307 0.120153 0.992755i \(-0.461661\pi\)
0.120153 + 0.992755i \(0.461661\pi\)
\(272\) 0 0
\(273\) −9.03556 −0.546857
\(274\) 4.03398 0.243702
\(275\) −0.0525004 −0.00316590
\(276\) 0.903885 0.0544075
\(277\) 16.9099 1.01602 0.508009 0.861352i \(-0.330382\pi\)
0.508009 + 0.861352i \(0.330382\pi\)
\(278\) 35.6395 2.13752
\(279\) −3.49779 −0.209407
\(280\) −5.79417 −0.346268
\(281\) 4.66987 0.278581 0.139291 0.990252i \(-0.455518\pi\)
0.139291 + 0.990252i \(0.455518\pi\)
\(282\) 7.61715 0.453595
\(283\) 8.70036 0.517183 0.258591 0.965987i \(-0.416742\pi\)
0.258591 + 0.965987i \(0.416742\pi\)
\(284\) 5.27089 0.312770
\(285\) 5.37981 0.318672
\(286\) 0.286798 0.0169587
\(287\) 28.6250 1.68968
\(288\) −15.7599 −0.928661
\(289\) 0 0
\(290\) 0.759811 0.0446176
\(291\) −13.2244 −0.775227
\(292\) −6.79765 −0.397802
\(293\) 0.739100 0.0431787 0.0215893 0.999767i \(-0.493127\pi\)
0.0215893 + 0.999767i \(0.493127\pi\)
\(294\) −14.7237 −0.858704
\(295\) −5.09779 −0.296805
\(296\) 0.449649 0.0261353
\(297\) 0.199605 0.0115822
\(298\) −18.3896 −1.06528
\(299\) 3.15204 0.182287
\(300\) 0.867478 0.0500839
\(301\) 43.3961 2.50131
\(302\) 27.7165 1.59491
\(303\) 9.14419 0.525320
\(304\) −38.5693 −2.21210
\(305\) −5.97063 −0.341877
\(306\) 0 0
\(307\) −2.86108 −0.163290 −0.0816451 0.996661i \(-0.526017\pi\)
−0.0816451 + 0.996661i \(0.526017\pi\)
\(308\) 0.287454 0.0163792
\(309\) −4.75556 −0.270535
\(310\) −2.49979 −0.141979
\(311\) −20.4980 −1.16233 −0.581167 0.813784i \(-0.697404\pi\)
−0.581167 + 0.813784i \(0.697404\pi\)
\(312\) 2.77703 0.157219
\(313\) −8.46543 −0.478494 −0.239247 0.970959i \(-0.576901\pi\)
−0.239247 + 0.970959i \(0.576901\pi\)
\(314\) −16.9969 −0.959189
\(315\) 10.9711 0.618149
\(316\) −12.5887 −0.708171
\(317\) 21.0918 1.18463 0.592317 0.805705i \(-0.298213\pi\)
0.592317 + 0.805705i \(0.298213\pi\)
\(318\) 14.9852 0.840331
\(319\) 0.0220898 0.00123679
\(320\) −1.39954 −0.0782367
\(321\) −10.1404 −0.565982
\(322\) 8.16985 0.455288
\(323\) 0 0
\(324\) 6.26082 0.347823
\(325\) 3.02508 0.167801
\(326\) 22.4741 1.24473
\(327\) 3.26643 0.180634
\(328\) −8.79773 −0.485774
\(329\) 26.6233 1.46779
\(330\) 0.0652192 0.00359020
\(331\) −15.2261 −0.836903 −0.418451 0.908239i \(-0.637427\pi\)
−0.418451 + 0.908239i \(0.637427\pi\)
\(332\) 8.23457 0.451931
\(333\) −0.851393 −0.0466561
\(334\) 22.7580 1.24526
\(335\) −0.916040 −0.0500486
\(336\) 14.7309 0.803638
\(337\) −11.4737 −0.625011 −0.312506 0.949916i \(-0.601168\pi\)
−0.312506 + 0.949916i \(0.601168\pi\)
\(338\) 6.95046 0.378055
\(339\) −2.07290 −0.112585
\(340\) 0 0
\(341\) −0.0726759 −0.00393562
\(342\) 35.6840 1.92957
\(343\) −21.0685 −1.13759
\(344\) −13.3376 −0.719114
\(345\) 0.716788 0.0385906
\(346\) −22.0248 −1.18406
\(347\) 14.9843 0.804399 0.402199 0.915552i \(-0.368246\pi\)
0.402199 + 0.915552i \(0.368246\pi\)
\(348\) −0.364995 −0.0195658
\(349\) −4.53667 −0.242842 −0.121421 0.992601i \(-0.538745\pi\)
−0.121421 + 0.992601i \(0.538745\pi\)
\(350\) 7.84078 0.419108
\(351\) −11.5012 −0.613890
\(352\) −0.327454 −0.0174534
\(353\) −7.71469 −0.410612 −0.205306 0.978698i \(-0.565819\pi\)
−0.205306 + 0.978698i \(0.565819\pi\)
\(354\) 6.33279 0.336584
\(355\) 4.17986 0.221844
\(356\) 12.8825 0.682771
\(357\) 0 0
\(358\) −25.0302 −1.32289
\(359\) −11.0284 −0.582057 −0.291029 0.956714i \(-0.593997\pi\)
−0.291029 + 0.956714i \(0.593997\pi\)
\(360\) −3.37190 −0.177715
\(361\) 42.1592 2.21890
\(362\) 3.69155 0.194023
\(363\) −7.56519 −0.397070
\(364\) −16.5631 −0.868142
\(365\) −5.39059 −0.282156
\(366\) 7.41708 0.387697
\(367\) −16.0285 −0.836683 −0.418342 0.908290i \(-0.637389\pi\)
−0.418342 + 0.908290i \(0.637389\pi\)
\(368\) −5.13885 −0.267881
\(369\) 16.6582 0.867191
\(370\) −0.608473 −0.0316330
\(371\) 52.3761 2.71923
\(372\) 1.20084 0.0622608
\(373\) 10.2501 0.530732 0.265366 0.964148i \(-0.414507\pi\)
0.265366 + 0.964148i \(0.414507\pi\)
\(374\) 0 0
\(375\) 0.687917 0.0355239
\(376\) −8.18254 −0.421982
\(377\) −1.27281 −0.0655533
\(378\) −29.8103 −1.53328
\(379\) 13.9520 0.716664 0.358332 0.933594i \(-0.383346\pi\)
0.358332 + 0.933594i \(0.383346\pi\)
\(380\) 9.86173 0.505896
\(381\) −0.00570081 −0.000292061 0
\(382\) 5.56297 0.284626
\(383\) −5.62186 −0.287264 −0.143632 0.989631i \(-0.545878\pi\)
−0.143632 + 0.989631i \(0.545878\pi\)
\(384\) −6.84272 −0.349191
\(385\) 0.227953 0.0116176
\(386\) −37.2757 −1.89729
\(387\) 25.2542 1.28374
\(388\) −24.2416 −1.23068
\(389\) 35.8157 1.81593 0.907965 0.419047i \(-0.137636\pi\)
0.907965 + 0.419047i \(0.137636\pi\)
\(390\) −3.75794 −0.190291
\(391\) 0 0
\(392\) 15.8166 0.798858
\(393\) 5.63032 0.284012
\(394\) 32.9320 1.65909
\(395\) −9.98296 −0.502297
\(396\) 0.167283 0.00840627
\(397\) 3.89017 0.195242 0.0976211 0.995224i \(-0.468877\pi\)
0.0976211 + 0.995224i \(0.468877\pi\)
\(398\) 48.1573 2.41390
\(399\) −23.3587 −1.16940
\(400\) −4.93187 −0.246593
\(401\) 36.7386 1.83464 0.917318 0.398156i \(-0.130350\pi\)
0.917318 + 0.398156i \(0.130350\pi\)
\(402\) 1.13796 0.0567564
\(403\) 4.18759 0.208599
\(404\) 16.7622 0.833952
\(405\) 4.96488 0.246707
\(406\) −3.29904 −0.163729
\(407\) −0.0176900 −0.000876860 0
\(408\) 0 0
\(409\) −22.3529 −1.10528 −0.552641 0.833419i \(-0.686380\pi\)
−0.552641 + 0.833419i \(0.686380\pi\)
\(410\) 11.9053 0.587959
\(411\) −1.53671 −0.0758005
\(412\) −8.71743 −0.429477
\(413\) 22.1342 1.08915
\(414\) 4.75442 0.233667
\(415\) 6.53008 0.320549
\(416\) 18.8679 0.925077
\(417\) −13.5766 −0.664849
\(418\) 0.741431 0.0362646
\(419\) −21.8658 −1.06821 −0.534107 0.845417i \(-0.679352\pi\)
−0.534107 + 0.845417i \(0.679352\pi\)
\(420\) −3.76653 −0.183788
\(421\) 20.6111 1.00453 0.502263 0.864715i \(-0.332501\pi\)
0.502263 + 0.864715i \(0.332501\pi\)
\(422\) 14.0957 0.686168
\(423\) 15.4934 0.753313
\(424\) −16.0975 −0.781766
\(425\) 0 0
\(426\) −5.19248 −0.251576
\(427\) 25.9241 1.25455
\(428\) −18.5884 −0.898503
\(429\) −0.109254 −0.00527481
\(430\) 18.0487 0.870384
\(431\) 22.3052 1.07441 0.537203 0.843453i \(-0.319481\pi\)
0.537203 + 0.843453i \(0.319481\pi\)
\(432\) 18.7508 0.902146
\(433\) 8.93127 0.429210 0.214605 0.976701i \(-0.431154\pi\)
0.214605 + 0.976701i \(0.431154\pi\)
\(434\) 10.8539 0.521005
\(435\) −0.289444 −0.0138778
\(436\) 5.98769 0.286758
\(437\) 8.14865 0.389803
\(438\) 6.69652 0.319972
\(439\) −22.2643 −1.06262 −0.531308 0.847179i \(-0.678299\pi\)
−0.531308 + 0.847179i \(0.678299\pi\)
\(440\) −0.0700602 −0.00333999
\(441\) −29.9481 −1.42610
\(442\) 0 0
\(443\) −6.17421 −0.293346 −0.146673 0.989185i \(-0.546856\pi\)
−0.146673 + 0.989185i \(0.546856\pi\)
\(444\) 0.292296 0.0138718
\(445\) 10.2159 0.484281
\(446\) −8.61184 −0.407783
\(447\) 7.00539 0.331344
\(448\) 6.07671 0.287097
\(449\) −30.2985 −1.42988 −0.714938 0.699188i \(-0.753545\pi\)
−0.714938 + 0.699188i \(0.753545\pi\)
\(450\) 4.56292 0.215098
\(451\) 0.346119 0.0162981
\(452\) −3.79984 −0.178730
\(453\) −10.5584 −0.496077
\(454\) 20.2453 0.950159
\(455\) −13.1347 −0.615763
\(456\) 7.17919 0.336196
\(457\) −25.5756 −1.19638 −0.598188 0.801356i \(-0.704112\pi\)
−0.598188 + 0.801356i \(0.704112\pi\)
\(458\) −37.2876 −1.74233
\(459\) 0 0
\(460\) 1.31395 0.0612630
\(461\) −14.0565 −0.654677 −0.327338 0.944907i \(-0.606152\pi\)
−0.327338 + 0.944907i \(0.606152\pi\)
\(462\) −0.283177 −0.0131746
\(463\) −25.1233 −1.16758 −0.583789 0.811905i \(-0.698431\pi\)
−0.583789 + 0.811905i \(0.698431\pi\)
\(464\) 2.07511 0.0963343
\(465\) 0.952278 0.0441608
\(466\) 5.52315 0.255855
\(467\) 22.2900 1.03146 0.515730 0.856751i \(-0.327521\pi\)
0.515730 + 0.856751i \(0.327521\pi\)
\(468\) −9.63884 −0.445556
\(469\) 3.97738 0.183658
\(470\) 11.0728 0.510749
\(471\) 6.47483 0.298344
\(472\) −6.80285 −0.313126
\(473\) 0.524724 0.0241268
\(474\) 12.4014 0.569617
\(475\) 7.82043 0.358826
\(476\) 0 0
\(477\) 30.4801 1.39559
\(478\) −8.92209 −0.408087
\(479\) 26.7496 1.22222 0.611111 0.791545i \(-0.290723\pi\)
0.611111 + 0.791545i \(0.290723\pi\)
\(480\) 4.29066 0.195841
\(481\) 1.01930 0.0464760
\(482\) −3.00086 −0.136685
\(483\) −3.11224 −0.141612
\(484\) −13.8678 −0.630353
\(485\) −19.2238 −0.872908
\(486\) −26.7647 −1.21407
\(487\) 23.1460 1.04885 0.524423 0.851458i \(-0.324281\pi\)
0.524423 + 0.851458i \(0.324281\pi\)
\(488\) −7.96763 −0.360677
\(489\) −8.56135 −0.387158
\(490\) −21.4033 −0.966903
\(491\) 7.78981 0.351549 0.175775 0.984430i \(-0.443757\pi\)
0.175775 + 0.984430i \(0.443757\pi\)
\(492\) −5.71901 −0.257833
\(493\) 0 0
\(494\) −42.7213 −1.92212
\(495\) 0.132657 0.00596247
\(496\) −6.82714 −0.306548
\(497\) −18.1487 −0.814079
\(498\) −8.11207 −0.363510
\(499\) −8.79764 −0.393837 −0.196918 0.980420i \(-0.563093\pi\)
−0.196918 + 0.980420i \(0.563093\pi\)
\(500\) 1.26102 0.0563946
\(501\) −8.66948 −0.387324
\(502\) −16.5096 −0.736860
\(503\) −7.83946 −0.349544 −0.174772 0.984609i \(-0.555919\pi\)
−0.174772 + 0.984609i \(0.555919\pi\)
\(504\) 14.6405 0.652141
\(505\) 13.2926 0.591512
\(506\) 0.0987858 0.00439156
\(507\) −2.64773 −0.117590
\(508\) −0.0104502 −0.000463651 0
\(509\) −2.52868 −0.112082 −0.0560409 0.998428i \(-0.517848\pi\)
−0.0560409 + 0.998428i \(0.517848\pi\)
\(510\) 0 0
\(511\) 23.4055 1.03540
\(512\) −17.5981 −0.777732
\(513\) −29.7330 −1.31274
\(514\) 30.0711 1.32638
\(515\) −6.91299 −0.304623
\(516\) −8.67015 −0.381682
\(517\) 0.321916 0.0141578
\(518\) 2.64195 0.116080
\(519\) 8.39019 0.368289
\(520\) 4.03687 0.177029
\(521\) −10.1083 −0.442853 −0.221426 0.975177i \(-0.571071\pi\)
−0.221426 + 0.975177i \(0.571071\pi\)
\(522\) −1.91987 −0.0840303
\(523\) −5.80494 −0.253833 −0.126916 0.991913i \(-0.540508\pi\)
−0.126916 + 0.991913i \(0.540508\pi\)
\(524\) 10.3209 0.450872
\(525\) −2.98689 −0.130358
\(526\) 39.2371 1.71082
\(527\) 0 0
\(528\) 0.178119 0.00775164
\(529\) −21.9143 −0.952796
\(530\) 21.7835 0.946215
\(531\) 12.8809 0.558985
\(532\) −42.8189 −1.85644
\(533\) −19.9434 −0.863844
\(534\) −12.6908 −0.549187
\(535\) −14.7407 −0.637298
\(536\) −1.22243 −0.0528009
\(537\) 9.53508 0.411469
\(538\) −41.8449 −1.80406
\(539\) −0.622253 −0.0268023
\(540\) −4.79435 −0.206316
\(541\) −42.3404 −1.82035 −0.910177 0.414219i \(-0.864055\pi\)
−0.910177 + 0.414219i \(0.864055\pi\)
\(542\) −7.14377 −0.306851
\(543\) −1.40627 −0.0603487
\(544\) 0 0
\(545\) 4.74828 0.203394
\(546\) 16.3167 0.698290
\(547\) 20.0061 0.855398 0.427699 0.903921i \(-0.359324\pi\)
0.427699 + 0.903921i \(0.359324\pi\)
\(548\) −2.81695 −0.120334
\(549\) 15.0864 0.643872
\(550\) 0.0948069 0.00404258
\(551\) −3.29048 −0.140179
\(552\) 0.956532 0.0407127
\(553\) 43.3453 1.84323
\(554\) −30.5364 −1.29737
\(555\) 0.231793 0.00983907
\(556\) −24.8873 −1.05546
\(557\) −25.8965 −1.09727 −0.548636 0.836062i \(-0.684853\pi\)
−0.548636 + 0.836062i \(0.684853\pi\)
\(558\) 6.31641 0.267395
\(559\) −30.2346 −1.27879
\(560\) 21.4138 0.904899
\(561\) 0 0
\(562\) −8.43299 −0.355724
\(563\) 28.0309 1.18136 0.590681 0.806905i \(-0.298859\pi\)
0.590681 + 0.806905i \(0.298859\pi\)
\(564\) −5.31910 −0.223975
\(565\) −3.01331 −0.126771
\(566\) −15.7114 −0.660398
\(567\) −21.5571 −0.905315
\(568\) 5.57790 0.234043
\(569\) 39.1921 1.64302 0.821509 0.570195i \(-0.193132\pi\)
0.821509 + 0.570195i \(0.193132\pi\)
\(570\) −9.71502 −0.406917
\(571\) 3.86762 0.161855 0.0809275 0.996720i \(-0.474212\pi\)
0.0809275 + 0.996720i \(0.474212\pi\)
\(572\) −0.200273 −0.00837383
\(573\) −2.11917 −0.0885297
\(574\) −51.6918 −2.15757
\(575\) 1.04197 0.0434531
\(576\) 3.53632 0.147347
\(577\) −14.4808 −0.602845 −0.301423 0.953491i \(-0.597461\pi\)
−0.301423 + 0.953491i \(0.597461\pi\)
\(578\) 0 0
\(579\) 14.1999 0.590128
\(580\) −0.530580 −0.0220311
\(581\) −28.3531 −1.17629
\(582\) 23.8810 0.989898
\(583\) 0.633306 0.0262289
\(584\) −7.19357 −0.297672
\(585\) −7.64368 −0.316027
\(586\) −1.33469 −0.0551355
\(587\) 31.2452 1.28963 0.644814 0.764339i \(-0.276935\pi\)
0.644814 + 0.764339i \(0.276935\pi\)
\(588\) 10.2816 0.424008
\(589\) 10.8258 0.446068
\(590\) 9.20574 0.378994
\(591\) −12.5452 −0.516041
\(592\) −1.66179 −0.0682991
\(593\) −2.00543 −0.0823530 −0.0411765 0.999152i \(-0.513111\pi\)
−0.0411765 + 0.999152i \(0.513111\pi\)
\(594\) −0.360452 −0.0147895
\(595\) 0 0
\(596\) 12.8416 0.526012
\(597\) −18.3451 −0.750816
\(598\) −5.69204 −0.232765
\(599\) 36.0451 1.47276 0.736381 0.676567i \(-0.236533\pi\)
0.736381 + 0.676567i \(0.236533\pi\)
\(600\) 0.918004 0.0374774
\(601\) −38.7948 −1.58247 −0.791237 0.611510i \(-0.790562\pi\)
−0.791237 + 0.611510i \(0.790562\pi\)
\(602\) −78.3660 −3.19396
\(603\) 2.31462 0.0942588
\(604\) −19.3546 −0.787529
\(605\) −10.9972 −0.447102
\(606\) −16.5129 −0.670789
\(607\) −28.9535 −1.17519 −0.587594 0.809156i \(-0.699925\pi\)
−0.587594 + 0.809156i \(0.699925\pi\)
\(608\) 48.7774 1.97818
\(609\) 1.25675 0.0509259
\(610\) 10.7819 0.436548
\(611\) −18.5488 −0.750405
\(612\) 0 0
\(613\) 9.10707 0.367831 0.183915 0.982942i \(-0.441123\pi\)
0.183915 + 0.982942i \(0.441123\pi\)
\(614\) 5.16662 0.208508
\(615\) −4.53522 −0.182878
\(616\) 0.304197 0.0122564
\(617\) 5.05551 0.203527 0.101764 0.994809i \(-0.467551\pi\)
0.101764 + 0.994809i \(0.467551\pi\)
\(618\) 8.58774 0.345450
\(619\) −16.8593 −0.677632 −0.338816 0.940853i \(-0.610026\pi\)
−0.338816 + 0.940853i \(0.610026\pi\)
\(620\) 1.74562 0.0701058
\(621\) −3.96152 −0.158970
\(622\) 37.0159 1.48420
\(623\) −44.3568 −1.77712
\(624\) −10.2632 −0.410858
\(625\) 1.00000 0.0400000
\(626\) 15.2871 0.610996
\(627\) −0.282442 −0.0112797
\(628\) 11.8690 0.473625
\(629\) 0 0
\(630\) −19.8119 −0.789323
\(631\) 2.71309 0.108007 0.0540033 0.998541i \(-0.482802\pi\)
0.0540033 + 0.998541i \(0.482802\pi\)
\(632\) −13.3220 −0.529919
\(633\) −5.36965 −0.213424
\(634\) −38.0882 −1.51268
\(635\) −0.00828706 −0.000328862 0
\(636\) −10.4643 −0.414936
\(637\) 35.8543 1.42060
\(638\) −0.0398904 −0.00157928
\(639\) −10.5615 −0.417808
\(640\) −9.94702 −0.393190
\(641\) −22.8123 −0.901030 −0.450515 0.892769i \(-0.648760\pi\)
−0.450515 + 0.892769i \(0.648760\pi\)
\(642\) 18.3118 0.722711
\(643\) 19.2771 0.760214 0.380107 0.924942i \(-0.375887\pi\)
0.380107 + 0.924942i \(0.375887\pi\)
\(644\) −5.70506 −0.224811
\(645\) −6.87550 −0.270722
\(646\) 0 0
\(647\) 12.8098 0.503606 0.251803 0.967778i \(-0.418976\pi\)
0.251803 + 0.967778i \(0.418976\pi\)
\(648\) 6.62548 0.260273
\(649\) 0.267636 0.0105056
\(650\) −5.46278 −0.214268
\(651\) −4.13472 −0.162052
\(652\) −15.6938 −0.614618
\(653\) 41.7200 1.63263 0.816315 0.577607i \(-0.196013\pi\)
0.816315 + 0.577607i \(0.196013\pi\)
\(654\) −5.89861 −0.230654
\(655\) 8.18458 0.319798
\(656\) 32.5142 1.26947
\(657\) 13.6208 0.531397
\(658\) −48.0772 −1.87424
\(659\) −34.3290 −1.33727 −0.668633 0.743592i \(-0.733120\pi\)
−0.668633 + 0.743592i \(0.733120\pi\)
\(660\) −0.0455430 −0.00177276
\(661\) 27.7009 1.07744 0.538720 0.842485i \(-0.318908\pi\)
0.538720 + 0.842485i \(0.318908\pi\)
\(662\) 27.4958 1.06865
\(663\) 0 0
\(664\) 8.71419 0.338176
\(665\) −33.9558 −1.31675
\(666\) 1.53747 0.0595758
\(667\) −0.438413 −0.0169754
\(668\) −15.8920 −0.614881
\(669\) 3.28062 0.126836
\(670\) 1.65421 0.0639078
\(671\) 0.313461 0.0121010
\(672\) −18.6297 −0.718658
\(673\) 36.2078 1.39571 0.697854 0.716240i \(-0.254138\pi\)
0.697854 + 0.716240i \(0.254138\pi\)
\(674\) 20.7195 0.798086
\(675\) −3.80196 −0.146337
\(676\) −4.85355 −0.186675
\(677\) −17.1158 −0.657812 −0.328906 0.944363i \(-0.606680\pi\)
−0.328906 + 0.944363i \(0.606680\pi\)
\(678\) 3.74331 0.143761
\(679\) 83.4684 3.20322
\(680\) 0 0
\(681\) −7.71229 −0.295536
\(682\) 0.131240 0.00502545
\(683\) 8.85022 0.338644 0.169322 0.985561i \(-0.445842\pi\)
0.169322 + 0.985561i \(0.445842\pi\)
\(684\) −24.9183 −0.952776
\(685\) −2.23387 −0.0853516
\(686\) 38.0462 1.45261
\(687\) 14.2044 0.541932
\(688\) 49.2924 1.87925
\(689\) −36.4911 −1.39020
\(690\) −1.29440 −0.0492769
\(691\) −1.39834 −0.0531953 −0.0265977 0.999646i \(-0.508467\pi\)
−0.0265977 + 0.999646i \(0.508467\pi\)
\(692\) 15.3801 0.584663
\(693\) −0.575985 −0.0218799
\(694\) −27.0591 −1.02715
\(695\) −19.7358 −0.748622
\(696\) −0.386254 −0.0146409
\(697\) 0 0
\(698\) 8.19245 0.310089
\(699\) −2.10400 −0.0795806
\(700\) −5.47526 −0.206946
\(701\) 2.36331 0.0892608 0.0446304 0.999004i \(-0.485789\pi\)
0.0446304 + 0.999004i \(0.485789\pi\)
\(702\) 20.7693 0.783885
\(703\) 2.63509 0.0993843
\(704\) 0.0734765 0.00276925
\(705\) −4.21809 −0.158862
\(706\) 13.9314 0.524316
\(707\) −57.7154 −2.17061
\(708\) −4.42222 −0.166197
\(709\) 32.5266 1.22156 0.610782 0.791799i \(-0.290855\pi\)
0.610782 + 0.791799i \(0.290855\pi\)
\(710\) −7.54812 −0.283276
\(711\) 25.2247 0.945998
\(712\) 13.6328 0.510912
\(713\) 1.44239 0.0540179
\(714\) 0 0
\(715\) −0.158818 −0.00593945
\(716\) 17.4788 0.653212
\(717\) 3.39880 0.126931
\(718\) 19.9154 0.743237
\(719\) 16.4302 0.612744 0.306372 0.951912i \(-0.400885\pi\)
0.306372 + 0.951912i \(0.400885\pi\)
\(720\) 12.4617 0.464420
\(721\) 30.0157 1.11784
\(722\) −76.1323 −2.83335
\(723\) 1.14315 0.0425143
\(724\) −2.57783 −0.0958043
\(725\) −0.420754 −0.0156264
\(726\) 13.6614 0.507024
\(727\) −32.4709 −1.20428 −0.602139 0.798391i \(-0.705685\pi\)
−0.602139 + 0.798391i \(0.705685\pi\)
\(728\) −17.5278 −0.649624
\(729\) −4.69881 −0.174030
\(730\) 9.73448 0.360289
\(731\) 0 0
\(732\) −5.17939 −0.191436
\(733\) −8.63424 −0.318913 −0.159456 0.987205i \(-0.550974\pi\)
−0.159456 + 0.987205i \(0.550974\pi\)
\(734\) 28.9448 1.06837
\(735\) 8.15343 0.300744
\(736\) 6.49894 0.239554
\(737\) 0.0480925 0.00177151
\(738\) −30.0819 −1.10733
\(739\) 10.6026 0.390022 0.195011 0.980801i \(-0.437526\pi\)
0.195011 + 0.980801i \(0.437526\pi\)
\(740\) 0.424900 0.0156196
\(741\) 16.2743 0.597853
\(742\) −94.5824 −3.47223
\(743\) −22.3424 −0.819665 −0.409832 0.912161i \(-0.634413\pi\)
−0.409832 + 0.912161i \(0.634413\pi\)
\(744\) 1.27079 0.0465893
\(745\) 10.1835 0.373094
\(746\) −18.5100 −0.677700
\(747\) −16.5000 −0.603704
\(748\) 0 0
\(749\) 64.0032 2.33863
\(750\) −1.24226 −0.0453610
\(751\) 7.13989 0.260538 0.130269 0.991479i \(-0.458416\pi\)
0.130269 + 0.991479i \(0.458416\pi\)
\(752\) 30.2406 1.10276
\(753\) 6.28921 0.229192
\(754\) 2.29849 0.0837060
\(755\) −15.3484 −0.558584
\(756\) 20.8167 0.757097
\(757\) 18.0266 0.655186 0.327593 0.944819i \(-0.393762\pi\)
0.327593 + 0.944819i \(0.393762\pi\)
\(758\) −25.1949 −0.915119
\(759\) −0.0376317 −0.00136594
\(760\) 10.4361 0.378558
\(761\) −49.9437 −1.81046 −0.905230 0.424923i \(-0.860301\pi\)
−0.905230 + 0.424923i \(0.860301\pi\)
\(762\) 0.0102947 0.000372937 0
\(763\) −20.6167 −0.746375
\(764\) −3.88466 −0.140542
\(765\) 0 0
\(766\) 10.1521 0.366811
\(767\) −15.4212 −0.556828
\(768\) 14.2823 0.515369
\(769\) −43.9115 −1.58349 −0.791745 0.610852i \(-0.790827\pi\)
−0.791745 + 0.610852i \(0.790827\pi\)
\(770\) −0.411645 −0.0148346
\(771\) −11.4554 −0.412554
\(772\) 26.0299 0.936836
\(773\) −9.67759 −0.348079 −0.174039 0.984739i \(-0.555682\pi\)
−0.174039 + 0.984739i \(0.555682\pi\)
\(774\) −45.6048 −1.63923
\(775\) 1.38429 0.0497252
\(776\) −25.6536 −0.920910
\(777\) −1.00643 −0.0361055
\(778\) −64.6771 −2.31879
\(779\) −51.5576 −1.84724
\(780\) 2.62419 0.0939610
\(781\) −0.219445 −0.00785234
\(782\) 0 0
\(783\) 1.59969 0.0571683
\(784\) −58.4542 −2.08765
\(785\) 9.41222 0.335937
\(786\) −10.1674 −0.362659
\(787\) −19.8384 −0.707161 −0.353581 0.935404i \(-0.615036\pi\)
−0.353581 + 0.935404i \(0.615036\pi\)
\(788\) −22.9966 −0.819221
\(789\) −14.9471 −0.532130
\(790\) 18.0275 0.641391
\(791\) 13.0836 0.465198
\(792\) 0.177026 0.00629035
\(793\) −18.0616 −0.641387
\(794\) −7.02499 −0.249308
\(795\) −8.29826 −0.294309
\(796\) −33.6285 −1.19193
\(797\) 5.56111 0.196984 0.0984922 0.995138i \(-0.468598\pi\)
0.0984922 + 0.995138i \(0.468598\pi\)
\(798\) 42.1819 1.49322
\(799\) 0 0
\(800\) 6.23717 0.220517
\(801\) −25.8133 −0.912068
\(802\) −66.3436 −2.34267
\(803\) 0.283008 0.00998714
\(804\) −0.794645 −0.0280250
\(805\) −4.52415 −0.159455
\(806\) −7.56207 −0.266363
\(807\) 15.9405 0.561132
\(808\) 17.7385 0.624040
\(809\) 31.0442 1.09146 0.545729 0.837962i \(-0.316253\pi\)
0.545729 + 0.837962i \(0.316253\pi\)
\(810\) −8.96572 −0.315023
\(811\) −46.9708 −1.64937 −0.824683 0.565595i \(-0.808647\pi\)
−0.824683 + 0.565595i \(0.808647\pi\)
\(812\) 2.30374 0.0808455
\(813\) 2.72136 0.0954424
\(814\) 0.0319451 0.00111968
\(815\) −12.4453 −0.435941
\(816\) 0 0
\(817\) −78.1626 −2.73456
\(818\) 40.3656 1.41135
\(819\) 33.1883 1.15969
\(820\) −8.31351 −0.290320
\(821\) −16.7433 −0.584346 −0.292173 0.956366i \(-0.594378\pi\)
−0.292173 + 0.956366i \(0.594378\pi\)
\(822\) 2.77505 0.0967908
\(823\) 26.5996 0.927205 0.463602 0.886043i \(-0.346557\pi\)
0.463602 + 0.886043i \(0.346557\pi\)
\(824\) −9.22517 −0.321374
\(825\) −0.0361159 −0.00125740
\(826\) −39.9707 −1.39076
\(827\) −34.4855 −1.19918 −0.599590 0.800307i \(-0.704670\pi\)
−0.599590 + 0.800307i \(0.704670\pi\)
\(828\) −3.32004 −0.115379
\(829\) −7.29346 −0.253312 −0.126656 0.991947i \(-0.540424\pi\)
−0.126656 + 0.991947i \(0.540424\pi\)
\(830\) −11.7922 −0.409314
\(831\) 11.6326 0.403531
\(832\) −4.23372 −0.146778
\(833\) 0 0
\(834\) 24.5170 0.848956
\(835\) −12.6025 −0.436128
\(836\) −0.517745 −0.0179066
\(837\) −5.26302 −0.181917
\(838\) 39.4859 1.36402
\(839\) −35.5082 −1.22588 −0.612940 0.790129i \(-0.710013\pi\)
−0.612940 + 0.790129i \(0.710013\pi\)
\(840\) −3.98591 −0.137527
\(841\) −28.8230 −0.993895
\(842\) −37.2202 −1.28269
\(843\) 3.21248 0.110644
\(844\) −9.84311 −0.338814
\(845\) −3.84890 −0.132406
\(846\) −27.9784 −0.961916
\(847\) 47.7492 1.64068
\(848\) 59.4925 2.04298
\(849\) 5.98513 0.205409
\(850\) 0 0
\(851\) 0.351091 0.0120352
\(852\) 3.62594 0.124223
\(853\) 0.238822 0.00817712 0.00408856 0.999992i \(-0.498699\pi\)
0.00408856 + 0.999992i \(0.498699\pi\)
\(854\) −46.8144 −1.60196
\(855\) −19.7604 −0.675793
\(856\) −19.6711 −0.672343
\(857\) 18.1950 0.621528 0.310764 0.950487i \(-0.399415\pi\)
0.310764 + 0.950487i \(0.399415\pi\)
\(858\) 0.197293 0.00673548
\(859\) −20.1560 −0.687715 −0.343857 0.939022i \(-0.611734\pi\)
−0.343857 + 0.939022i \(0.611734\pi\)
\(860\) −12.6035 −0.429775
\(861\) 19.6916 0.671088
\(862\) −40.2795 −1.37192
\(863\) 14.7597 0.502424 0.251212 0.967932i \(-0.419171\pi\)
0.251212 + 0.967932i \(0.419171\pi\)
\(864\) −23.7135 −0.806749
\(865\) 12.1965 0.414694
\(866\) −16.1284 −0.548064
\(867\) 0 0
\(868\) −7.57936 −0.257260
\(869\) 0.524110 0.0177792
\(870\) 0.522687 0.0177207
\(871\) −2.77109 −0.0938949
\(872\) 6.33644 0.214579
\(873\) 48.5741 1.64398
\(874\) −14.7151 −0.497745
\(875\) −4.34193 −0.146784
\(876\) −4.67622 −0.157995
\(877\) 42.7577 1.44382 0.721912 0.691984i \(-0.243263\pi\)
0.721912 + 0.691984i \(0.243263\pi\)
\(878\) 40.2055 1.35687
\(879\) 0.508439 0.0171492
\(880\) 0.258925 0.00872837
\(881\) 43.6832 1.47172 0.735862 0.677131i \(-0.236777\pi\)
0.735862 + 0.677131i \(0.236777\pi\)
\(882\) 54.0813 1.82101
\(883\) −41.4824 −1.39599 −0.697997 0.716101i \(-0.745925\pi\)
−0.697997 + 0.716101i \(0.745925\pi\)
\(884\) 0 0
\(885\) −3.50686 −0.117882
\(886\) 11.1496 0.374577
\(887\) 32.8798 1.10400 0.551998 0.833845i \(-0.313866\pi\)
0.551998 + 0.833845i \(0.313866\pi\)
\(888\) 0.309321 0.0103801
\(889\) 0.0359818 0.00120679
\(890\) −18.4482 −0.618386
\(891\) −0.260658 −0.00873238
\(892\) 6.01370 0.201354
\(893\) −47.9524 −1.60467
\(894\) −12.6505 −0.423097
\(895\) 13.8608 0.463315
\(896\) 43.1892 1.44285
\(897\) 2.16834 0.0723988
\(898\) 54.7140 1.82583
\(899\) −0.582447 −0.0194257
\(900\) −3.18631 −0.106210
\(901\) 0 0
\(902\) −0.625031 −0.0208113
\(903\) 29.8529 0.993443
\(904\) −4.02116 −0.133742
\(905\) −2.04424 −0.0679528
\(906\) 19.0667 0.633448
\(907\) 36.4475 1.21022 0.605110 0.796142i \(-0.293129\pi\)
0.605110 + 0.796142i \(0.293129\pi\)
\(908\) −14.1374 −0.469166
\(909\) −33.5873 −1.11402
\(910\) 23.7190 0.786277
\(911\) −29.8739 −0.989767 −0.494883 0.868959i \(-0.664789\pi\)
−0.494883 + 0.868959i \(0.664789\pi\)
\(912\) −26.5325 −0.878579
\(913\) −0.342832 −0.0113461
\(914\) 46.1852 1.52767
\(915\) −4.10730 −0.135783
\(916\) 26.0381 0.860324
\(917\) −35.5369 −1.17353
\(918\) 0 0
\(919\) 11.6218 0.383368 0.191684 0.981457i \(-0.438605\pi\)
0.191684 + 0.981457i \(0.438605\pi\)
\(920\) 1.39048 0.0458426
\(921\) −1.96818 −0.0648539
\(922\) 25.3837 0.835966
\(923\) 12.6444 0.416196
\(924\) 0.197744 0.00650531
\(925\) 0.336949 0.0110788
\(926\) 45.3684 1.49090
\(927\) 17.4675 0.573709
\(928\) −2.62432 −0.0861475
\(929\) 5.04232 0.165433 0.0827165 0.996573i \(-0.473640\pi\)
0.0827165 + 0.996573i \(0.473640\pi\)
\(930\) −1.71965 −0.0563896
\(931\) 92.6904 3.03781
\(932\) −3.85685 −0.126335
\(933\) −14.1009 −0.461643
\(934\) −40.2520 −1.31709
\(935\) 0 0
\(936\) −10.2003 −0.333406
\(937\) 34.9116 1.14051 0.570257 0.821466i \(-0.306844\pi\)
0.570257 + 0.821466i \(0.306844\pi\)
\(938\) −7.18248 −0.234516
\(939\) −5.82351 −0.190043
\(940\) −7.73218 −0.252196
\(941\) 11.0586 0.360502 0.180251 0.983621i \(-0.442309\pi\)
0.180251 + 0.983621i \(0.442309\pi\)
\(942\) −11.6924 −0.380960
\(943\) −6.86937 −0.223697
\(944\) 25.1416 0.818290
\(945\) 16.5078 0.537000
\(946\) −0.947562 −0.0308079
\(947\) 11.4918 0.373435 0.186717 0.982414i \(-0.440215\pi\)
0.186717 + 0.982414i \(0.440215\pi\)
\(948\) −8.66000 −0.281264
\(949\) −16.3069 −0.529346
\(950\) −14.1224 −0.458190
\(951\) 14.5094 0.470500
\(952\) 0 0
\(953\) −0.704896 −0.0228338 −0.0114169 0.999935i \(-0.503634\pi\)
−0.0114169 + 0.999935i \(0.503634\pi\)
\(954\) −55.0419 −1.78205
\(955\) −3.08056 −0.0996847
\(956\) 6.23035 0.201504
\(957\) 0.0151959 0.000491215 0
\(958\) −48.3053 −1.56067
\(959\) 9.69929 0.313206
\(960\) −0.962768 −0.0310732
\(961\) −29.0837 −0.938185
\(962\) −1.84068 −0.0593459
\(963\) 37.2465 1.20025
\(964\) 2.09552 0.0674920
\(965\) 20.6419 0.664486
\(966\) 5.62018 0.180826
\(967\) −39.9545 −1.28485 −0.642425 0.766348i \(-0.722072\pi\)
−0.642425 + 0.766348i \(0.722072\pi\)
\(968\) −14.6755 −0.471688
\(969\) 0 0
\(970\) 34.7149 1.11463
\(971\) 43.2538 1.38808 0.694040 0.719936i \(-0.255829\pi\)
0.694040 + 0.719936i \(0.255829\pi\)
\(972\) 18.6900 0.599481
\(973\) 85.6915 2.74714
\(974\) −41.7978 −1.33929
\(975\) 2.08100 0.0666454
\(976\) 29.4464 0.942555
\(977\) 48.8671 1.56340 0.781699 0.623656i \(-0.214353\pi\)
0.781699 + 0.623656i \(0.214353\pi\)
\(978\) 15.4603 0.494367
\(979\) −0.536340 −0.0171415
\(980\) 14.9461 0.477434
\(981\) −11.9978 −0.383061
\(982\) −14.0671 −0.448898
\(983\) 48.8832 1.55913 0.779565 0.626321i \(-0.215440\pi\)
0.779565 + 0.626321i \(0.215440\pi\)
\(984\) −6.05211 −0.192934
\(985\) −18.2365 −0.581063
\(986\) 0 0
\(987\) 18.3146 0.582961
\(988\) 29.8325 0.949099
\(989\) −10.4141 −0.331150
\(990\) −0.239555 −0.00761356
\(991\) −14.5340 −0.461687 −0.230843 0.972991i \(-0.574149\pi\)
−0.230843 + 0.972991i \(0.574149\pi\)
\(992\) 8.63407 0.274132
\(993\) −10.4743 −0.332392
\(994\) 32.7734 1.03951
\(995\) −26.6677 −0.845422
\(996\) 5.66470 0.179493
\(997\) 44.2040 1.39995 0.699977 0.714165i \(-0.253193\pi\)
0.699977 + 0.714165i \(0.253193\pi\)
\(998\) 15.8870 0.502896
\(999\) −1.28107 −0.0405312
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.p.1.3 12
5.4 even 2 7225.2.a.bs.1.10 12
17.3 odd 16 85.2.l.a.26.2 24
17.4 even 4 1445.2.d.j.866.20 24
17.6 odd 16 85.2.l.a.36.2 yes 24
17.13 even 4 1445.2.d.j.866.19 24
17.16 even 2 1445.2.a.q.1.3 12
51.20 even 16 765.2.be.b.451.5 24
51.23 even 16 765.2.be.b.631.5 24
85.3 even 16 425.2.n.c.349.5 24
85.23 even 16 425.2.n.f.274.2 24
85.37 even 16 425.2.n.f.349.2 24
85.54 odd 16 425.2.m.b.26.5 24
85.57 even 16 425.2.n.c.274.5 24
85.74 odd 16 425.2.m.b.376.5 24
85.84 even 2 7225.2.a.bq.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.2 24 17.3 odd 16
85.2.l.a.36.2 yes 24 17.6 odd 16
425.2.m.b.26.5 24 85.54 odd 16
425.2.m.b.376.5 24 85.74 odd 16
425.2.n.c.274.5 24 85.57 even 16
425.2.n.c.349.5 24 85.3 even 16
425.2.n.f.274.2 24 85.23 even 16
425.2.n.f.349.2 24 85.37 even 16
765.2.be.b.451.5 24 51.20 even 16
765.2.be.b.631.5 24 51.23 even 16
1445.2.a.p.1.3 12 1.1 even 1 trivial
1445.2.a.q.1.3 12 17.16 even 2
1445.2.d.j.866.19 24 17.13 even 4
1445.2.d.j.866.20 24 17.4 even 4
7225.2.a.bq.1.10 12 85.84 even 2
7225.2.a.bs.1.10 12 5.4 even 2